JPH0433856A - Manufacture of laminated metal molded form - Google Patents

Manufacture of laminated metal molded form

Info

Publication number
JPH0433856A
JPH0433856A JP2138596A JP13859690A JPH0433856A JP H0433856 A JPH0433856 A JP H0433856A JP 2138596 A JP2138596 A JP 2138596A JP 13859690 A JP13859690 A JP 13859690A JP H0433856 A JPH0433856 A JP H0433856A
Authority
JP
Japan
Prior art keywords
superplastic
molding
pack
foil
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2138596A
Other languages
Japanese (ja)
Inventor
Akio Takahashi
明男 高橋
Takayuki Tsuzuki
都筑 隆之
Akira Sakamoto
昭 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2138596A priority Critical patent/JPH0433856A/en
Publication of JPH0433856A publication Critical patent/JPH0433856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To simultaneously mold many members and to easily obtain gap to become a bonding layer by alternately holding and molding a superplastic metal thin plate (to be used as a product) and a metal foil material (for generating a gap corresponding to an adhesive.brazing material layer). CONSTITUTION:A laminated pack A before superplastic molding is formed by enclosing a constituting member 1 to become a product and a foil material 2 for providing a connecting layer with a cover sheet 3, and welding 4 the periphery to impart sealability. The pack A is pressed between a die B and a retainer C, controlled molding gas pressure D is applied to a gas passage provided in the retainer C to be superplastically molded in a state that the entirety is heated to a superplastic temperature (about 500 deg.C in the case of 7575 aluminum alloy, or about 900 deg.C in the case of Ti-6Al-4V titanium alloy). After the superplastic molding, the pack is removed, a necessary part is trimmed, and the foil is removed. After the foil is removed, a predetermined connecting material such as an adhesive film or a brazing sheet is set, and connected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は積層金属成形体の製造法に関し、特に航空機な
ど耐疲労性が要求される輸送機器につき、損傷許容性に
優れた金属成形構造体の製造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing laminated metal molded bodies, and in particular to a metal molded structure with excellent damage tolerance for transportation equipment such as aircraft that requires fatigue resistance. This relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

高強度の板材を軟質材の薄層を介在させて接合させる積
層体は、き裂の停止効果、即ち損傷許容性に優れる特長
があり、これまでアルミニウム合金板の接着による積層
体(ARALL : Ara+n+dAluminum
 Lam1nate)やチタン合金のろう付積層体が検
討されてきた。しかし、これら積層体は延性に乏しいこ
とから、複雑高加工度成形部品への適用は不可能であっ
た。
A laminate made by bonding high-strength plates with a thin layer of soft material interposed therebetween has the advantage of excellent crack stopping effect, that is, excellent damage tolerance.
brazed laminates of titanium alloys and titanium alloys have been studied. However, since these laminates have poor ductility, it has been impossible to apply them to complex, highly processed molded parts.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これまで検討・試作されている積層体は、下記の如き問
題点を有していることから、加工度の低い平板状部品に
限定されている。
Laminated bodies that have been studied and prototyped so far have the following problems, and are therefore limited to flat plate-like parts that require low processing.

(1)  アルミニウム合金板の接着積層体;“ARA
LL”で知られる積層体は、第4図のように接着剤を含
浸した一方面アラミド繊維を交互に積層している。この
繊維は強度は高いが延性に乏しく、繊維方向伸びは1%
程度しかなく、従ってこの方向の塑性加工は不可能であ
る。繊維直交方向では約9%の伸びがあるので、その方
向への曲げ加工は可能であることから、一方向の直線曲
げ部品には適用可能であるが、方向性が任意の一直文部
品には適用不可能である。
(1) Adhesive laminate of aluminum alloy plates; “ARA
The laminate known as "LL" is made by alternately laminating single-sided aramid fibers impregnated with adhesive, as shown in Figure 4. These fibers have high strength but poor ductility, with an elongation in the fiber direction of 1%.
Therefore, plastic working in this direction is not possible. Since there is an elongation of approximately 9% in the direction perpendicular to the fibers, bending in that direction is possible, so it is applicable to linearly bent parts in one direction, but it cannot be applied to linearly bent parts with arbitrary directionality. Not applicable.

(2)  チタン合金積層体; 実例はほとんどないが、その主たる理由はチタン合金は
延性が低い(最も代表的なTi−6AI−4V合金では
伸びは約9%)ため複雑部品の成形が困難で、かつスプ
リングバック大のだと積層に必要な部材精度確保が困難
な点にあった。
(2) Titanium alloy laminates: There are almost no actual examples, but the main reason is that titanium alloys have low ductility (the most typical Ti-6AI-4V alloy has an elongation of about 9%), making it difficult to form complex parts. , and if the springback is large, it is difficult to ensure the precision of the parts required for lamination.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は積層金属成形体を製造するにあたり、■成形体
の構成金属材料を超塑性材とし、■該構成金属材料と箔
材とを交互に積層してカバーシートに包んで密封パック
状となし、■該パックを超塑性加工して所望の形状に成
形し、■成形後パックより成形された構成金属材料を取
出して箔材を取除き、その後に接合材を挿入して構成金
属材料を接合することを特徴とする積層金属成形体の製
造法である。
In producing a laminated metal molded body, the present invention involves: (1) using a superplastic material as the constituent metal material of the molded body, and (2) alternately laminating the constituent metal material and a foil material and wrapping them in a cover sheet to form a sealed pack. , ■ superplastically process the pack to form it into a desired shape, and ■ take out the molded constituent metal materials from the pack and remove the foil material, and then insert a bonding material to join the constituent metal materials. This is a method for producing a laminated metal molded body, which is characterized by:

すなわち、本発明は積層すべき金属部材をあらかじめ超
塑性成形によって製造し、かつ接合@(接着剤)、ろう
材など)の均一化のため、当該超塑性金属薄板(製品と
して使用するもの)と金属箔材(接着剤・ろう材層に相
当する間隙生成用)とを交互にはさんで積層体パックを
、同時に超塑性成形するようにした。
That is, in the present invention, the metal members to be laminated are manufactured in advance by superplastic forming, and the superplastic thin metal sheets (to be used as a product) and The laminate pack was simultaneously superplastically formed by sandwiching metal foil materials (for creating gaps corresponding to the adhesive/brazing material layer) alternately.

超塑性成形の利用は、顕著な成形性向上によって複雑高
加工度部品の一体成形を可能にするもので、最近の超塑
性材料の進歩に伴って、アルミニウム合金(7475高
力アルミニウム合金など)チタン合金(Ti−6AI−
4Vなど)ともに製造可能となっている。
The use of superplastic forming enables the integral molding of complex, highly workable parts due to the remarkable improvement in formability. Alloy (Ti-6AI-
4V, etc.) can be manufactured.

本発明は特に多数枚の部材を同時に成形する点ならびに
その間に、あとで接合層となるべき間隙確保のだと箔材
をはさんで同時成形する点を新規とするものである。手
順としてはこの多層金属積層体を超塑性成形し、そのあ
とで箔材を取り除き、そこに接合材を入れて接合処理を
行う。
The present invention is particularly novel in that a large number of members are molded at the same time, and that a foil material is sandwiched between them to provide a gap that will later become a bonding layer. The procedure is to superplastically form this multilayer metal laminate, then remove the foil material, put a bonding material there, and perform the bonding process.

3作 用〕 (1)超塑性材料(超塑性成形法)採用の作用複雑高加
工度の部品成形を可能にする作用がある。
3 Effects] (1) Effects of using superplastic material (superplastic forming method) It has the effect of making it possible to form parts with complex and high processing rates.

(2)積層パック材の同時超塑性成形法の作用■ 構成
部材を一度に成形することによって、加工工数を低減さ
せる作用がある。
(2) Effects of the simultaneous superplastic forming method for laminated pack materials■ By forming the constituent members at once, there is an effect of reducing the number of processing steps.

■ 構成部材間に介在させる箔材は、成形後の接合工程
において、所要の接合間隙を付与させる作用がある。
(2) The foil material interposed between the constituent members has the effect of providing a required bonding gap in the bonding process after molding.

■ 最外層のカバーシート (捨材)は、その周囲をシ
ール溶接などを行い、内部の真空引き又は不活性ガス封
入を可能にし、構成部材の酸化防止を達成する作用があ
る。
■ The outermost cover sheet (waste material) is sealed and welded around it, allowing the inside to be vacuumed or filled with inert gas, and has the effect of preventing oxidation of the constituent members.

(3)超塑性成形部材の多層積層体 複雑・高加工度成形体に、優れた損傷許容性を与える作
用がある。
(3) A multilayer laminate of superplastic molded parts has the effect of imparting excellent damage tolerance to complex, highly processed molded bodies.

〔実施例〕〔Example〕

本発明の一実施例として球形タンク用多層積層鏡板の製
造例をあげて説明する。
An example of manufacturing a multilayer laminated end plate for a spherical tank will be described as an embodiment of the present invention.

第1図は超塑性成形前の積層パックAであり、製品とな
る構成部材1、接合層を提供する箔材2をカバーシート
3で包み、その周囲を溶接4して気密性を与えである。
Figure 1 shows a laminated pack A before superplastic molding, in which the component 1 that will become the product and the foil material 2 that provides the bonding layer are wrapped with a cover sheet 3, and the periphery is welded 4 to provide airtightness. .

箔材2は、要求される接合層間隙に合せて選択する。The foil material 2 is selected according to the required bonding layer gap.

第2図は、その超塑性ガス成形性概念図に示したもので
、上記の積層パックAをダイスB及び押え板C間で押え
込み、全体を超塑性温度<7575アルミニウム合金の
場合は約500’C,Ti−6AI−4V チ9 ン合
金の場合は約900℃)に加熱した状態で、押え板C内
に設けられたガス通路にコントロールされた成形ガス圧
りを加えて超塑性成形を行う。このとき積層パックへの
内部は真空引きE又はその後不活性ガス導入などによっ
て部材の酸化防止を行うことができる。
Fig. 2 shows a conceptual diagram of the superplastic gas formability, in which the above laminated pack A is pressed between a die B and a presser plate C, and the entire superplastic temperature is <7575. C, Ti-6AI-4V alloy is heated to approximately 900°C), and controlled forming gas pressure is applied to the gas passage provided in the holding plate C to perform superplastic forming. . At this time, oxidation of the members can be prevented by evacuation E or subsequent introduction of an inert gas into the inside of the stacked pack.

第3図は全体の加工工程を示すもので、前述の超塑性成
形後、積層パックを取り出し、必要部分を切り出す(ト
リム)とともに、箔材を除去する。箔材を除去したあと
には接着剤フィルム又はろう材シートなど所要の接合材
をセットし、最終的に所定の加熱・加圧条件下で接合処
理を行う。
FIG. 3 shows the entire processing process. After the above-mentioned superplastic forming, the laminated pack is taken out, the necessary parts are cut out (trim), and the foil material is removed. After removing the foil material, a necessary bonding material such as an adhesive film or a brazing material sheet is set, and finally a bonding process is performed under predetermined heating and pressurizing conditions.

以上の実施例において、部品形状は第2図における超塑
性成形用金型を変えることによって、任意に変えること
ができ、超塑性の特長を活かして複雑・高加工度の成形
が可能である。
In the above embodiments, the part shape can be changed arbitrarily by changing the superplastic molding die shown in FIG. 2, and complex and highly workable molding is possible by taking advantage of the characteristics of superplasticity.

〔発明の効果〕〔Effect of the invention〕

(1)超塑性材料(超塑性成形法)の適用により、従来
法では不可能であった任意形状の成形部品についても、
多層積層体を拡大できた。
(1) By applying superplastic materials (superplastic molding method), it is possible to mold parts with arbitrary shapes, which were impossible with conventional methods.
We were able to expand the multilayer laminate.

(2)超塑性成形に際し、構成部材と箔材との構成体を
同時成形することによって、加工工数の低減と接合層間
隙確保の両者が、同時に達成できた。
(2) During superplastic molding, by simultaneously molding the structural member and the foil material, it was possible to simultaneously reduce the number of processing steps and secure the bonding layer gap.

(3)成形部材多層積層体は厚さの等しい単一金属部材
にくらべ、接合面でのき裂停止効果があり優れた損傷許
容性を有する。
(3) Compared to a single metal member of equal thickness, a multilayer laminate of molded members has a crack arresting effect at the joint surface and has excellent damage tolerance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超塑性成形前の積層パック
の概略図、第2図は該積層パックの超塑性ガス圧成形法
の概念図、第3図は本発明の工程図、第4図は従来の積
層体の概念図である。
FIG. 1 is a schematic diagram of a laminated pack before superplastic molding according to an embodiment of the present invention, FIG. 2 is a conceptual diagram of a superplastic gas pressure molding method for the laminated pack, and FIG. 3 is a process diagram of the present invention. FIG. 4 is a conceptual diagram of a conventional laminate.

Claims (1)

【特許請求の範囲】  積層金属成形体を製造するにあたり、 (1)成形体の構成金属材料を超塑性材とし、 (2)該構成金属材料と箔材とを交互に積層してカバー
シートに包んで密封パック状となし、 (3)該パックを超塑性加工して所望の形状に成形し、 (4)成形後パックより成形された構成金属材料を取出
して箔材を取除き、その後に接合材を挿入して構成金属
材料を接合することを特徴とする積層金属成形体の製造
法。
[Claims] In producing a laminated metal molded body, (1) the constituent metal material of the molded body is a superplastic material, and (2) the constituent metal material and foil material are alternately laminated to form a cover sheet. (3) Superplastically process the pack to form it into a desired shape; (4) After molding, take out the molded constituent metal materials from the pack and remove the foil material; A method for producing a laminated metal molded body, which comprises inserting a bonding material to bond constituent metal materials.
JP2138596A 1990-05-30 1990-05-30 Manufacture of laminated metal molded form Pending JPH0433856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2138596A JPH0433856A (en) 1990-05-30 1990-05-30 Manufacture of laminated metal molded form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2138596A JPH0433856A (en) 1990-05-30 1990-05-30 Manufacture of laminated metal molded form

Publications (1)

Publication Number Publication Date
JPH0433856A true JPH0433856A (en) 1992-02-05

Family

ID=15225791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2138596A Pending JPH0433856A (en) 1990-05-30 1990-05-30 Manufacture of laminated metal molded form

Country Status (1)

Country Link
JP (1) JPH0433856A (en)

Similar Documents

Publication Publication Date Title
US4406393A (en) Method of making filamentary reinforced metallic structures
JP4530495B2 (en) Method for integrally forming superplastic materials
US7431196B2 (en) Method and apparatus for forming complex contour structural assemblies
US5115963A (en) Superplastic forming of panel structures
US7146727B2 (en) Multisheet sandwich panel using superplastic forming and adhesive bonding
JPH0615531A (en) Method for producing article by superplastic molding and diffusion joint
US4483478A (en) Method for fabricating superplastically formed/diffusion bonded aluminum or aluminum alloy structures
US5344063A (en) Method of making diffusion bonded/superplastically formed cellular structures with a metal matrix composite
JPH1147859A (en) Production of aluminum alloy panel
JP2014176896A (en) Superplastically formed ultrasonically welded metallic structure
CN110064834B (en) Method for realizing local diffusion connection of aluminum alloy plates
JPH0433856A (en) Manufacture of laminated metal molded form
JP3924880B2 (en) Method for integrally forming superplastic metal
JPS58141880A (en) Joining method of sintered hard alloy
JP2890102B2 (en) Manufacturing method of metal honeycomb sandwich plate
JP2580287B2 (en) How to make a metal San German panel
JPH01133689A (en) Manufacture of clad material
RU2049628C1 (en) Method of making laminate structures
JPH05185169A (en) Production of sandwich panel
RU2025236C1 (en) Method of making laminate panels
JPH05212477A (en) High rigidity structural member
CN107433742A (en) Sandwich and the associated forming method based on pressure
JPH02121734A (en) Manufacture of metallic sandwich panel
US6704981B2 (en) Superplastic forming method
CN112792153A (en) Diffusion, stretching, chemical milling and composite forming method for aluminum alloy multilayer plate