JPH04340444A - Detection element and detection method of bitter substance - Google Patents

Detection element and detection method of bitter substance

Info

Publication number
JPH04340444A
JPH04340444A JP11337591A JP11337591A JPH04340444A JP H04340444 A JPH04340444 A JP H04340444A JP 11337591 A JP11337591 A JP 11337591A JP 11337591 A JP11337591 A JP 11337591A JP H04340444 A JPH04340444 A JP H04340444A
Authority
JP
Japan
Prior art keywords
substance
fluorescent
excitation light
bitter
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11337591A
Other languages
Japanese (ja)
Inventor
Katsutoshi Minami
勝敏 南
Yosuke Takazawa
高沢 要介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP11337591A priority Critical patent/JPH04340444A/en
Publication of JPH04340444A publication Critical patent/JPH04340444A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable an amount of a bitter substance to be detected by allowing an excitation light and a fluorescent light to be transmitted through a thin film which consists of a fluorescent substance emitting fluorescence when the excitation light enters and at the same time a fluorescence with a same wavelength as the fluorescence which is emitted from the fluorescent substance to be formed on a substrate which is not excited by the excitation light. CONSTITUTION:A thin film 2 which consists of a fluorescent substance emitting a fluorescence when an excitation light enters allows the excitation light and the fluorescent light which is emitted from the fluorescent substance to be transmitted and at the same time a fluorescence with a same wavelength as the fluorescence which is emitted from the fluorescent substance is formed on a substrate 1 which consists of a material which does not emit light with the excitation light. A fluorescent substance is allowed to contact a bitter substance and the excitation light is emitted to the fluorescent substance thus enabling the fluorescence which is generated by the excitation light to be detected. The fluorescent intensity is changed according to a concentration of the bitter substance, thus enabling the degree of bitterness to be measured quantitatively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、苦味物質の検知素子及
び検知方法に係わり、更に詳しくは人間の苦味に対する
感覚を定量的に表すことも可能な苦味物質の検知素子及
び検知方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detecting element and method for detecting bitter substances, and more particularly to a detecting element and method for detecting bitter substances that can quantitatively express the human sense of bitterness.

【0002】0002

【従来の技術】苦味物質の検知方法としては、特開昭6
3−222248号公報に開示されているように、固定
化された二分子膜のフィルムに苦味物質を吸着させ、吸
着による膜電位および/または膜抵抗の変化から苦味物
質量を検知する方法、あるいは水晶発振子上に二分子膜
を固定化し二分子膜に吸着した苦味物質量を水晶発振子
の周波数の変化から求める方法等が提案されている。
[Prior art] As a method for detecting bitter substances, Japanese Patent Application Laid-open No. 6
As disclosed in Publication No. 3-222248, a method of adsorbing a bitter substance to a film of an immobilized bilayer membrane and detecting the amount of the bitter substance from changes in membrane potential and/or membrane resistance due to adsorption, or A method has been proposed in which a bilayer membrane is immobilized on a crystal oscillator and the amount of bitter substances adsorbed to the bilayer membrane is determined from changes in the frequency of the crystal oscillator.

【0003】膜電位の変化から苦味物質を検知する方法
においては、特開昭63−222248号公報の図1に
示されているように、二分子膜により測定試料溶液と参
照溶液を分離し、両溶液に銀ー塩化銀等の電極を入れて
膜電位を測定する必要があるため、検知素子の固体化が
困難である。膜抵抗の変化で検出する場合にも同じ問題
があり、また膜抵抗の変化の大きさが人間の感じる苦味
の強さと相関があるかどうか確認されていない。
[0003] In the method of detecting bitter substances from changes in membrane potential, as shown in FIG. 1 of JP-A No. 63-222248, a measurement sample solution and a reference solution are separated by a bilayer membrane; Since it is necessary to measure the membrane potential by inserting electrodes such as silver-silver chloride into both solutions, it is difficult to solidify the sensing element. The same problem exists when detecting changes in membrane resistance, and it has not been confirmed whether the magnitude of changes in membrane resistance correlates with the intensity of bitterness perceived by humans.

【0004】一方、水晶発振子を使用する方法において
は、吸着量を水晶発振子の重量変化に伴う発振周波数の
変化量から求めるため、分子量が不明な未知の物質では
吸着量と人間の感じる苦味の強さとの相関がはっきりし
ないという問題がある。
On the other hand, in the method using a crystal oscillator, the amount of adsorption is determined from the amount of change in the oscillation frequency due to changes in the weight of the crystal oscillator. The problem is that the correlation with the strength of

【0005】このような状況の中で、人間の感じる苦味
に対する特性と同じ感度特性を持つ固体型の苦味物質の
検知素子が望まれている。
Under these circumstances, there is a demand for a solid-state bitter substance sensing element that has sensitivity characteristics similar to those for bitterness felt by humans.

【0006】[0006]

【発明が解決しようとする課題】かかる現状に鑑み、本
発明は、苦味物質の量を人間の感じる苦味の強さとして
検知可能な固体型の苦味物質の検知素子及び検知方法を
提供することを目的とする。
[Problems to be Solved by the Invention] In view of the current situation, the present invention aims to provide a solid-type bitter substance detection element and detection method that can detect the amount of bitter substances as the intensity of bitterness felt by humans. purpose.

【0007】[0007]

【課題を解決するための手段】本発明の第1の要旨は、
励起光が入射されたときに蛍光を発する蛍光物質からな
る薄膜が、該励起光及び該蛍光物質から発する蛍光を透
過するとともに該蛍光物質から発する蛍光と同じ波長の
蛍光は、該励起光によっては発しない材料からなる基体
上に形成されていることを特徴とする苦味物質の検知素
子に存在する。
[Means for Solving the Problems] The first gist of the present invention is as follows:
A thin film made of a fluorescent material that emits fluorescence when excitation light is incident on it transmits the excitation light and the fluorescence emitted from the fluorescent material, and the fluorescence with the same wavelength as the fluorescence emitted from the fluorescent material is transmitted depending on the excitation light. It exists in a bitter substance sensing element characterized in that it is formed on a substrate made of a material that does not emit bitter substances.

【0008】第2の要旨は、第1の要旨において、前記
蛍光物質からなる薄膜上に、脂質からなる薄膜が形成さ
れていることを特徴とする苦味物質の検知素子に存在す
る。
[0008] A second aspect resides in the bitter substance sensing element according to the first aspect, characterized in that a thin film made of lipid is formed on the thin film made of the fluorescent substance.

【0009】第3の要旨は、第1または第2の要旨にお
いて、 前記蛍光物質が下記式で表されるシアニン系色
素及びその塩からなることを特徴とする苦味物質の検知
素子に存在する。
A third aspect resides in the bitter substance sensing element according to the first or second aspect, characterized in that the fluorescent substance is comprised of a cyanine dye represented by the following formula and a salt thereof.

【0010】0010

【化2】 (但し、X=O,SまたはC(CH3)2,n=0〜3
である。)第4の要旨は、蛍光物質に苦味物質を接触さ
せた状態で、あるいは、接触させた後、該蛍光物質に励
起光を照射し、該励起光により発生する蛍光を検知する
ことを特徴とする苦味物質の検知方法に存在する。
[Chemical formula 2] (However, X=O, S or C(CH3)2, n=0-3
It is. ) The fourth aspect is that the fluorescent substance is brought into contact with a bitter substance or after it is brought into contact with the fluorescent substance, excitation light is irradiated onto the fluorescent substance, and fluorescence generated by the excitation light is detected. It exists in the detection method of bitter substances.

【0011】第5の要旨は、第1または第2の要旨の苦
味物質の検知素子の蛍光物質が形成された面に苦味物質
を接触させ、該蛍光物質が形成された面とは反対側の面
から励起光を該蛍光物質からなる薄膜に入射し、該蛍光
物質からなる薄膜から発生する蛍光を検知することを特
徴とする苦味物質の検知方法に存在する。
[0011] The fifth aspect is that a bitter substance is brought into contact with the surface on which the fluorescent substance of the bitter substance detection element of the first or second aspect is formed; A method for detecting a bitter substance is characterized in that excitation light is incident on a thin film made of the fluorescent substance from a surface and fluorescence generated from the thin film made of the fluorescent substance is detected.

【0012】本発明で用いられる基体の構成材料は、蛍
光物質を励起するための励起光及び蛍光物質から発せら
れる蛍光を透過し、かつ励起光により蛍光物質と同波長
域に蛍光を発光しない材料であれば適宜のものが用いら
れ、例えば、石英ガラス、ホウケイ酸ガラス、合成サフ
ァイア、マイカ、ポリカーボネート(PC)、ポリメタ
クリル酸メタクリレート(PMMA)、ポリエチレンテ
レフタレート(PET)等があげられる。基体の形状は
特に限定しないが基板が典型例としてあげられる。
The constituent material of the substrate used in the present invention is a material that transmits the excitation light for exciting the fluorescent substance and the fluorescence emitted from the fluorescent substance, and does not emit fluorescence in the same wavelength range as the fluorescent substance due to the excitation light. If so, an appropriate material can be used, such as quartz glass, borosilicate glass, synthetic sapphire, mica, polycarbonate (PC), polymethacrylic acid methacrylate (PMMA), polyethylene terephthalate (PET), and the like. Although the shape of the base is not particularly limited, a typical example is a substrate.

【0013】また、蛍光物質としては、例えば、シアニ
ン系色素、メロシアニン系色素、ローダミン系色素、オ
キソノール系色素、スチリル系色素などの蛍光色素、例
えば、アントラセン、ピレン、ペリレンなどの縮合芳香
環長鎖炭化水素誘導体、あるいは、例えば、オキシン金
属錯体などの有機金属錯体長鎖炭化水素誘導体などが使
用できる。
Examples of fluorescent substances include fluorescent dyes such as cyanine dyes, merocyanine dyes, rhodamine dyes, oxonol dyes, and styryl dyes, and long chains of fused aromatic rings such as anthracene, pyrene, and perylene. Hydrocarbon derivatives or long chain hydrocarbon derivatives such as organometallic complexes such as oxine metal complexes can be used.

【0014】このうちシアニン系色素としては、例えば
、(I)式で示される化合物及びその塩等が好ましい例
としてあげられる。
Among these, preferred examples of cyanine dyes include compounds represented by formula (I) and salts thereof.

【0015】メロシアニン系色素としては、例えば、3
−カルボキシメチル−5−[2−(3−オクタデシル−
2−ベンゾチアゾリニリデン)エチリデン]−ローダニ
ンなどがあげられ、ローダミン系色素としては、例えば
、[9−(o−カルボキシフェニル)−6−(N−エチ
ル−N−オクタデシルアミノ)−3H−キサンテン−3
−イリデン]−N−エチル−N−オクタデシルアンモニ
ウムなどが挙げられる。
Examples of merocyanine dyes include 3
-carboxymethyl-5-[2-(3-octadecyl-
Examples of rhodamine dyes include [9-(o-carboxyphenyl)-6-(N-ethyl-N-octadecylamino)-3H- xanthene-3
-ylidene]-N-ethyl-N-octadecylammonium and the like.

【0016】本発明においては、上記蛍光物質を単独で
用いても良く、また、例えば、カルボン酸、カルボン酸
エステル、リン酸エステル等との混合物でも良い。更に
上記蛍光物質の2種以上を用いてもよい。
In the present invention, the above-mentioned fluorescent substance may be used alone or in a mixture with, for example, a carboxylic acid, a carboxylic acid ester, a phosphoric acid ester, or the like. Furthermore, two or more of the above fluorescent substances may be used.

【0017】蛍光物質からなる薄膜の厚さとしては、1
〜20分子層が好ましく、1〜10分子層がより好まし
く、2〜3分子層が最も好ましい。
The thickness of the thin film made of fluorescent material is 1
~20 molecular layers are preferred, 1 to 10 molecular layers are more preferred, and 2 to 3 molecular layers are most preferred.

【0018】本発明では、蛍光物質からなる薄膜の上に
さらに、脂質からなる薄膜を形成する事が好ましい(請
求項2)。このように、素子構造を脂質からなる薄膜の
層と蛍光物質からなる薄膜の層の2層構造とすることに
より、苦味物質に対する素子の感度、精度は一層向上す
る。
In the present invention, it is preferable that a thin film made of lipid is further formed on the thin film made of fluorescent material (claim 2). In this way, by forming the device structure into a two-layer structure consisting of a thin film layer made of lipid and a thin film layer made of fluorescent material, the sensitivity and accuracy of the device to bitter substances are further improved.

【0019】本発明で用いられる脂質としては、分子内
に炭素数12〜20の長鎖の飽和または不飽和の炭化水
素基を2個または3個もち、カルボキシル基またはカル
ボン酸とのエステル結合またはリン酸とのエステル結合
を有する化合物である。
The lipid used in the present invention has two or three long-chain saturated or unsaturated hydrocarbon groups with 12 to 20 carbon atoms in the molecule, and has an ester bond with a carboxyl group or a carboxylic acid or It is a compound that has an ester bond with phosphoric acid.

【0020】すなわち、例えば、ホスファチジルコリン
やホスファチジルセリン等と長鎖カルボン酸とのエステ
ル、長鎖アルコールとリン酸またはジカルボン酸または
トリカルボン酸とのエステルなどが使用でき、例えば、
ジパルミトイルホスファチジルコリン、ジステアロイル
ホスファチジルコリン、ジオレオイルホスファチジルコ
リン;ジパルミトイルホスファチジルセリン、ジステア
ロイルホスファチジルセリン、ジオレオイルホスファチ
ジルセリン、ジn−ヘキサデシルホスフェート、ジn−
オクタデシルホスフェート、ジオレイルホスフェート等
やマロン酸、コハク酸等のパルミチルエステル、ステア
リルエステル、オレイルエステルなどがあげられる。
That is, for example, esters of phosphatidylcholine, phosphatidylserine, etc. and long-chain carboxylic acids, esters of long-chain alcohols and phosphoric acid, dicarboxylic acids, or tricarboxylic acids, etc. can be used.
Dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, dioleoylphosphatidylcholine; dipalmitoylphosphatidylserine, distearoylphosphatidylserine, dioleoylphosphatidylserine, di-n-hexadecyl phosphate, di-n-
Examples include octadecyl phosphate, dioleyl phosphate, and palmityl esters, stearyl esters, and oleyl esters of malonic acid, succinic acid, and the like.

【0021】本発明では、上記の脂質を単独で用いても
よくまた2種以上の混合物で用いてもよい。また、上記
脂質と、例えば、コレステロール等との混合物としても
よい。
In the present invention, the above lipids may be used alone or in a mixture of two or more. It may also be a mixture of the above lipids and, for example, cholesterol.

【0022】本発明の苦味物質の検知素子は、上記基体
上に蛍光物質の薄膜を形成し、あるいは蛍光物質の薄膜
上に更に脂質の薄膜を形成して得られる。蛍光物質から
なる薄膜、脂質からなる薄膜の形成方法としては、例え
ば、蒸着法、キャスティング法、ラングミュア・ブロジ
ェット(LB)法等が用いられが、検出感度、精度の観
点から、LB法で形成するのが好ましい。この場合、脂
質の薄膜は2層または1層で表面が親水性なるようにし
、蛍光物質の薄膜は2層または3層で表面が親水性とす
るのが望ましい。
The bitter substance sensing element of the present invention can be obtained by forming a thin film of fluorescent substance on the above substrate, or by further forming a thin film of lipid on the thin film of fluorescent substance. For example, vapor deposition, casting, Langmuir-Blodgett (LB) method, etc. are used to form thin films made of fluorescent substances and thin films made of lipids, but from the viewpoint of detection sensitivity and accuracy, it is preferable to use the LB method. It is preferable to do so. In this case, it is preferable that the lipid thin film has two or one layer so that the surface is hydrophilic, and the fluorescent substance thin film has two or three layers and has a hydrophilic surface.

【0023】なお、本発明で検知対象となる苦味物質と
しては、例えば、キニーネ、ストリキニーネ、ニコチン
、フェニルチオウレア、パパベリン、カフェイン、ナリ
ンギン、オクタアセチル蔗糖等があげられる。
[0023] Examples of bitter substances to be detected in the present invention include quinine, strychnine, nicotine, phenylthiourea, papaverine, caffeine, naringin, and octaacetyl sucrose.

【0024】[0024]

【作用】以上の苦味物質の検知素子に苦味物質を接触さ
せた後、蛍光物質に固有の波長の光を照射して、蛍光物
質から発せられる蛍光の強度を測定すると、苦味物質の
濃度に応じて蛍光強度が変化する。しかもこの変化率は
苦味物質の濃度の対数値と比例関係にあり、本発明の苦
味物質の検知素子により、種々の苦味物質に対し、人間
が感じる苦味の強さを定量的に測定することが可能とな
る。
[Effect] After bringing a bitter substance into contact with the bitter substance detection element described above, the fluorescent substance is irradiated with light of a specific wavelength and the intensity of the fluorescence emitted from the fluorescent substance is measured. The fluorescence intensity changes. Moreover, this rate of change is proportional to the logarithm of the concentration of the bitter substance, and the bitter substance detection element of the present invention makes it possible to quantitatively measure the intensity of bitterness felt by humans for various bitter substances. It becomes possible.

【0025】[0025]

【実施例】以下に実施例を用い本発明を詳細に説明する
が、本発明がこれら実施例に限定されるものでないこと
はいうまでもない。
EXAMPLES The present invention will be explained in detail below using Examples, but it goes without saying that the present invention is not limited to these Examples.

【0026】(実施例1)3,3’ージオクタデシルー
2,2’ーチアシアニンの過塩素酸塩(分子量887.
80)3.0mgをクロロホルム10mlに溶解し、こ
の溶液120μlをLB膜成膜装置の水面上に展開した
。表面圧を30mN/mに保ち、透明石英基板1上に、
親水基が表面側になるように第1分子層は基板を引き上
げながら、第2分子層は基板を押し下げながら図1(a
)に示す構造の2分子膜2を形成した。
(Example 1) Perchlorate of 3,3'-dioctadecyl-2,2'-thiacyanine (molecular weight: 887.
80) 3.0 mg was dissolved in 10 ml of chloroform, and 120 μl of this solution was spread on the water surface of the LB film forming apparatus. Maintaining the surface pressure at 30 mN/m, on the transparent quartz substrate 1,
The first molecular layer pulls up the substrate so that the hydrophilic groups are on the surface side, and the second molecular layer pushes down the substrate as shown in Figure 1 (a).
A bilayer film 2 having the structure shown in ) was formed.

【0027】以上のようにして作製した苦味物質の検知
素子を用いて苦味の検知を行った。
Bitter taste was detected using the bitter substance detection element prepared as described above.

【0028】図2に示すように、測定用セル6の容器7
内に2分子膜(図1の2)が形成された面を容器7の内
側に向けて苦味検知素子4を固定し、まず苦味物質を含
まない水を容器に入れて励起光を図のように入射し、蛍
光物質2から発生する蛍光の蛍光強度を測定した。次に
、代表的苦味物質であるキニーネを種々の濃度で添加し
て、蛍光強度を測定した。
As shown in FIG. 2, the container 7 of the measurement cell 6
Fix the bitter taste detection element 4 with the surface on which the bimolecular film (2 in Figure 1) is formed facing the inside of the container 7. First, water containing no bitter substances is placed in the container and the excitation light is emitted as shown in the figure. The intensity of the fluorescence emitted from the fluorescent substance 2 was measured. Next, quinine, a typical bitter substance, was added at various concentrations and the fluorescence intensity was measured.

【0029】なお、蛍光強度の測定には分光蛍光光度計
(日本分光工業株式会社製分光蛍光光度計FPー777
)を使用し、励起光を410nmとし、495nmの蛍
光の強度を測定した。
[0029] The fluorescence intensity was measured using a spectrofluorometer (Spectrofluorometer FP-777 manufactured by JASCO Corporation).
), the excitation light was set to 410 nm, and the intensity of fluorescence at 495 nm was measured.

【0030】上記測定により得られた結果から、次式で
表される蛍光強度変化率とキニーネ濃度の関係を図3に
プロットした。           蛍光強度変化率  =  (FQ
  −  FO  )x  100  (%)FQ  
:キニ−ネ水溶液の蛍光強度 FO  :キニ−ネを含まない水の蛍光強度図3が示す
ように、蛍光強度の変化率はキニーネ濃度の対数値とほ
ぼ比例関係にあることが分かった。人間の苦味感覚の強
さは苦味物質の濃度の対数にほぼ比例するといわれるこ
とから、実施例1の苦味物質の検知素子が人間に変わっ
て苦味を定量的に表すことができることを示した。
Based on the results obtained from the above measurements, the relationship between the rate of change in fluorescence intensity and the quinine concentration, expressed by the following equation, is plotted in FIG. Fluorescence intensity change rate = (FQ
- FO ) x 100 (%) FQ
: Fluorescence intensity of quinine aqueous solution FO : Fluorescence intensity of quinine-free water As shown in FIG. 3, it was found that the rate of change in fluorescence intensity was approximately proportional to the logarithm of the quinine concentration. Since the strength of human bitterness sensation is said to be approximately proportional to the logarithm of the concentration of a bitter substance, it was shown that the bitter substance detection element of Example 1 can replace humans and quantitatively represent bitterness.

【0031】(実施例2)3,3’ージオクタデシルー
2,2’ーオキザカルボシアニンの過塩素酸塩(分子量
881.72)5.6mgをクロロホルム10mlに溶
解した液を水面上に展開し、表面圧を40mN/mとし
て実施例1と同様に2分子膜を形成した。励起光を45
0nmとし、実施例1と同様にして、516nmの蛍光
強度を測定してキニーネに対する蛍光強度変化率を求め
た。結果を図4に示す。
(Example 2) A solution prepared by dissolving 5.6 mg of 3,3'-dioctadecyl-2,2'-oxacarbocyanine perchlorate (molecular weight 881.72) in 10 ml of chloroform was poured onto the water surface. It was developed to form a bimolecular film in the same manner as in Example 1 with a surface pressure of 40 mN/m. 45 excitation light
0 nm, the fluorescence intensity at 516 nm was measured in the same manner as in Example 1, and the rate of change in fluorescence intensity with respect to quinine was determined. The results are shown in Figure 4.

【0032】図4から明らかなように、実施例2の苦味
物質検知素子についても蛍光強度の減少率はキニーネ濃
度の対数値とほぼ比例関係にあることを示した。
As is clear from FIG. 4, the rate of decrease in fluorescence intensity of the bitter substance sensing element of Example 2 was also shown to be approximately proportional to the logarithm of the quinine concentration.

【0033】(実施例3)1,1’ージオクタデシルー
3,3,3’,3’ーテトラメチルー2,2’ーインド
トリカルボシアニンの過塩素酸塩(分子量985.95
)3.2mgをクロロホルム10mlに溶解した液を水
面上に展開し、表面圧35mN/mで2分子膜を形成し
た。
(Example 3) 1,1'-Dioctadecyl-3,3,3',3'-tetramethyl-2,2'-indotricarbocyanine perchlorate (molecular weight 985.95
) 3.2 mg dissolved in 10 ml of chloroform was spread on the water surface to form a bimolecular film at a surface pressure of 35 mN/m.

【0034】励起光780nmとし、実施例1と同様に
して、825nmの蛍光強度を測定してキニーネに対す
る蛍光強度変化率を求めた。結果を図5に示す。
[0034] Using an excitation light of 780 nm, the fluorescence intensity at 825 nm was measured in the same manner as in Example 1 to determine the rate of change in fluorescence intensity with respect to quinine. The results are shown in Figure 5.

【0035】図5から明らかなように、実施例3の苦味
物質の検知素子は実施例1及び2の素子に比べ検出限界
濃度は高く、感度は劣るが、蛍光強度の変化率はキニー
ネ濃度の対数値とほぼ比例関係にあり、人間の苦味に対
する感覚と同様な感度特性を持つことを示した。
As is clear from FIG. 5, the bitter substance detection element of Example 3 has a higher detection limit concentration and inferior sensitivity than the elements of Examples 1 and 2, but the rate of change in fluorescence intensity is similar to that of the quinine concentration. It was shown that there is a nearly proportional relationship with the logarithm value, and that it has sensitivity characteristics similar to the human sense of bitterness.

【0036】(実施例4)3,3’−ジオクタデシル−
2,2’−オキザカルボシアニンの過塩素酸塩(分子量
881.72)5.4mgをクロロホルム10mlに溶
解し、この溶液60μlをLB膜成膜装置の水面上に展
開した。表面圧を40mN/mに保ち、透明石英基板上
に第1分子膜は基板を引き上げながら、第2分子膜は基
板を押し下げながら蛍光物質の2分子膜を形成した。
(Example 4) 3,3'-dioctadecyl-
5.4 mg of 2,2'-oxacarbocyanine perchlorate (molecular weight 881.72) was dissolved in 10 ml of chloroform, and 60 μl of this solution was spread on the water surface of the LB film forming apparatus. While keeping the surface pressure at 40 mN/m, a bimolecular film of the fluorescent substance was formed on the transparent quartz substrate while the first molecular film was pulling up the substrate and the second molecular film was pushing down the substrate.

【0037】水面上に残った蛍光物質を除去したあとジ
n−ヘキサデシルホスフェート(分子量546.86)
3.5mgをクロロホルム10mlに溶解した溶液10
0μlを水面上に展開し、蛍光物質の場合と同様に表面
圧40mN/mで蛍光物質の2分子膜上にジn−ヘキサ
デシルホスフェートの2分子膜を形成した。得られた膜
の構成は図1(b)の通りである。
After removing the fluorescent substance remaining on the water surface, di-n-hexadecyl phosphate (molecular weight 546.86)
Solution 10 of 3.5 mg dissolved in 10 ml of chloroform
0 μl was spread on the water surface, and a bilayer film of di-n-hexadecyl phosphate was formed on the bilayer film of the fluorescent material under a surface pressure of 40 mN/m as in the case of the fluorescent material. The structure of the obtained film is as shown in FIG. 1(b).

【0038】この素子を用い、実施例1と同様にして、
種々の濃度のキニーネについて、蛍光強度を測定した。 得られた結果を図6にまとめた。
Using this element, in the same manner as in Example 1,
Fluorescence intensity was measured for various concentrations of quinine. The obtained results are summarized in Figure 6.

【0039】実施例2との比較から明らかなように、蛍
光物質薄膜の上に脂質の薄膜を形成することにより、苦
味物質の濃度に対する蛍光強度変化量は増大し、より高
精度の測定が可能となることが分かった。
As is clear from the comparison with Example 2, by forming the lipid thin film on the fluorescent substance thin film, the amount of change in fluorescence intensity with respect to the concentration of the bitter substance increases, making it possible to measure with higher precision. It turns out that

【0040】(実施例5)[9−(o−カルボキシフェ
ニル)−6−(N−エチル−N−オクタデシルアミノ)
−3H−キサンテン−3−イリデン]−N−エチル−N
−オクタデシルアンモニウムを蛍光物質として用い、実
施例1と同様にして、苦味物質の検知素子を作製し、キ
ニーネに対する蛍光強度変化率を求めた。ここで、。励
起光波長を520nmとし、蛍光波長は582nmとし
た。結果を図7に示す。
(Example 5) [9-(o-carboxyphenyl)-6-(N-ethyl-N-octadecylamino)
-3H-xanthene-3-ylidene]-N-ethyl-N
- Using octadecyl ammonium as a fluorescent substance, a bitter substance detection element was prepared in the same manner as in Example 1, and the rate of change in fluorescence intensity with respect to quinine was determined. here,. The excitation light wavelength was 520 nm, and the fluorescence wavelength was 582 nm. The results are shown in FIG.

【0041】図7が示すように、実施例1〜3の素子に
比べ感度及び精度は劣るものの、蛍光強度の変化率はキ
ニーネ濃度の対数値と比例関係にあることが分かった。
As shown in FIG. 7, although the sensitivity and accuracy were inferior to the devices of Examples 1 to 3, it was found that the rate of change in fluorescence intensity was proportional to the logarithm of the quinine concentration.

【0042】[0042]

【発明の効果】本発明により、人間の感じる苦味の強さ
を定量的に検知できる苦味物質の検知素子を提供するこ
とが可能になる。
According to the present invention, it is possible to provide a bitter substance detection element capable of quantitatively detecting the intensity of bitterness felt by humans.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(a)実施例1の苦味物質の検知素子の構造を
示す概念図。 (b)実施例4の苦味物質の検知素子の構造を示す概念
図。
FIG. 1 (a) is a conceptual diagram showing the structure of a bitter substance sensing element of Example 1. (b) A conceptual diagram showing the structure of the bitter substance detection element of Example 4.

【図2】蛍光測定の概略図。FIG. 2: Schematic diagram of fluorescence measurement.

【図3】実施例1の苦味物質の検知素子の蛍光強度変化
率とキニーネ濃度の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the fluorescence intensity change rate of the bitter substance sensing element of Example 1 and the quinine concentration.

【図4】実施例2の苦味物質の検知素子の蛍光強度変化
率とキニーネ濃度の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the rate of change in fluorescence intensity of the bitter substance detection element of Example 2 and the quinine concentration.

【図5】実施例3の苦味物質の検知素子の蛍光強度変化
率とキニーネ濃度の関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the fluorescence intensity change rate and quinine concentration of the bitter substance detection element of Example 3.

【図6】実施例4の苦味物質の検知素子の蛍光強度変化
率とキニーネ濃度の関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the fluorescence intensity change rate and quinine concentration of the bitter substance detection element of Example 4.

【図7】実施例5の苦味物質の検知素子の蛍光強度変化
率とキニーネ濃度の関係を示すグラフ。
FIG. 7 is a graph showing the relationship between the rate of change in fluorescence intensity of the bitter substance sensing element of Example 5 and the quinine concentration.

【符号の説明】[Explanation of symbols]

1      基体(基板)、 2      蛍光物質よりなる薄膜、3      
脂質からなる簿膜、 4      苦味物質の検知素子、 5      苦味物質溶液、 6      測定用セル、 7      容器。
1 base (substrate), 2 thin film made of fluorescent substance, 3
A membrane made of lipid, 4 a detection element for a bitter substance, 5 a bitter substance solution, 6 a measurement cell, and 7 a container.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  励起光が入射されたときに蛍光を発す
る蛍光物質からなる薄膜が、該励起光及び該蛍光物質か
ら発する蛍光を透過するとともに、該蛍光物質から発す
る蛍光と同じ波長の蛍光は、該励起光によっては発しな
い材料からなる基体上に形成されていることを特徴とす
る苦味物質の検知素子。
Claim 1: A thin film made of a fluorescent material that emits fluorescence when excitation light is incident thereon, transmits the excitation light and the fluorescence emitted from the fluorescent material, and transmits fluorescence of the same wavelength as the fluorescence emitted from the fluorescent material. . A bitter substance sensing element, characterized in that it is formed on a substrate made of a material that does not emit light depending on the excitation light.
【請求項2】  前記蛍光物質からなる薄膜上に、脂質
からなる薄膜が形成されていることを特徴とする請求項
1記載の苦味物質の検知素子。
2. The bitter substance sensing element according to claim 1, wherein a thin film made of lipid is formed on the thin film made of the fluorescent substance.
【請求項3】  前記蛍光物質が下記式で表されるシア
ニン系色素及びその塩からなることを特徴とする請求項
1または2記載の苦味物質の検知素子。 【化1】 (但し、X=O,SまたはC(CH3)2,n=0〜3
である。)
3. The bitter substance detection element according to claim 1, wherein the fluorescent substance is composed of a cyanine dye represented by the following formula and a salt thereof. [Chemical formula 1] (However, X=O, S or C(CH3)2, n=0-3
It is. )
【請求項4】  蛍光物質に苦味物質を接触させた状態
で、あるいは、接触させた後、該蛍光物質に励起光を照
射し、該励起光により発生する蛍光を検知することを特
徴とする苦味物質の検知方法。
4. Bitter taste characterized by irradiating the fluorescent substance with excitation light while or after bringing the fluorescent substance into contact with the bitter substance, and detecting the fluorescence generated by the excitation light. How to detect substances.
【請求項5】  請求項1または請求項2記載の苦味物
質の検知素子の蛍光物質が形成された側の面に苦味物質
を接触させ、該蛍光物質が形成された面とは反対側の面
から該基体を介して励起光を該蛍光物質からなる薄膜に
入射し、該蛍光物質からなる薄膜から発生する蛍光を検
知することを特徴とする苦味物質の検知方法。
5. Bringing a bitter substance into contact with the surface on which the fluorescent substance of the bitter substance detection element according to claim 1 or 2 is formed, and the surface opposite to the surface on which the fluorescent substance is formed. 1. A method for detecting a bitter substance, which comprises making excitation light incident on a thin film made of the fluorescent material through the substrate and detecting fluorescence generated from the thin film made of the fluorescent material.
JP11337591A 1991-05-17 1991-05-17 Detection element and detection method of bitter substance Pending JPH04340444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11337591A JPH04340444A (en) 1991-05-17 1991-05-17 Detection element and detection method of bitter substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11337591A JPH04340444A (en) 1991-05-17 1991-05-17 Detection element and detection method of bitter substance

Publications (1)

Publication Number Publication Date
JPH04340444A true JPH04340444A (en) 1992-11-26

Family

ID=14610699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11337591A Pending JPH04340444A (en) 1991-05-17 1991-05-17 Detection element and detection method of bitter substance

Country Status (1)

Country Link
JP (1) JPH04340444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017534890A (en) * 2014-11-13 2017-11-24 マーケット ユニバーシティー Adapter for spectrofluorometer cell holder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017534890A (en) * 2014-11-13 2017-11-24 マーケット ユニバーシティー Adapter for spectrofluorometer cell holder

Similar Documents

Publication Publication Date Title
Galla et al. Excimer-forming lipids in membrane research
US9523683B2 (en) Functionalized polydiacetylene sensors
US20040110223A1 (en) Method for detecting an analyte by fluorescence
JPH08505123A (en) Improved sensor membrane
Mukherjee et al. Organization and dynamics of N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)-labeled lipids: a fluorescence approach
WO1996016327A1 (en) Fluorescent metal-chelating amphiphile and sensor
CA2019066A1 (en) Fluorescence-based optical sensor for detection of lipid-soluble analytes
Raksawong et al. A polypyrrole doped with fluorescent CdTe quantum dots and incorporated into molecularly imprinted silica for fluorometric determination of ampicillin
US8815778B2 (en) PH modulation method to detect ligand-receptor binding
Vitha et al. Comparison of excitation and emission ratiometric fluorescence methods for quantifying the membrane dipole potential
Ibupoto et al. The Development of Highly Sensitive and Selective Immunosensor Based on Antibody Immobilized ZnO Nanorods for the Detection of D‐Dimer
Beswick et al. Oxygen detection using phosphorescent Langmuir-Blodgett films of a metalloporphyrin
Alakoskela et al. Control of a redox reaction on lipid bilayer surfaces by membrane dipole potential
JP2011047923A (en) Liposome composition, method for producing the same, and method for analyzing analyte by using the same
JPH04340444A (en) Detection element and detection method of bitter substance
Aoki et al. Sensor array made with nanostructured films to detect a phenothiazine compound
Pandit et al. Graphene oxide induced prototropism in different solvents: Enhancement of fluorescence induced by graphene oxide
JPH04215042A (en) Bitter material detecting element
Lee et al. A novel method for measurement of intravesicular pH using fluorescent probes
Puskin et al. A fluorescence study of A23187 interaction with phospholipid vesicles
JPH04215043A (en) Acid material deteting element
CN1701228B (en) Sensitive single-layer sensing device for measuring the concentration of oxygen and the system
Nikolelis et al. A minisensor for the rapid screening of sucralose based on surface-stabilized bilayer lipid membranes
Sakamoto et al. Giant unilamellar vesicles containing Rhodamine 6G as a marker for immunoassay of bovine serum albumin and lipocalin-2
Ghosh et al. Interaction of 3, 7-diamino-2, 8-dimethyl-5-phenyl phenazinium chloride with model biological membranes and reverse micelles of lipid: a spectroscopic study