JPH04339206A - Detection of position - Google Patents

Detection of position

Info

Publication number
JPH04339206A
JPH04339206A JP13984291A JP13984291A JPH04339206A JP H04339206 A JPH04339206 A JP H04339206A JP 13984291 A JP13984291 A JP 13984291A JP 13984291 A JP13984291 A JP 13984291A JP H04339206 A JPH04339206 A JP H04339206A
Authority
JP
Japan
Prior art keywords
phase
signals
phase error
detection means
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13984291A
Other languages
Japanese (ja)
Inventor
Masumi Suzuki
真澄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP13984291A priority Critical patent/JPH04339206A/en
Publication of JPH04339206A publication Critical patent/JPH04339206A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly accurate detection of the position of a moving object by determining the sine value of a phase error under specified conditions utilizing a 2-phase AC signal value corresponding to the movement of the moving object to correct the phase error by the sine value. CONSTITUTION:2-phase AC detection means comprising a gear 2 and magnetic sensors 3 and 4 fastened on a moving object 1 detects 2-phase AC signals Ea and Eb having a phase difference of 90 deg.. Instantaneous values of the signals Ea and Eb are sampled by an instantaneous value detection means 10. When a phase error is generated in the signals Ea and Eb. Ea= Vcos and Eb=Vsin (theta+alpha) (V: rotational speed of the gear 2 and theta: position within one tooth of the gear 2). With a phase error detection means 30, for example, a point is determined to meet dEb/dEa=0 based on data per cycle of instantaneous values of the signals Ea and Eb and sinalpha is calculated by a specified formula. A phase error correction section 9 corrects errors alpha of the signals Ea and Eb utilizing the sinalpha to detect 40 the position theta.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は2相交流信号を利用した
位置検出方法に関する 【0002】 【従来の技術】図5は従来の位置検出方法を実現するリ
ラクタンス型磁気式ロータリエンコーダの概略構成図で
ある。移動体1に固着されたギア2及び永久磁石を有す
る磁気センサ3、4から成る2相交流検出手段は、互い
に90°の位相差を有する2相交流信号Ea′=Vco
sθ及びEb′=Vsinθを検出する。サンプル・ア
ンド・ホールド(S/H)回路5及びアナログ・デジタ
ル(A/D)変換回路6から成る瞬時値検出手段10は
、2相交流検出手段からの2相交流信号Ea′及びEb
′の瞬時値をサンプリングしてデジタル変換する。除算
器7及び逆正接演算器8から成る内挿信号検出手段20
は、瞬時値検出手段10からの2相交流信号Ea′及び
Eb′の瞬時値に基づいてθ=tan−1(Vsinθ
/Vcosθ)の演算によりギア2の一歯内における位
置θを検出する。 【0003】 【発明が解決しようとする課題】上述した従来の位置検
出方法を実現するエンコーダにおいては、磁気センサの
各素子の特性のバラツキや取付け誤差等により、実際に
検出される2相交流信号は位相差が90°からずれてし
まって適正値と異なるため、高精度な位置検出ができな
いという欠点があった。このような場合にオペレーショ
ナルアンプリファイヤ等を用いて位相誤差補正回路を設
けることにより対処するエンコーダがあるが、位相誤差
補正回路は可変抵抗等の調整が必要であるため人為的な
調整ミスが生じたり、回路素子の経年変化による特性劣
化等により常に安定して高精度な位置検出を行なうこと
ができないという欠点があった。また、位相誤差を自動
補正する機能を持ったエンコーダが本出願人によって提
案されている(特願平1−310236)。例えば図4
に示すような2相交流信号に振幅誤差Vβ/Vαと位相
誤差αが含まれている場合のリサージュ図形において、
3点xi、yi(i=1〜3)が分かれば数1、数2、
数3によりa、b、eの値を求めることができるので、
これらの値を用いて数4、数5から振幅誤差Vβ/Vα
及び位相誤差αを求めて自動補正を行なっている。 【数1】       a=(y22−y32)x1y1+(y3
2−y12)x2y2               
   +(y12−y22)x3y3        
                  【数2】       b=(x22−x32)x1y1+(x3
2−x12)x2y2               
   +(x12−x22)x3y3【数3】       e=(x22−x32)y12+(x32
−x12)y22                 
 +(x12−x22)y32【数4】 【数5】 しかし、上記演算式は複雑であり、さらに振幅誤差や位
相誤差に加えて直流成分に変動(オフセット誤差)があ
ると、これらの誤差を検出するための演算式は一層複雑
なものとなる。従って、点xi、yiに微小な誤差が含
まれていると、演算した振幅誤差、位相誤差、オフセッ
ト誤差の値は実際の値とは異なってしまい、また、検出
タイミング時にノイズが混入してしまうと、同様に演算
結果に誤差が生じてしまい、高精度な位置検出を行なう
ことができないという問題があった。本発明は上述のよ
うな事情から成されたものであり、本発明の目的は、正
確な位置検出を行なうことができる位置検出方法を提供
することにある。 【0004】 【課題を解決するための手段】本発明は、移動体の移動
距離に対応した2相交流信号Ea及びEbを利用して前
記移動体の位置を検出する方法に関するものであり、本
発明の上記目的は、前記2相交流信号Ea及びEbの位
相差の所定値からの誤差である位相誤差をαとしたとき
、dEa/dEb=0又はdEb/dEa=0となる2
相交流信号Ea及びEbの値に基づいてsinαを求め
、前記sinαに基づいて前記2相交流信号Ea及びE
bの位相誤差αを補正し、補正した2相交流信号に基づ
いて前記移動体の位置を検出することによって達成され
る。 【0005】 【作用】本発明にあっては、2相交流信号の軌跡を利用
しているので、簡単な演算式で位相誤差を補正すること
ができる。 【0006】 【実施例】図1は本発明の位置検出方法を実現するリラ
クタンス型磁気式ロータリエンコーダの一例を図5に対
応させて示す概略構成図であり、同一構成箇所は同符号
を付して説明を省略する。2相交流検出手段から出力さ
れる2相交流信号Ea及びEbに位相誤差αが生じてい
るとすると、2相交流信号Ea及びEbは数6及び数7
で表わされる。 【数6】Ea=Vcosθ 【数7】Eb=Vsin(θ+α) このときの2相交流信号Ea及びEbのリサージュ図形
は図3に示すように楕円となり、dEa/dEb=0又
はdEb/dEa=0となる点をP1、P2、P3、P
4とすると、これらの座標はそれぞれ、P1(V、Vs
inα)、P2(Vsinα、V)、P3(−V、−V
sinα)、P4(−Vsinα、−V)となる。そし
て、図2のフローチャートに示すように位相誤差検出手
段30は、瞬時値検出手段10で検出した2相交流信号
Ea及びEbの瞬時値の一周期分(i=1〜N(Nは整
数))記憶しておき(ステップS1)、これらのデータ
に基づき数8及び数9により例えばdEb/dEa=0
となる点P1(V、Vsinα)=(Eai、Ebi)
を求める(ステップS2)。 【数8】 【数9】Ea>0 そして、数10及び数11によりsinαを算出して記
憶しておく(ステップS3)。 【数10】sinα=Vsinα/V=Ebi/V【数
11】 【0007】位置検出手段30を構成する位相誤差補正
部9は、算出したsinαと数12及び数13とを利用
して数14及び数15により2相交流信号Ea及びEb
の位相誤差αを補正する(ステップS4)。 【数12】           sin(θ+α)=sinθco
sα+cosθsinα【数13】 【数14】Ea′=Ea=Vcosθ 【数15】           Eb′=Vsinθ      
          =(Vsin(θ+α)−Vco
sθ・sinα)/cosα            
    =(Eb−Ea・sinα)/cosα位置検
出手段40を構成する除算器7及び逆正接演算器8は、
位相誤差補正部9からの2相交流信号Ea′及びEb′
の瞬時値に基づいてθ=tan−1(Eb′/Ea′)
の演算によりギア2の一歯内における位置θを検出し(
ステップS5)、全ての処理を終了する。 【0008】なお、上述した実施例においては、位相誤
差αの補正式として数15を用いたが、位相誤差αが小
さい場合はcosα=k(kは定数)としても良い。ま
た、位相誤差αは絶えず変化しているわけではないので
、位相誤差検出手段9においては常に位相誤差αを検出
する必要はなく、ある特定の時にのみ位相誤差αを検出
し、それ以外のときは直前に検出した値を用いて補正す
れば良い。さらに、本実施例ではリラクタンス型磁気式
ロータリエンコーダについて説明したがこれに限るもの
ではなく、直線移動型であるリニアエンコーダの場合で
も良い。また、磁気式に限るものではなく、他の方式、
例えば光学式のものでも2相交流信号を用いているもの
であれば適用可能である。 【0009】 【発明の効果】以上のように本発明の位置検出方法によ
れば、常に安定した高精度な位置を自動的に検出するこ
とができるので、調整等の工数を削減して価格の低減を
図ることができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] [Industrial Application Field] The present invention relates to a position detection method using a two-phase alternating current signal. [Prior Art] FIG. 5 shows a conventional position detection method. FIG. 1 is a schematic configuration diagram of a reluctance magnetic rotary encoder. A two-phase AC detection means consisting of a gear 2 fixed to the moving body 1 and magnetic sensors 3 and 4 having permanent magnets detects a two-phase AC signal Ea'=Vco having a phase difference of 90 degrees from each other.
Detect sθ and Eb'=Vsinθ. An instantaneous value detection means 10 consisting of a sample-and-hold (S/H) circuit 5 and an analog-to-digital (A/D) conversion circuit 6 detects two-phase AC signals Ea' and Eb from the two-phase AC detection means.
The instantaneous value of ′ is sampled and converted to digital. Interpolation signal detection means 20 consisting of a divider 7 and an arctangent calculator 8
is based on the instantaneous values of the two-phase AC signals Ea' and Eb' from the instantaneous value detection means 10.
/Vcosθ), the position θ within one tooth of the gear 2 is detected. [0003] Problems to be Solved by the Invention In the encoder that implements the conventional position detection method described above, due to variations in the characteristics of each element of the magnetic sensor, installation errors, etc., the actually detected two-phase AC signal Since the phase difference deviates from 90° and differs from the appropriate value, there is a drawback that highly accurate position detection cannot be performed. There are encoders that deal with this situation by installing a phase error correction circuit using an operational amplifier, etc. However, since the phase error correction circuit requires adjustment of variable resistors, etc., human adjustment errors may occur. However, there has been a drawback that stable and highly accurate position detection cannot be performed at all times due to deterioration of characteristics due to aging of circuit elements. Furthermore, the present applicant has proposed an encoder having a function of automatically correcting phase errors (Japanese Patent Application No. 1-310236). For example, Figure 4
In the Lissajous diagram when the two-phase AC signal includes an amplitude error Vβ/Vα and a phase error α as shown in
If you know the three points xi and yi (i=1 to 3), you can use equation 1, equation 2,
Since the values of a, b, and e can be found using equation 3,
Using these values, the amplitude error Vβ/Vα can be calculated from equations 4 and 5.
and phase error α to perform automatic correction. [Formula 1] a=(y22-y32)x1y1+(y3
2-y12)x2y2
+(y12-y22)x3y3
[Math. 2] b=(x22-x32)x1y1+(x3
2-x12)x2y2
+(x12-x22)x3y3 [Formula 3] e=(x22-x32)y12+(x32
-x12)y22
+(x12-x22)y32 [Formula 4] [Formula 5] However, the above calculation formula is complicated, and if there are fluctuations in the DC component (offset error) in addition to the amplitude error and phase error, these errors can be The calculation formula for detection becomes even more complex. Therefore, if points xi and yi contain minute errors, the calculated amplitude error, phase error, and offset error values will differ from the actual values, and noise will be mixed in at the detection timing. Similarly, there is a problem in that errors occur in the calculation results, making it impossible to perform highly accurate position detection. The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide a position detection method that can perform accurate position detection. [0004] The present invention relates to a method for detecting the position of a moving body using two-phase AC signals Ea and Eb corresponding to the distance traveled by the moving body. The above-mentioned object of the invention is to obtain 2 such that dEa/dEb=0 or dEb/dEa=0, where α is a phase error that is an error of the phase difference between the two-phase AC signals Ea and Eb from a predetermined value.
Find sin α based on the values of phase AC signals Ea and Eb, and calculate the two-phase AC signals Ea and E based on the sin α.
This is achieved by correcting the phase error α of b and detecting the position of the moving object based on the corrected two-phase AC signal. [0005] In the present invention, since the locus of the two-phase AC signal is utilized, the phase error can be corrected using a simple calculation formula. [Embodiment] FIG. 1 is a schematic configuration diagram showing an example of a reluctance magnetic rotary encoder that implements the position detection method of the present invention, corresponding to FIG. The explanation will be omitted. Assuming that a phase error α occurs in the two-phase AC signals Ea and Eb output from the two-phase AC detection means, the two-phase AC signals Ea and Eb are calculated as shown in equations 6 and 7.
It is expressed as [Equation 6] Ea=Vcosθ [Equation 7] Eb=Vsin (θ+α) At this time, the Lissajous figure of the two-phase AC signals Ea and Eb becomes an ellipse as shown in FIG. 3, and dEa/dEb=0 or dEb/dEa= Points that are 0 are P1, P2, P3, P
4, these coordinates are P1(V, Vs
in α), P2 (V sin α, V), P3 (-V, -V
sin α), P4(-Vsin α, -V). Then, as shown in the flowchart of FIG. 2, the phase error detection means 30 detects one period of the instantaneous values of the two-phase AC signals Ea and Eb detected by the instantaneous value detection means 10 (i=1 to N (N is an integer)). ) (step S1), and based on these data, calculate dEb/dEa=0 using equations 8 and 9.
Point P1 (V, Vsin α) = (Eai, Ebi)
(Step S2). [Formula 8] [Formula 9] Ea>0 Then, sin α is calculated and stored using Equations 10 and 11 (Step S3). [Equation 10] sin α=Vsin α/V=Ebi/V [Equation 11] The phase error correction unit 9 constituting the position detecting means 30 uses the calculated sin α and Equation 12 and Ebi/V to calculate Ebi/V using Equation 14. According to equation 15, two-phase AC signals Ea and Eb
The phase error α is corrected (step S4). [Formula 12] sin(θ+α)=sinθco
sα+cosθsinα [Formula 13] [Formula 14] Ea'=Ea=Vcosθ [Formula 15] Eb'=Vsinθ
=(Vsin(θ+α)−Vco
sθ・sinα)/cosα
=(Eb-Ea・sinα)/cosα The divider 7 and the arctangent calculator 8 that constitute the position detection means 40 are as follows.
Two-phase AC signals Ea' and Eb' from the phase error correction section 9
Based on the instantaneous value of θ=tan-1(Eb'/Ea')
The position θ within one tooth of gear 2 is detected by the calculation of (
Step S5), all processing ends. [0008] In the above-described embodiment, Equation 15 was used as the correction formula for the phase error α, but if the phase error α is small, cosα=k (k is a constant) may be used. In addition, since the phase error α does not constantly change, the phase error detection means 9 does not need to constantly detect the phase error α, but only at a certain time, and at other times. may be corrected using the value detected immediately before. Further, in this embodiment, a reluctance type magnetic rotary encoder has been described, but the present invention is not limited to this, and a linear encoder of a linear movement type may be used. In addition, it is not limited to the magnetic type, but other types,
For example, even an optical type can be applied as long as it uses a two-phase AC signal. [0009] As described above, according to the position detection method of the present invention, a stable and highly accurate position can be automatically detected at all times, so the man-hours for adjustment etc. can be reduced and the cost can be reduced. It is possible to reduce the

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の位置検出方法を実現するエンコーダの
一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an encoder that implements the position detection method of the present invention.

【図2】本発明の位置検出方法を説明するフローチャー
トである。
FIG. 2 is a flowchart illustrating the position detection method of the present invention.

【図3】本発明の位置検出方法に用いる2相交流信号の
リサージュ図形を示す図である。
FIG. 3 is a diagram showing a Lissajous diagram of a two-phase AC signal used in the position detection method of the present invention.

【図4】従来の位置検出方法に用いる2相交流信号のリ
サージュ図形を示す図である。
FIG. 4 is a diagram showing a Lissajous diagram of a two-phase AC signal used in a conventional position detection method.

【図5】従来の位置検出方法を実現するエンコーダの一
例を示す概略構成図である。
FIG. 5 is a schematic configuration diagram showing an example of an encoder that implements a conventional position detection method.

【符号の説明】[Explanation of symbols]

9    位相誤差補正部 30  位相誤差検出手段 40  位置検出手段 9 Phase error correction section 30 Phase error detection means 40 Position detection means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  移動体の移動距離に対応した2相交流
信号Ea及びEbを利用して前記移動体の位置を検出す
る場合、前記2相交流信号Ea及びEbの位相差の所定
値からの誤差である位相誤差をαとしたとき、dEa/
dEb=0又はdEb/dEa=0となる2相交流信号
Ea及びEbの値に基づいてsinαを求め、前記si
nαに基づいて前記2相交流信号Ea及びEbの位相誤
差αを補正し、補正した2相交流信号に基づいて前記移
動体の位置を検出するようにしたことを特徴とする位置
検出方法。
Claim 1: When detecting the position of the moving body using two-phase AC signals Ea and Eb corresponding to the moving distance of the moving body, the phase difference between the two-phase AC signals Ea and Eb is determined from a predetermined value. When the phase error is α, dEa/
Find sin α based on the values of two-phase AC signals Ea and Eb where dEb=0 or dEb/dEa=0, and calculate the si
A position detection method characterized in that the phase error α of the two-phase AC signals Ea and Eb is corrected based on nα, and the position of the moving object is detected based on the corrected two-phase AC signal.
JP13984291A 1991-05-15 1991-05-15 Detection of position Pending JPH04339206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13984291A JPH04339206A (en) 1991-05-15 1991-05-15 Detection of position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13984291A JPH04339206A (en) 1991-05-15 1991-05-15 Detection of position

Publications (1)

Publication Number Publication Date
JPH04339206A true JPH04339206A (en) 1992-11-26

Family

ID=15254788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13984291A Pending JPH04339206A (en) 1991-05-15 1991-05-15 Detection of position

Country Status (1)

Country Link
JP (1) JPH04339206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724137A1 (en) * 1995-01-30 1996-07-31 Sony Magnescale, Inc. Interpolation device
CN110506196A (en) * 2017-04-13 2019-11-26 索尼公司 Position detecting device and method for detecting position

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724137A1 (en) * 1995-01-30 1996-07-31 Sony Magnescale, Inc. Interpolation device
CN110506196A (en) * 2017-04-13 2019-11-26 索尼公司 Position detecting device and method for detecting position

Similar Documents

Publication Publication Date Title
US6925401B2 (en) Method and apparatus for correcting resolver output
US5956659A (en) Arrangement and method for the automatic correction of error-containing scanning signals of incremental position-measuring devices
US20110025312A1 (en) Magnetic encoder and method of detecting absolute rotational position
US20130268234A1 (en) Method and device for determining the absolute position of a movable body
US7675284B2 (en) Rotation angle detecting device
KR20090068205A (en) Methods of processing encoder signals
KR20080012823A (en) Phase correction circuit of encoder signal
JPH06167354A (en) Interpolation unit for scale
JP2005351849A (en) Rotational angle detecting device and rotational angle detection method
JPH0465985B2 (en)
JP2018048874A (en) Rotary encoder and method of detecting absolute angle position of rotary encoder
CN108426587B (en) Rotary encoder
US11536590B2 (en) Offset correction device and position measuring device
JP3026949B2 (en) Encoder offset correction circuit
US7099790B2 (en) Sensor signal processor
US11460291B2 (en) Process for determining the total pitch deviation of a position sensor
JP6877169B2 (en) Rotary encoder
US6950769B2 (en) Encoder signal interpolation divider
JP2001343253A (en) Method of detecting abnormality of resolver
JPH05231879A (en) Correcting method for detecting position
JPH04339206A (en) Detection of position
KR100874296B1 (en) Method for extending the measuring range of an absolute angle in magnetic-field sensors
US6031223A (en) Rotary encoder having a sensor activation controller
JP3860324B2 (en) Motor speed control device
JPH04285805A (en) Encoder