JPH04338639A - Ion generator - Google Patents

Ion generator

Info

Publication number
JPH04338639A
JPH04338639A JP3111272A JP11127291A JPH04338639A JP H04338639 A JPH04338639 A JP H04338639A JP 3111272 A JP3111272 A JP 3111272A JP 11127291 A JP11127291 A JP 11127291A JP H04338639 A JPH04338639 A JP H04338639A
Authority
JP
Japan
Prior art keywords
plasma
flux density
magnetic flux
ion
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3111272A
Other languages
Japanese (ja)
Inventor
Hidehiro Ojiri
英博 小尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3111272A priority Critical patent/JPH04338639A/en
Publication of JPH04338639A publication Critical patent/JPH04338639A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide such an ion generator as the ion amount can be controlled without being attended by contamination, as to an ion generator to be used in a manufacturing process, etc. of a semiconductor device. CONSTITUTION:This device has a plasma generators 3, 8 which generate plasma 4 in a plasma generating chamber 10, a magnetic field generator 1B located outside the plasma generating chamber, a magnetic flux density controller 2B which controls a magnetic flux density of the magnetic field generator, and an ion take-out port 5 installed on the plasma generating chamber at the magnetic field generator side. The device is so constructed as the ion amount to be taken out from the plasma may be controlled by controlling the magnetic flux density of the ion take-out port. The lower limit of the variation range of the magnetic flux density of the ion take-out port is such a value as stipulated by the formula B=q/2pifme (B: magnetic flux density, q: quantum of electrocity, pi: ratio of the circumference of a circle to its diameter, f: frequency of electromagnetic wave for generating plasma, me: weight of electron).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置の製造プロセ
ス等に用いられるイオン生成装置に関する。近年,半導
体ウエハプロセスにおけるエッチング分野等において,
微細加工技術の進展に伴い,処理に必要なイオン量の制
御が必要となってきた。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion generating apparatus used in semiconductor device manufacturing processes and the like. In recent years, in the field of etching in semiconductor wafer processes, etc.
With advances in microfabrication technology, it has become necessary to control the amount of ions required for processing.

【0002】本発明はこの必要性に対応した装置として
利用できる。
The present invention can be used as a device that meets this need.

【0003】0003

【従来の技術】図3は従来例による装置の構成図である
。図において,1は磁場発生手段でコイル,2は磁束密
度制御手段でDC電源, 3はプラズマ発生のためのエ
ネルギー供給手段でμ波発生装置,4はプラズマ,6は
被処理物を載せる試料台,7はイオン量測定装置(プロ
ーブ7Aと電流計7BとDC電源7Cとからなる), 
8はプラズマ発生のためのガス供給手段,9は排気装置
,10はプラズマ発生室, 11はイオン照射を行う処
理室, 12はイオン取り出し手段(金属メッシュの電
極12A, 12BとDC電源12C とからなる)で
ある。
2. Description of the Related Art FIG. 3 is a block diagram of a conventional device. In the figure, 1 is a magnetic field generation means and a coil, 2 is a magnetic flux density control means and is a DC power source, 3 is an energy supply means for plasma generation and is a μ-wave generator, 4 is plasma, and 6 is a sample stage on which the object to be processed is placed. , 7 is an ion amount measuring device (consisting of a probe 7A, an ammeter 7B, and a DC power supply 7C),
8 is a gas supply means for plasma generation, 9 is an exhaust device, 10 is a plasma generation chamber, 11 is a processing chamber for ion irradiation, and 12 is an ion extraction means (from metal mesh electrodes 12A, 12B and a DC power source 12C). ).

【0004】図4は電極12B に印加する電圧に対す
るイオン量の関係を示す図である。図より,電極12B
 に印加する電圧を変化させることによりイオン量を制
御できることが分かる。
FIG. 4 is a diagram showing the relationship between the amount of ions and the voltage applied to the electrode 12B. From the figure, electrode 12B
It can be seen that the amount of ions can be controlled by changing the voltage applied to.

【0005】従来のイオン生成装置はイオンを取り出す
電極12A, 12Bにメッシュ状の高融点金属を用て
いた。この電極に印加する電圧を変えてイオン量を制御
していた。しかしながら, 処理室11内にこのような
異物を挿入することは被処理物をこの異物に含まれる様
々な元素で汚染してしまうという欠点があった。
[0005] The conventional ion generator uses a mesh-like high melting point metal for the electrodes 12A and 12B for extracting ions. The amount of ions was controlled by changing the voltage applied to this electrode. However, inserting such foreign matter into the processing chamber 11 has the disadvantage that the object to be processed is contaminated with various elements contained in the foreign matter.

【0006】[0006]

【発明が解決しようとする課題】従って, 処理室内に
, しかもイオンの照射経路に異物を挿入することなし
にイオン量を制御することが強く要望されるようになっ
た。
[Problems to be Solved by the Invention] Therefore, there has been a strong demand for controlling the amount of ions without inserting foreign matter into the processing chamber and into the ion irradiation path.

【0007】本発明は汚染を伴わないで処理用のイオン
量を制御できる装置の提供を目的とする。
It is an object of the present invention to provide an apparatus capable of controlling the amount of ions for treatment without contamination.

【0008】[0008]

【課題を解決するための手段】上記課題の解決は,1)
プラズマ発生室(10)内にプラズマ(4)を発生させ
るプラズマ発生手段(3),(8) と,該プラズマ発
生室(10)の外側に配置された磁場発生手段(1B)
と,該磁場発生手段(1B)の磁束密度を制御する磁束
密度制御手段(2B)と, 該磁場発生手段(1B)側
の該プラズマ発生室(10)に設けられたイオン取り出
し口(5) とを有し, 該イオン取り出し口(5) 
の磁束密度を制御して該プラズマ(4)より取り出すイ
オン量を制御できるイオン生成装置,あるいは2)プラ
ズマ発生室(10)内にプラズマ(4)を発生させるプ
ラズマ発生手段(3),(8) と,該プラズマ発生室
(10)の外側の上下に配置され, 該プラズマを閉じ
込める磁場発生手段(1A),(1B) と,該磁場発
生手段(1A),(1B) の磁束密度を制御する磁束
密度制御手段(2A),(2B) と, 一方の該磁場
発生手段(1B)側の該プラズマ発生室(10)に設け
られたイオン取り出し口(5) とを有し, 該イオン
取り出し口(5) の磁束密度を制御して該プラズマ(
4)より取り出すイオン量を制御できるイオン生成装置
,あるいは,3)前記イオン取り出し口(5) の磁束
密度の変化範囲の下限を次式B=q/2πfme , ここに, B:磁束密度 [T] q:電気素量  (1.6×10−19[C])π:円
周率 f:プラズマを発生させるための電磁波の周波数[Hz
]me :電子質量  (9.1×10−31[kg]
).で規定される値とする前記1)あるいは2)記載の
イオン生成装置により達成される。
[Means for solving the problem] The solution to the above problem is 1)
Plasma generation means (3), (8) for generating plasma (4) in the plasma generation chamber (10), and magnetic field generation means (1B) arranged outside the plasma generation chamber (10).
, a magnetic flux density control means (2B) for controlling the magnetic flux density of the magnetic field generation means (1B), and an ion extraction port (5) provided in the plasma generation chamber (10) on the side of the magnetic field generation means (1B). and the ion extraction port (5).
an ion generator capable of controlling the amount of ions extracted from the plasma (4) by controlling the magnetic flux density of the plasma (4), or 2) plasma generation means (3), (8) for generating plasma (4) in the plasma generation chamber (10). ), magnetic field generating means (1A), (1B) arranged above and below the outside of the plasma generation chamber (10) to confine the plasma, and controlling the magnetic flux density of the magnetic field generating means (1A), (1B). and an ion extraction port (5) provided in the plasma generation chamber (10) on the side of one of the magnetic field generation means (1B), The plasma (
4) An ion generator that can control the amount of ions extracted from the ion generator, or 3) The lower limit of the range of change in the magnetic flux density of the ion extraction port (5) is expressed by the following formula B=q/2πfme, where B: magnetic flux density [T ] q: elementary charge (1.6×10-19 [C]) π: pi f: frequency of electromagnetic waves to generate plasma [Hz
]me: Electron mass (9.1×10-31 [kg]
). This is achieved by the ion generating device described in 1) or 2) above, which has a value defined by .

【0009】[0009]

【作用】図1は本発明の原理説明図である。図において
,1A, 1Bは磁場発生手段でコイル,2A, 2B
は磁束密度制御手段でDC電源, 3はプラズマを発生
させるためのエネルギー供給手段で 2.45 GHz
 のμ波発生装置,4はプラズマ,5はイオン取り出し
口,5Aはイオン取り出し口の外周部, 6は被処理物
を載せる試料台,7はラングミュアプローブ法によるイ
オン量測定装置で,プローブ7Aと電流計7BとDC電
源7Cとからなり, 8はプラズマを発生させるための
ガス供給手段,9は排気装置,10はプラズマ発生室,
 11はイオン照射を行う処理室である。
[Operation] FIG. 1 is a diagram illustrating the principle of the present invention. In the figure, 1A and 1B are magnetic field generating means with coils, 2A and 2B.
3 is a magnetic flux density control means, which is a DC power supply, and 3 is an energy supply means for generating plasma at 2.45 GHz.
4 is a plasma, 5 is an ion extraction port, 5A is the outer periphery of the ion extraction port, 6 is a sample stage on which the object to be processed is placed, and 7 is an ion amount measuring device using the Langmuir probe method. It consists of an ammeter 7B and a DC power supply 7C, 8 is a gas supply means for generating plasma, 9 is an exhaust device, 10 is a plasma generation chamber,
11 is a processing chamber in which ion irradiation is performed.

【0010】プラズマ発生室10内にはガス供給手段8
より反応ガスが導入されμ波発生装置よりμ波が供給さ
れて反応ガスのプラズマが発生される。プラズマ発生室
10内は上下のコイル1A, 1Bによりミラー磁場が
形成され,プラズマを閉じ込めている。
Gas supply means 8 is provided in the plasma generation chamber 10.
A reactant gas is introduced from the reactor, and a microwave is supplied from a microwave generator to generate a plasma of the reactant gas. Inside the plasma generation chamber 10, a mirror magnetic field is formed by the upper and lower coils 1A and 1B to confine the plasma.

【0011】プローブ7Aは裏面を絶縁物で覆った金属
板で,電流計7Bは試料台6に到達するイオン量に対応
する電流量を測定する。また,DC電源7Cはプローブ
7Aに−50 V程度の負の電圧を印加する。
The probe 7A is a metal plate whose back surface is covered with an insulator, and the ammeter 7B measures the amount of current corresponding to the amount of ions reaching the sample stage 6. Further, the DC power supply 7C applies a negative voltage of about -50 V to the probe 7A.

【0012】図2は本発明の作用説明図である。図は,
本発明の装置を用いてイオン取り出し口の外周部5Aに
おける磁束密度に対するイオン量の関係を示している。
FIG. 2 is an explanatory diagram of the operation of the present invention. The figure is
The relationship between the amount of ions and the magnetic flux density at the outer peripheral portion 5A of the ion extraction port is shown using the apparatus of the present invention.

【0013】すなわち,コイル1Aで発生する磁束密度
を 1.650kG (1G=10−4T)と一定にし
,コイル1Bで発生する磁束密度を変化させたときに試
料台6に到達するイオン量を示した。ここで,イオン量
は電流計7Bが示す電流量である。
In other words, when the magnetic flux density generated by the coil 1A is kept constant at 1.650 kG (1G=10-4T) and the magnetic flux density generated by the coil 1B is varied, the amount of ions reaching the sample stage 6 is shown. Ta. Here, the amount of ions is the amount of current indicated by the ammeter 7B.

【0014】図より,磁束密度が 875 Gより大き
い場合は正確にイオン量が制御できることが分かる。コ
イル1Bの磁束密度が 875 Gより小さい場合にイ
オン量が極端に小さい理由は, プラズマ発生の機構が
 875 Gより大きい場合と違うからである。
From the figure, it can be seen that when the magnetic flux density is greater than 875 G, the amount of ions can be accurately controlled. The reason why the amount of ions is extremely small when the magnetic flux density of the coil 1B is smaller than 875 G is that the plasma generation mechanism is different from that when the magnetic flux density is larger than 875 G.

【0015】これは,コイル1A, 1Bが 875 
Gより大きいと両方のコイルがプラズマ発生の磁場を与
えているが,コイル1Bの磁束密度が 875 Gより
小さいとこのコイルはプラズマ発生の磁場を与えないか
らである。
[0015] This means that the coils 1A and 1B are 875
This is because when the magnetic flux density of the coil 1B is smaller than 875 G, this coil does not provide a magnetic field for plasma generation, although when the magnetic flux density of the coil 1B is smaller than 875 G, both coils provide a magnetic field for plasma generation.

【0016】次に, 境界となる磁束密度 875 G
を導出する。まず, ECR(電子サイクロトロン共鳴
) 現象においては, 磁場中にプラズマが存在する場
合は, プラズマを維持するために投入する電磁波には
効率良くプラズマを生成する周波数が存在し,その周波
数は磁束密度と次式で関係付けられる。
Next, the boundary magnetic flux density is 875 G
Derive. First, in the ECR (electron cyclotron resonance) phenomenon, when plasma exists in a magnetic field, the electromagnetic waves injected to maintain the plasma have a frequency that efficiently generates plasma, and that frequency is a function of the magnetic flux density. It is related by the following formula.

【0017】B=q/2πfme  ここに, B:磁束密度 [T] q:電気素量  (1.6×10−19[C])π:円
周率 f:プラズマを発生させるための電磁波の周波数[Hz
]me :電子質量  (9.1×10−31[kg]
)この式に, f=2.45 GHzを代入すると,B
=875 G が得られる。
B=q/2πfme where, B: Magnetic flux density [T] q: Elementary charge (1.6×10-19 [C]) π: Pi ratio f: Electromagnetic wave for generating plasma Frequency [Hz
]me: Electron mass (9.1×10-31 [kg]
) Substituting f=2.45 GHz into this formula, B
=875 G is obtained.

【0018】以上のことより,コイル1Bの磁束密度が
 875 Gより大きい場合は正確にイオン量を制御す
ることができる。
From the above, when the magnetic flux density of the coil 1B is greater than 875 G, the amount of ions can be accurately controlled.

【0019】[0019]

【実施例】図1の装置を用い,イオン量測定装置を取外
し,試料台6に,表面を 500Åの厚さに酸化した直
径4インチのシリコンウエハを載せてエッチングした。
EXAMPLE Using the apparatus shown in FIG. 1, the ion amount measuring device was removed, and a 4-inch diameter silicon wafer whose surface was oxidized to a thickness of 500 Å was placed on the sample stage 6 and etched.

【0020】その結果を表1に示す。The results are shown in Table 1.

【0021】[0021]

【表1】[Table 1]

【0022】イオンを制御することにより,シリコン酸
化膜のエッチング速度が制御できることが分かる。次に
,比較例として図1の装置を用い,イオン量測定装置を
取外し,試料台6に,表面を 500Åの厚さに酸化し
た直径4インチのシリコンウエハを載せてエッチングし
た。
It can be seen that the etching rate of the silicon oxide film can be controlled by controlling the ions. Next, as a comparative example, the apparatus shown in FIG. 1 was used, the ion amount measuring device was removed, and a 4-inch diameter silicon wafer whose surface was oxidized to a thickness of 500 Å was placed on the sample stage 6 and etched.

【0023】その結果を表2に示す。The results are shown in Table 2.

【0024】[0024]

【表2】[Table 2]

【0025】ここで,イオン引き出し電極12A, 1
2Bにモリプデン(Mo)を用い, メッシュの目の大
きさを1mmとし, 電極相互間の距離を5mmとした
。電極12B に印加される正の電圧を変えることによ
りエッチング速度が変わるが,実施例の表1に比較して
制御できるイオン量の幅が小さいことがわかる。
Here, the ion extraction electrodes 12A, 1
Molybdenum (Mo) was used for 2B, the mesh size was 1 mm, and the distance between the electrodes was 5 mm. Although the etching rate changes by changing the positive voltage applied to the electrode 12B, it can be seen that the range of the amount of ions that can be controlled is narrower than in Table 1 of the example.

【0026】次に,実施例と比較例の汚染について調べ
る。前記の表面を 500Åの厚さに酸化したシリコン
ウエハをエッチングして酸化膜の厚さを 100Åにし
, MOS ダイオードを作成してそのフラットバンド
電圧のシフトΔVFBを測定した結果を表3に示す。
Next, contamination in Examples and Comparative Examples will be investigated. The silicon wafer whose surface was oxidized to a thickness of 500 Å was etched to make the oxide film 100 Å thick, a MOS diode was fabricated, and the flat band voltage shift ΔVFB was measured. Table 3 shows the results.

【0027】[0027]

【表3】[Table 3]

【0028】この表3より,実施例は比較例に比してΔ
VFBが小さく, 汚染が低減されていることが分かる
From Table 3, it can be seen that the example has a Δ
It can be seen that VFB is small and contamination is reduced.

【0029】[0029]

【発明の効果】汚染を伴わないで処理用のイオン量を制
御できる装置が得られた。さらに, 本発明によればイ
オン量の制御範囲を従来例より大きくすることができる
[Effects of the Invention] An apparatus capable of controlling the amount of ions for treatment without contamination was obtained. Furthermore, according to the present invention, the control range of the ion amount can be made larger than in the conventional example.

【0030】この結果, デバイスの信頼性と製造歩留
の向上に寄与することができた。
As a result, it was possible to contribute to improvements in device reliability and manufacturing yield.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の原理説明図[Figure 1] Diagram explaining the principle of the present invention

【図2】  本発明の作用説明図[Figure 2] Diagram explaining the action of the present invention

【図3】  従来例による装置の構成図[Figure 3] Configuration diagram of a conventional device

【図4】  電
極12B に印加する電圧に対するイオン量の関係を示
す図
[Figure 4] Diagram showing the relationship between the amount of ions and the voltage applied to the electrode 12B

【符号の説明】[Explanation of symbols]

1A, 1B  磁場発生手段でコイル2A, 2B 
 磁束密度制御手段でDC電源3  エネルギー供給手
段で 2.45 GHz のμ波発生装置4  プラズ
マ 5  イオン取り出し口 5A  イオン取り出し口の外周部 6  被処理物を載せる試料台 7  イオン量測定装置で,プローブ7Aと電流計7B
とDC電源7Cとからなる 8  ガス供給手段 9  排気装置, 10  プラズマ発生室 11  イオン照射を行う処理室
1A, 1B Coils 2A, 2B by magnetic field generating means
DC power supply 3 as magnetic flux density control means 2.45 GHz μ wave generator 4 as energy supply means Plasma 5 Ion extraction port 5A Outer periphery of ion extraction port 6 Sample stage 7 on which the object to be processed is placed Probe in the ion amount measuring device 7A and ammeter 7B
and a DC power supply 7C, 8 gas supply means 9 exhaust device, 10 plasma generation chamber 11 processing chamber for ion irradiation.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  プラズマ発生室(10)内にプラズマ
(4)を発生させるプラズマ発生手段(3),(8) 
と,該プラズマ発生室(10)の外側に配置された磁場
発生手段(1B)と,該磁場発生手段(1B)の磁束密
度を制御する磁束密度制御手段(2B)と, 該磁場発
生手段(1B)側の該プラズマ発生室(10)に設けら
れたイオン取り出し口(5)とを有し, 該イオン取り
出し口(5) の磁束密度を制御して該プラズマ(4)
より取り出すイオン量を制御できることを特徴とするイ
オン生成装置。
[Claim 1] Plasma generation means (3), (8) for generating plasma (4) in a plasma generation chamber (10).
, a magnetic field generating means (1B) arranged outside the plasma generation chamber (10), a magnetic flux density control means (2B) for controlling the magnetic flux density of the magnetic field generating means (1B), and a magnetic field generating means ( 1B) side, and the magnetic flux density of the ion extraction port (5) is controlled to generate the plasma (4).
An ion generator characterized by being able to control the amount of ions extracted.
【請求項2】  プラズマ発生室(10)内にプラズマ
(4)を発生させるプラズマ発生手段(3),(8) 
と,該プラズマ発生室(10)の外側の上下に配置され
, 該プラズマを閉じ込める磁場発生手段(1A),(
1B) と,該磁場発生手段(1A),(1B) の磁
束密度を制御する磁束密度制御手段(2A),(2B)
 と, 一方の該磁場発生手段(1B)側の該プラズマ
発生室(10)に設けられたイオン取り出し口(5) 
とを有し, 該イオン取り出し口(5) の磁束密度を
制御して該プラズマ(4)より取り出すイオン量を制御
できることを特徴とするイオン生成装置。
[Claim 2] Plasma generation means (3), (8) for generating plasma (4) in the plasma generation chamber (10).
and magnetic field generating means (1A) arranged above and below the outside of the plasma generation chamber (10) to confine the plasma.
1B) and magnetic flux density control means (2A), (2B) for controlling the magnetic flux density of the magnetic field generation means (1A), (1B).
and an ion extraction port (5) provided in the plasma generation chamber (10) on one of the magnetic field generation means (1B) sides.
An ion generation device characterized in that the amount of ions extracted from the plasma (4) can be controlled by controlling the magnetic flux density of the ion extraction port (5).
【請求項3】  前記イオン取り出し口(5) の磁束
密度の変化範囲の下限を次式 B=q/2πfme , ここに, B:磁束密度 [T] q:電気素量  (1.6×10−19[C])π:円
周率 f:プラズマを発生させるための電磁波の周波数[Hz
]me :電子質量  (9.1×10−31[kg]
).で規定される値とすることを特徴とする請求項1あ
るいは2記載のイオン生成装置。
3. The lower limit of the variation range of the magnetic flux density of the ion extraction port (5) is expressed by the following formula B=q/2πfme, where B: magnetic flux density [T] q: elementary charge (1.6×10 -19 [C]) π: Pi f: Frequency of electromagnetic waves for generating plasma [Hz
]me: Electron mass (9.1×10-31 [kg]
). 3. The ion generating device according to claim 1, wherein the ion generating device has a value defined by .
JP3111272A 1991-05-16 1991-05-16 Ion generator Withdrawn JPH04338639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3111272A JPH04338639A (en) 1991-05-16 1991-05-16 Ion generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3111272A JPH04338639A (en) 1991-05-16 1991-05-16 Ion generator

Publications (1)

Publication Number Publication Date
JPH04338639A true JPH04338639A (en) 1992-11-25

Family

ID=14557015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3111272A Withdrawn JPH04338639A (en) 1991-05-16 1991-05-16 Ion generator

Country Status (1)

Country Link
JP (1) JPH04338639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290725A (en) * 1993-04-02 1994-10-18 Hitachi Ltd Ion source apparatus and ion implantation apparatus with ion source apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290725A (en) * 1993-04-02 1994-10-18 Hitachi Ltd Ion source apparatus and ion implantation apparatus with ion source apparatus

Similar Documents

Publication Publication Date Title
US5330606A (en) Plasma source for etching
EP0563899B1 (en) Plasma generating method and plasma generating apparatus using said method
JPH0770532B2 (en) Plasma processing device
JPH03218627A (en) Method and device for plasma etching
US6909087B2 (en) Method of processing a surface of a workpiece
US5332880A (en) Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
JP3350374B2 (en) Focused ion beam apparatus, processing method and semiconductor device manufacturing method
KR100373971B1 (en) Microwave Plasma Treatment
JP3294839B2 (en) Plasma processing method
JPH05102083A (en) Method and apparatus for dry etching
JPH04338639A (en) Ion generator
JPH11204297A (en) Plasma treating device and plasma treating method
KR100391180B1 (en) Method and apparatus for plasma chemical treatment of a substrate surface
JP3205542B2 (en) Plasma equipment
JPH08203869A (en) Method and system for plasma processing
JPS611024A (en) Manufacturing apparatus of semiconductor circuit
JPH0530301B2 (en)
JP2727781B2 (en) Dry etching method
JP2514328B2 (en) Semiconductor manufacturing equipment
JPH04290226A (en) Method and apparatus for generation of plasma
JPS61222132A (en) Production unit for semiconductor
JPH10149897A (en) Plasma processing method
JPH04317324A (en) Method and apparatus for producing plasma
JPS61222533A (en) Plasma treatment apparatus
JPH05315291A (en) Device and method for plasma processing

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806