JPH0433824B2 - - Google Patents

Info

Publication number
JPH0433824B2
JPH0433824B2 JP1546183A JP1546183A JPH0433824B2 JP H0433824 B2 JPH0433824 B2 JP H0433824B2 JP 1546183 A JP1546183 A JP 1546183A JP 1546183 A JP1546183 A JP 1546183A JP H0433824 B2 JPH0433824 B2 JP H0433824B2
Authority
JP
Japan
Prior art keywords
aqueous dispersion
parts
weight
composition
wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1546183A
Other languages
Japanese (ja)
Other versions
JPS59142262A (en
Inventor
Yoshiki Hasegawa
Fumio Yoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP1546183A priority Critical patent/JPS59142262A/en
Publication of JPS59142262A publication Critical patent/JPS59142262A/en
Publication of JPH0433824B2 publication Critical patent/JPH0433824B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は塗料用として有用な水性分散体組成物
に関し、さらに詳細には、特定の乳化共重合体の
水性分散液と特定の融点を有するワツクスとコロ
イダルシリカとからなる、撥水性および耐汚染性
に優れた染料用水性分散体組成物に関するもので
ある。 従来より、水性分散体は取扱い易さ、塗装作業
性、塗膜性能などが評価されて塗料用として多量
に使用されてきた。 また、塗料本来の目的は基材の保護ならびに美
装にあるが、外部塗装に用いられる場合にはさら
に高度な耐侯性が要求される。この要求を達成す
るためには、雨水に対する撥水性および塵埃に対
する耐汚染性の良好な塗料が必要であるが、従来
の水性分散体は、撥水性、耐水性も十分でなく、
優れた耐汚染性も有していなかつた。 耐水性を向上させるために、塗料に撥水剤を添
加することも行われているが、かかる撥水剤の添
加による場合には、初期の撥水性付与には効果が
認められるものの、撥水性の持続には効果が認め
られなかつた。また、耐汚染性を向上させるため
の策はなんら見出されていなかつた。 そこで本発明者らは、かかる欠点を克服するも
のとして、特定の乳化共重合体の水性分散液と特
定の融点範囲を有するワツクスとから成る塗料用
分散体組成物が、撥水性、耐水性および耐候性に
すぐれていることを見出し、該複合体を塗料用水
性分散体組成物として用いることを提案した(特
開昭55−71747号)。 しかし、上記塗料用水性分散体組成物は、実用
上ほぼ満足できる性能を有してはいるものの、長
期間の曝露における耐汚染性の点で今一つ十分な
性能が得られず、さらに改善する余地を残してい
た。 そこで、本発明者らはさらに改善すべく研究を
重ねた結果、該塗料用水性分散体組成物に特定量
のコロイダルシリカを添加することによつて、撥
水性、耐水性および耐侯性を損なうことなく、耐
汚染性が飛躍的に向上することを見出し、本発明
を完成するに至つた。 すなわち、本発明は、25℃における水への溶解
度が0.3重量%以下である疎水性モノエチレン性
不飽和単量体の30重量%以上と、これと共重合し
うる他のモノエチレン性不飽和単量体の0〜70重
量%と、α,β−モノエチレン性不飽和カルボン
酸の0.1〜5重量%とからなる単量体の混合物を、
乳化共重合せしめて得られる水性分散液(A)に、該
分散液(A)の固形分に対し、2〜40重量%(固形分
換算)なる範囲内で、融点が50〜100℃なるワツ
クス(B)と、1〜200重量%(固形分換算)なる範
囲内で、コロイダルシリカ(C)とを含有せしめるこ
とから成る、とりわけ、塗膜の撥水性ならびに耐
汚染性などに優れる、極めて実用性の高い塗料用
水性分散体組成物を提供しようとするものであ
る。 ここにおいて、上記した「モノエチレン性不飽
和単量体」とは、重合性炭素−炭素二重結合を一
つ有する単量体を指称するものである。 本発明組成物中の上記水性分散液(A)を得るのに
用いられる上記の「疎水性モノエチレン性不飽和
単量体」(以下、「疎水性単量体」という。)とは、
25℃における水への溶解度が0.3重量%以下、好
ましくは、0.1重量%以下であるようなものを指
称し、かかる疎水性単量体として特に代表的なも
ののみを例示するにとどめれば、アクリル酸ブチ
ル、アクリル酸2−エチルヘキシル、メタクリル
酸ブチル、メタクリル酸2−エチルヘキシル、メ
タクリル酸ラウリルまたはメタクリル酸ステアリ
ルの如き、各種の(メタ)アクリル酸エステル
類;スチレンまたはα−メチルスチレンの如き、
各種の芳香族ビニル単量体類;エチレン、塩化ビ
ニルまたは塩化ビニリデンの如き、各種のα−オ
レフイン類ないしはハロゲン化オレフイン類
〔(ハロゲン置換)オレフイン類〕;あるいはバー
サテイツク酸ビニルの如き、各種のカルボン酸ビ
ニルエステル類などであるが、これらは単独使用
あるいは2種以上の併用でもよいことは、勿論で
あり、当該疎水性単量体は、単量体総量に対し
て、30重量%以上用いる必要がある。 次に、かかる疎水性単量体と共重合し得る他の
モノエチレン性不飽和単量体として特に代表的な
もののみを例示するにとどめれば、アクリル酸メ
チル、アクリル酸エチルもしくはメタクリル酸メ
チルの如き、各種の(メタ)アクリル酸と1価ア
ルコール類とのエステル類;または酢酸ビニルも
しくは「ベオバ」(オランダ国シエル社製の、分
岐状脂肪族モノカルボン酸のビニルエステル類)
の如き、各種のカルボン酸ビニルエステル類;あ
るいはアクリロニトリルの如き、各種のシアノ基
含有ビニル化合物などであるが、これらは単独使
用でも2種以上の併用でもよいことは、勿論であ
つて、全単量体中、70重量%までの範囲で使用さ
れてもよい。 さらに、前記のα,β−モノエチレン性不飽和
カルボン酸としては、たとえばアクリル酸、メタ
クリル酸、クロトン酸、イタコン酸、フマール
酸、マレイン酸などが挙げられるが、これらは1
種もしくは2種以上の混合物として全単量体中
0.1〜5重量%の範囲で用いられる。 ところで、前記した疎水単量体の共重合組成比
率が30重量%未満である場合には、得られる共重
合体が形成する皮膜の撥水性や耐水性などが、ど
うしても、低下するようになるし、しかも、この
撥水性の耐久性も乏しくなるので好ましくない。 また、上記した疎水性単量体と共重合し得る他
のモノエチレン性不飽和単量体が、全単量体中
に、70重量%を超えて多量に含有される場合は、
得られる共重合体は親水性が強く、形成被膜の撥
水性、耐水性が低下し、かつ、撥水性の耐久性も
乏しくなる。 さらに、前記したα,β−モノエチレン性不飽
和カルボン酸についていえば、0.1重量%未満と
極端に低い共重合組成比率になるときは得られる
共重合体の水性分散液の安定性が低下し、良好な
水性分散体組成物が得られなくなり、逆に全単量
体中に5重量%を超えるようになると共重合体の
水性分散液はPHの変化により液粘度が著しく影響
をうけて塗装作業性が悪くなるし、また形成され
る皮膜も耐水性が不良となり、撥水性も低下す
る。 このほかにも、前記各単量体からの共重合体に
対して、慣用の熱および酸性触媒などにより、架
橋性を与えるような官能基含有単量体、たとえば
アクリルアミド、メタクリルアミド、N−メチロ
ールアクリルアミド、N−ブトキシメチロールア
クリルアミド、N−ブトキシメチロールメタクリ
ルアミド、ダイアセトンアクリルアミド、グリシ
ジルアクリレート、グリシジルメタクリレート、
β−ヒドロキシエチルアクリレート、β−ヒドロ
キシプロピルアクリレート、β−ヒドロキシエチ
ルメタクリレートまたはγ−メタクリロイルオキ
シプロピルトリメトキシシランなどの1種または
2種以上を0.5〜10重量%程度共重合せしめるこ
とも勿論可能である。 本発明組成物の第一番目の構成成分である前記
水性分散液(A)は通常の乳化重合方法によつて得ら
れる。 このさい用いられる乳化剤としては、アニオン
型界面活性剤、非イオン型界面活性剤、カチオン
型界面活性剤、その他反応性乳化剤、アクリルオ
ルゴマーや水溶性高分子物質など界面活性能を有
する物質が挙げられ、これは1種もしくは2種以
上併用することができるが、通常はアニオン型界
面活性剤と非イオン型界面活性剤との併用による
のがよい。 この乳化剤の使用量は特に制限されないが、通
常、単量体総量の0.1〜10重量%程度で使用され
る。 他方、重合開始剤としては一般に乳化重合に使
用される触媒であればすべて使用することができ
るが、そのうちの代表的なものを挙げれば過酸化
水素、過硫酸アンモニウムなどの水溶性無機過酸
化物もしくは過硫酸塩;クメンハイドロバーオキ
サイド、ベンゾイルパーオキサイドなどの有機過
酸化物;アゾビスイソブチロニトリルの如きアゾ
化合物などであり、これらは1種もしくは2種以
上の混合物として用いられる。その使用量は単量
体の総重量に対し0.1〜2%程度である。 なお、これらの触媒と金属イオンおよび還元剤
との併用による一般にレドツクス重合法として公
知の方法に依つてもよいことは勿論である。 また、前記した各種の単量体は、これを一括し
て、もしくは分割して、あるいは連続的に滴下し
て加えてもよく、前記した触媒の存在下に、0〜
100℃、実用的には30〜90℃の温度で重合される。 こうした乳化共重合により得られる共重合体は
そのガラス転移温度が0〜50℃の範囲内にあるこ
とが必要である。 ここで、ガラス転移温度と撥水性、耐水性の相
関は経験的に見出されたもので、該温度が0℃未
満の場合には撥水性、耐水性が十分ではなく、ま
た皮膜に粘着性も残り、しかも塗膜の汚染が著し
くなり、逆に50℃を超えて高くなるにつれて造膜
性が悪くなり、皮膜中でのワツクス分の相溶性も
低下するようになり、十分な塗膜性能を期しえな
くなる。 本発明組成物の第二番目の構成成分である、融
点が50〜100℃の範囲内にある前記ワツクス(B)と
しては、パラフインワツクス、ミクロクリスタリ
ンワツクスおよび中間製品のワツクスなどが包含
される。 ここで、ワツクスの融点が50℃未満の場合には
得られる塗膜の表面にワツクスが浮き出し、耐汚
染性が低下するし、逆に100℃を超える場合には
ワツクス自体の相溶性が悪くなつて皮膜形成性が
低下し、十分な塗膜性能が期しえなくなる。 さらに、使用される上記ワツクス(B)の量は前記
水性分散液(A)の固形分に対し2〜40重量%なる範
囲内とすべきであり、2重量%未満である場合に
は十分な撥水性が得られず、逆に40重量%を超え
て多量に使用する場合には得られる水性分散体組
成物の安定性が低下し、また基材に対する密着性
も低下するし、さらに塗料として用いた場合には
顔料分散性も悪くなり、色むらの発生の原因とも
なる。 そして、このワツクス(B)の前記水性分散液(A)へ
の添加混合の方法としては、(1)前記した各種の単
量体を乳化共重合せしめるさいに、予めワツクス
(B)を界面活性剤により乳化しておき、その中で単
量体を共重合させる方法、(2)乳化共重合工程にお
いてたとえば単量体を滴下するさいに、該単量体
とワツクス(B)の乳化液とを併行滴下または混合滴
下せしめる方法、(3)単量体に可溶なワツクス(B)を
用いる場合には、このワツクス(B)を予め単量体に
溶解せしめて重合する方法、さらには(4)単量体を
乳化共重合したのち、得られる水性分散液(A)にワ
ツクス(B)の乳化液を添加せしめる方法などが挙げ
られ、そのいずれの方法を用いてもよいが、好ま
しくは(1)、(2)および(3)の方法が有用である。 また、予めワツクス(B)を乳化したものを用いる
場合には、市販されているワツクス乳化液をその
まま使用することもでき、該ワツクス乳化液中の
ワツクスが本発明において定義した前記範囲内の
ものであればいずれも使用可能であることは勿論
ではあるが、ただ前記した共重合体の水性分散液
(A)の粒子荷電と、使用するワツクス乳化液の荷電
とが相反するものは使用できないことはいうまで
もなく、この点は留意すべきである。 本発明組成物の第三番目の構成成分であるコロ
イダルシリカ(C)としては、SiO2を基本単位とす
る水中分散体であり、粒子径が4〜100mμのも
のが包含される。コロイダルシリカの分散液は、
酸性、塩基性のいずれも用いることができ、本発
明組成物の他の構成成分(A)(B)との添加混合の条件
により適宜選択することができる。 コロイダルシリカの酸性分散液としては、たと
えば商品名スノーテツクスO、またはスノーテツ
クスOL(日産化学工業(株)製)が利用できる。一
方、コロイダルシリカの塩基性分散液としては、
たとえば商品名スノーテツクス20、スノーテツク
ス30、スノーテツクス40、スノーテツクスC、ス
ノーテツクスN(日産化学工業(株)製)が利用でき
る。 ここで使用されるコロイダルシリカ(C)の量は、
前記水性分散液(A)の固形分に対して1〜200重量
%(固形分換算)なる範囲内とすべきであり、1
重量%未満である場合には、耐汚染性の著しい改
善が得られず、逆に200重量%を超えて多量に使
用する場合には得られる水性分散体組成物の撥水
性が著しく低下し、そのため目的である高度な耐
侯性を得ることができない。 そして、このコロイダルシリカ(C)の前記水性分
散液(A)への添加混合の方法としては、(1)前記した
各種の単量体を乳化共重合せしめるさいに、予め
コロイダルシリカ(C)を水相に添加しておき、その
中で共重合させる方法、(2)乳化共重合工程におい
て、たとえば単量体を滴下するさいに、該単量体
とコロイダルシリカ(C)とを併行滴下または乳化混
合滴下せしめる方法、さらには(3)単量体を乳化共
重合したのち、得られる水性分散液(A)にコロイダ
ルシリカ(C)を添加せしめる方法などが挙げられ、
そのいずれの方法を用いてもよい。 本発明においては、前記水性分散液(A)へのワツ
クス(B)、コロイダルシリカ(C)の添加は、前記ワツ
クス(B)の添加方法(1)〜(4)、およびコロイダルシリ
カ(C)の添加方法(1)〜(3)の組合せにより、一般に行
われるが、該水性分散液(A)に本発明で定義した範
囲のワツクス(B)、コロイダルシリカ(C)を用いる場
合には、その他の添加方法を用いても本発明の効
果を損なわない。 かくして本発明組成物は、これを構成する特定
の乳化共重合体の水性分散液(A)と特定の融点範囲
を有するワツクス(B)とコロイダルシリカ(C)との組
合せにより、撥水性、耐汚染性に優れ、高度な耐
侯性を有する塗膜を与えるものである。 本発明の組成物が構成成分(A)(B)(C)の組合せによ
り、前記の如き効果を奏し得る理由は、必ずしも
明らかではないが、上記した範囲の割合で水性分
散液(A)、ワツクス(B)、コロイダルシリカ(C)を混合
すると相溶性が良好になり、塗膜表面に均質な海
島構造が形成され、これにより水性分散液(A)とワ
ツクス(B)による撥水性と、無機ポリマーであるコ
ロイダルシリカ(C)の硬さが十分に発揮されるため
と思われる。さらにコロイダルシリカ(C)は、無機
質基材の表面に存在するOH基とも反応して架橋
結合し、それによつて基材表面に有機および無機
の強固な複合塗膜が形成され、それによつて従
来、達成できなかつたような高度の耐侯性をも得
ることができたものと考えられる。 かくして得られた本発明の水性分散体組成物を
用いて塗料を製造するさいに、該水性分散体組成
物に直接に、顔料あるいは体質顔料などを添加
し、混練分散せしめてもよく、またかかる顔料あ
るいは体質顔料などを予め分散剤と水を以て水中
に分散せしめて顔料ペーストを作成し、次いでこ
れに本発明の水性分散体組成物を加える方法によ
つてもよい。 また、その他一般にエマルジヨン塗料に用いら
れている各種の配合剤、たとえば湿潤剤、増粘
剤、可塑剤、造膜助剤、消泡剤、防腐剤、あるい
は防ばい剤などの使用はすべて可能である。 さらに、本発明の水性分散体組成物は砕石ある
いは砂などの骨材を配合したもの、あるいは上述
した如きエマルジヨン塗料に同様にこれらの骨材
を配合したものよりなる砂壁状塗料となすことも
でき、極めて有用である。 本発明の水性分散体組成物よりなる上記した各
種の塗料は一般に用いられている方法、たとえば
刷毛塗り、ローラー塗り、スプレー塗装、浸漬塗
装などのいずれの方法によつても塗装することが
できる。 次に、本発明を実施例により具体的に説明す
る。 以下、部および%は特断のない限り、すべて重
量基準であるものとする。 実施例 1 ステンレス製反応容器中に、脱イオン水55部、
パラフインワツクス(融点70℃)の40%乳化液
50.スノーテツクス30(コロイダルシリカ30%水分
散体)100部およびドデシルベンゼンスルホン酸
ソーダ1.5部、ポリオキシエチレンノニルフエニ
ルエーテル3.5部、過硫酸アンモニウム0.5部を仕
込んで、窒素気流中で75〜80℃に昇温した。 そこへ2−エチルヘキシルアクリレート(25℃
における水への溶解度=0.03%)39部、メチルメ
タクリレート60部およびアクリル酸1部よりなる
混合物を、180分間を要して滴下して共重合させ
たのち、さらに同温度に30分間保持して共重合を
完結せしめた。 次いで、30℃に冷却し28%アンモニア水にてPH
7.5に調整した。ここに得られた水性分散体組成
物は、不揮発分50℃、粘度200cps、PH7.5であつ
た。 この水性分散体組成物を第1表に示した塗料配
合に従つて塗料化し、次いでこの塗料をスレート
板に刷毛塗りして7日間常温乾燥したのち、塗膜
物性を観察測定した。その結果を第2表に示す。 実施例 2 「ベオバ10」(シエル化学社製バーサチツク酸
ビニルエステル;25℃における水への溶解度=
0.17%)50部、酢酸ビニル30部、メチルメタクリ
レート19部およびアクリル酸1部よりなる単量体
を用いる以外は、実施例1と同様の操作を行つ
た。 得られた水性分散体組成物は不揮発分49.7%、
粘度130cps、PH7.5であつた。この組成物につい
て実施例1と同様の操作を繰り返して塗膜物性を
観察測定した。その結果を第2表に示す。 実施例 3 ステンレス製反応容器中に、脱イオン水55部を
仕込んで、ドデシルベンゼンスルホン酸ソーダ
1.5部、ポリオキシエチレンノニルフエニルエー
テル3.5部および過硫酸アンモニウム0.5部を溶解
し、窒素気流中で75〜80℃に昇温した。 そこへ「ベオバ10」50部、酢酸ビニル30部、メ
チルメタクリレート19部およびアクリル酸1部よ
りなる単量体混合物と、パラフインワツクス(融
点70℃)の40%乳化液50部、スノーテツクス30
(コロイダルシリカ30%水分散体)100部とを併行
滴下させて重合させたのち、さらに同温度に30分
間保持して重合を完結せしめた。次いで30℃に冷
却し、28%アンモニア水でPHを7.5に調整した。
得られた水性分散体組成物は不揮発分49.8%、粘
度140cps、PH7.5であつた。この組成物について
実施例1と同様の操作を行い塗膜物性を観察測定
した。その結果を第2表に示す。 実施例 4 単量体混合物の組成をスチレン(25℃における
溶解度=0.029%)30部、2−エチルヘキシルア
クリレート30部、メチルメタクリレート29部、エ
チルアクリレート10部、アクリル酸1部に変更す
る以外は、実施例3と同様の操作で不揮発分50.1
%、粘度350cps、PH7.5の水性分散体組成物を得
た。この組成物について実施例1と同様の操作を
行い塗膜物性を観察測定した。その結果を第2表
に示す。 実施例 5 ステンレス製反応容器中に、脱イオン水50部を
仕込み、ドデシルベンゼンスルホン酸ソーダ1.5
部、ポリオキシエチレンノニルフエニルエーテル
3.5部および過硫酸アンモニウム0.5部を溶解し、
窒素気流中で75〜80℃に昇温した。 そこへスチレン30部、2−エチルヘキシルアク
リレート30部、メチルメタクリレート29部、エチ
ルアクリレート10部およびアクリル酸1部よりな
る単量体の混合物を180分間にわたつて滴下重合
させたのち、さらに同温度に30分間保持して重合
を完結せしめた。次いで30℃に冷却して、28%ア
ンモニア水でPH8.0に調整した。 しかるのちに、得られた水性分散液(固形分
100部)に融点が70℃のワツクスの40%乳化液50
部、およびスノーテツクス30 100部を室温で撹拌
しながら添加して不揮発分50.1%、粘度320cps、
PH8.1の水性分散体組成物を得た。この組成物に
ついて実施例1と同様の操作を行い塗膜物性を観
察測定した。その結果を第2表に示す。 実施例 6 コロイダルシリカとしてスノーテツクス30(コ
ロイダルシリカ30%水分媒体)を15部添加する以
外は実施例5と同様の操作を行い、不揮発分57.2
%、粘度4500cps、PH8.1の水性分散体組成物を得
た。この組成物について実施例1と同様の操作を
行い塗膜物性を観察測定した。その結果を第2表
に示す。 実施例 7 コロイダルシリカとしてスノーテツクス30(コ
ロイダルシリカ30%水分散体)を500部添加する
以外は実施例5と同様の操作を行い、不揮発分
40.1%、粘度30cps、PH8.2の水性分散体組成物を
得た。この組成物について実施例1と同様の操作
を行い塗膜物性を観察測定した。その結果を第2
表に示す。 比較例 1 「ベオバ10」20部、酢酸ビニル60部、メチルメ
タクリレート19部およびアクリル酸1部よりなる
単量体混合物を用いる以外は実施例1と同様の操
作を繰り返して、不揮発分50.0%、粘度100cps、
PH7.5なる水性分散体組成物を得た。この組成物
について実施例1と同様の操作を行い塗膜物性を
観察測定した。その結果を第2表に示す。 比較例 2 単量体混合物の組成を、「ベオバ10」50部、酢
酸ビニル30部、メチルメタクリレート10部、アク
リル酸10部とする以外は実施例1と同様の操作を
繰り返して、不揮発分49.8%、粘度7000cps、PH
6.5なる水性分散体組成物を得た。この組成物に
ついて実施例1と同様の操作を行い塗膜物性を観
察測定した。その結果を第2表に示す。 比較例 3 ワツクスとコロイダルシリカを添加せず、脱イ
オン水を55部添加する以外は実施例5と同様の操
作を行い、不揮発分50.1%、粘度300cps、PH8.0
の水性分散体組成物を得た。この組成物について
実施例1と同様の操作を行い塗膜物性を観察測定
した。その結果を第2表に示す。 比較例 4 ワツクスの添加量を120部にかえる以外は実施
例5と同様の操作を行い、不揮発物49.2%、粘度
320cps、PH8.0の水性分散体組成物を得た。この
組成物について実施例1と同様の操作を行い塗膜
物性を観察測定した。その結果を第2表に示す。 比較例 5 ワツクスの種類を融点20℃のものに代える以外
は実施例5と同様の操作を行い、不揮発分49.8
%、粘度300cps、PH8.0の水性分散体組成物を得
た。この組成物について実施例1と同様の操作を
行い塗膜物性を観察測定した。その結果を第2表
に示す。 比較例 6 ワツクスの種類を融点150℃のものに代える以
外は実施例5と同様の操作を行い、不揮発分50.0
%、粘度290cps、PH8.1の水性分散体組成物を得
た。この組成物について実施例1と同様の操作を
行い塗膜物性を観察測定した。その結果を第2表
に示す。 比較例 7 コロイダルシリカを添加せず脱イオン水を55部
添加する以外は実施例5と同様の操作を行い、不
揮発分50.1%、粘度350cps、PH8.1の水性分散体
組成物を得た。この組成物について実施例1と同
様の操作を行い塗膜物性を観察測定した。その結
果を第2表に示す。 比較例 8 コロイダルシリカの種類をスノーテツクス40
(コロイダルシリカ40%水分散体)に代え、これ
を625部添加する以外は実施例5と同様の操作を
行い、不揮発分42.5%、粘度65cps、PH8.1の水性
分散体組成物を得た。この組成物について実施例
1と同様の操作を行い塗膜物性を観察測定した。
その結果を第2表に示す。 第1表 塗料配合(グロス・ペイント用) 「タイペーク R−630」(石原産業(株)製ルチル
型酸化チタン) 275.0部 「タモール731」(米国ローム・アンド・ハース
社製顔料分散剤) 9.0〃 「ノイゲン EA−120」(第一工業製薬(株)製非
イオン型界面活性剤) 2.2〃 エチレングリコール 50.0〃 「ノブコ NDW」(米国ノブコ・ケミカル社
製消泡剤) 2.0〃 水 105.0〃 28%アンモニア水 1.0〃 「セロサイズ QP−4400」(米国ユニオン・カ
ーバイド社製ヒドロキシエチルセルローズ)の
3%水溶液 …コロイドミル分散… 50%水性分散体組成物 616.5部 「セロサイズ QP−4400」の3%水溶液37.5〃 「テキサノール」(米国コダツク社製造膜助剤)
24.7〃水 35.0〃 計 1170.4〃 顔料体積濃度 20% 不揮発分 50.3% 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aqueous dispersion composition useful for coatings, and more particularly, it is composed of an aqueous dispersion of a specific emulsifying copolymer, a wax having a specific melting point, and colloidal silica. , relates to an aqueous dispersion composition for dyes having excellent water repellency and stain resistance. BACKGROUND ART Aqueous dispersions have traditionally been used in large quantities as paints due to their ease of handling, coating workability, and coating performance. Furthermore, although the original purpose of paint is to protect and beautify the base material, even higher weather resistance is required when it is used for external painting. In order to achieve this requirement, a paint with good water repellency against rainwater and stain resistance against dust is required, but conventional aqueous dispersions do not have sufficient water repellency or water resistance.
It also did not have excellent stain resistance. In order to improve water resistance, water repellents are sometimes added to paints, but although the addition of such water repellents is effective in imparting initial water repellency, water repellency is No effect was observed on the continuation of the condition. Furthermore, no measures have been found to improve stain resistance. In order to overcome these drawbacks, the present inventors have proposed a paint dispersion composition comprising an aqueous dispersion of a specific emulsion copolymer and a wax having a specific melting point range. They discovered that the composite had excellent weather resistance and proposed the use of the composite as an aqueous dispersion composition for paints (Japanese Patent Laid-Open No. 71747/1983). However, although the above-mentioned aqueous dispersion composition for paints has practically satisfactory performance, it does not provide sufficient performance in terms of stain resistance after long-term exposure, and there is still room for further improvement. was left behind. Therefore, the present inventors conducted research to further improve the composition, and found that by adding a specific amount of colloidal silica to the aqueous dispersion composition for paint, water repellency, water resistance, and weather resistance could be impaired. However, the present inventors have discovered that the stain resistance is dramatically improved, and have completed the present invention. That is, the present invention comprises 30% by weight or more of a hydrophobic monoethylenically unsaturated monomer whose solubility in water at 25°C is 0.3% by weight or less, and other monoethylenically unsaturated monomers that can be copolymerized with the hydrophobic monoethylenically unsaturated monomer. A mixture of monomers consisting of 0 to 70% by weight of the monomer and 0.1 to 5% by weight of α,β-monoethylenically unsaturated carboxylic acid,
A wax having a melting point of 50 to 100°C is added to the aqueous dispersion (A) obtained by emulsion copolymerization within a range of 2 to 40% by weight (in terms of solid content) based on the solid content of the dispersion (A). (B) and colloidal silica (C) within a range of 1 to 200% by weight (solid content), which is extremely practical and has excellent water repellency and stain resistance of the coating film. The present invention aims to provide an aqueous dispersion composition for paint with high properties. Here, the above-mentioned "monoethylenically unsaturated monomer" refers to a monomer having one polymerizable carbon-carbon double bond. The above-mentioned "hydrophobic monoethylenically unsaturated monomer" (hereinafter referred to as "hydrophobic monomer") used to obtain the above-mentioned aqueous dispersion (A) in the composition of the present invention is:
Referring to those having a solubility in water at 25°C of 0.3% by weight or less, preferably 0.1% by weight or less, only particularly representative hydrophobic monomers are exemplified. Various (meth)acrylic acid esters such as butyl acrylate, 2-ethylhexyl acrylate, butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate or stearyl methacrylate; such as styrene or α-methylstyrene;
Various aromatic vinyl monomers; various α-olefins or halogenated olefins ((halogen-substituted) olefins) such as ethylene, vinyl chloride, or vinylidene chloride; or various carboxylates such as vinyl versatate; acid vinyl esters, etc., but of course these can be used alone or in combination of two or more types, and the hydrophobic monomer needs to be used in an amount of 30% or more by weight based on the total amount of monomers. There is. Next, examples of other monoethylenically unsaturated monomers that can be copolymerized with such hydrophobic monomers include methyl acrylate, ethyl acrylate, and methyl methacrylate. Various esters of (meth)acrylic acid and monohydric alcohols, such as; or vinyl acetate or "Beoba" (vinyl esters of branched aliphatic monocarboxylic acids, manufactured by Siel, Netherlands)
and various vinyl carboxylic acid esters such as; It may be used in an amount up to 70% by weight. Furthermore, examples of the α,β-monoethylenically unsaturated carboxylic acids include acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, etc.
In total monomers as species or mixture of two or more species
It is used in a range of 0.1 to 5% by weight. By the way, if the copolymer composition ratio of the above-mentioned hydrophobic monomer is less than 30% by weight, the water repellency and water resistance of the film formed by the resulting copolymer will inevitably decrease. Moreover, the durability of this water repellency becomes poor, which is not preferable. In addition, if other monoethylenically unsaturated monomers that can be copolymerized with the above-mentioned hydrophobic monomers are contained in a large amount exceeding 70% by weight in the total monomers,
The resulting copolymer has strong hydrophilicity, and the water repellency and water resistance of the formed film are reduced, and the durability of the water repellency is also poor. Furthermore, regarding the α,β-monoethylenically unsaturated carboxylic acid mentioned above, when the copolymer composition ratio is extremely low, such as less than 0.1% by weight, the stability of the resulting aqueous copolymer dispersion decreases. , a good aqueous dispersion composition cannot be obtained, and conversely, if the amount exceeds 5% by weight in the total monomer, the viscosity of the copolymer aqueous dispersion will be significantly affected by the change in pH, making it difficult to coat. Workability deteriorates, and the film formed also has poor water resistance and water repellency. In addition, functional group-containing monomers such as acrylamide, methacrylamide, N-methylol, etc., which impart crosslinking properties to copolymers made from the above-mentioned monomers by conventional heat and acidic catalysts, are also added. Acrylamide, N-butoxymethylol acrylamide, N-butoxymethylol methacrylamide, diacetone acrylamide, glycidyl acrylate, glycidyl methacrylate,
Of course, it is also possible to copolymerize about 0.5 to 10% by weight of one or more of β-hydroxyethyl acrylate, β-hydroxypropyl acrylate, β-hydroxyethyl methacrylate, or γ-methacryloyloxypropyltrimethoxysilane. . The aqueous dispersion (A), which is the first component of the composition of the present invention, can be obtained by a conventional emulsion polymerization method. Emulsifiers used in this case include anionic surfactants, nonionic surfactants, cationic surfactants, other reactive emulsifiers, and substances with surfactant properties such as acrylic oligomers and water-soluble polymer substances. These surfactants can be used alone or in combination of two or more types, but it is usually preferable to use a combination of an anionic surfactant and a nonionic surfactant. The amount of this emulsifier used is not particularly limited, but it is usually used in an amount of about 0.1 to 10% by weight based on the total amount of monomers. On the other hand, as a polymerization initiator, any catalyst that is generally used in emulsion polymerization can be used, but typical examples include water-soluble inorganic peroxides such as hydrogen peroxide and ammonium persulfate; These include persulfates; organic peroxides such as cumene hydroperoxide and benzoyl peroxide; and azo compounds such as azobisisobutyronitrile, and these may be used alone or as a mixture of two or more. The amount used is about 0.1 to 2% based on the total weight of the monomers. Of course, it is also possible to use a method generally known as a redox polymerization method in which these catalysts are used in combination with metal ions and reducing agents. Further, the various monomers described above may be added all at once, in portions, or continuously by dropwise addition, and in the presence of the catalyst described above, 0 to
Polymerization is carried out at a temperature of 100°C, practically 30-90°C. The copolymer obtained by such emulsion copolymerization must have a glass transition temperature within the range of 0 to 50°C. Here, the correlation between the glass transition temperature, water repellency, and water resistance was found empirically; if the temperature is below 0°C, the water repellency and water resistance are insufficient, and the film becomes sticky. In addition, contamination of the paint film becomes significant, and conversely, as the temperature rises above 50°C, film forming properties deteriorate and the compatibility of the wax component in the film decreases, making it difficult to maintain sufficient paint film performance. It becomes impossible to expect. The wax (B), which is the second component of the composition of the present invention and has a melting point within the range of 50 to 100°C, includes paraffin wax, microcrystalline wax, intermediate product wax, and the like. Ru. Here, if the melting point of the wax is less than 50℃, the wax will stand out on the surface of the resulting coating film, reducing stain resistance, and conversely, if it exceeds 100℃, the compatibility of the wax itself will deteriorate. As a result, film forming properties deteriorate, and sufficient coating performance cannot be expected. Furthermore, the amount of the wax (B) used should be within the range of 2 to 40% by weight based on the solid content of the aqueous dispersion (A), and if it is less than 2% by weight, it is insufficient. Water repellency cannot be obtained, and conversely, if the amount exceeds 40% by weight, the stability of the obtained aqueous dispersion composition will decrease, and the adhesion to the substrate will also decrease, and furthermore, it will be difficult to use as a paint. If used, the pigment dispersibility will be poor and color unevenness will occur. The method for adding and mixing this wax (B) to the aqueous dispersion (A) is as follows: (1) When emulsion copolymerizing the various monomers described above, add the wax (B) in advance to the aqueous dispersion (A).
(B) is emulsified with a surfactant, and the monomer is copolymerized therein; (2) In the emulsion copolymerization process, for example, when dropping the monomer, the monomer and wax ( (3) When using a monomer-soluble wax (B), this wax (B) is dissolved in the monomer in advance and then polymerized. There are also methods such as (4) emulsion copolymerization of the monomers and then adding an emulsion of wax (B) to the resulting aqueous dispersion (A). However, methods (1), (2), and (3) are preferably useful. In addition, when using wax (B) that has been emulsified in advance, a commercially available wax emulsion can be used as it is, and the wax in the wax emulsion is within the above range defined in the present invention. Of course, any aqueous dispersion of the copolymer mentioned above can be used.
Needless to say, it is impossible to use particles in which the charge of the particles in (A) and the charge of the wax emulsion used conflict with each other, and this point should be kept in mind. Colloidal silica (C), which is the third component of the composition of the present invention, is an aqueous dispersion containing SiO 2 as a basic unit, and includes those having a particle size of 4 to 100 mμ. The colloidal silica dispersion is
Either acidic or basic can be used, and can be appropriately selected depending on the conditions of addition and mixing with other constituent components (A) and (B) of the composition of the present invention. As the acidic dispersion of colloidal silica, for example, Snotex O or Snotex OL (manufactured by Nissan Chemical Industries, Ltd.) can be used. On the other hand, as a basic dispersion of colloidal silica,
For example, the trade names Snowtex 20, Snowtex 30, Snowtex 40, Snowtex C, and Snowtex N (manufactured by Nissan Chemical Industries, Ltd.) can be used. The amount of colloidal silica (C) used here is
It should be within the range of 1 to 200% by weight (in terms of solid content) based on the solid content of the aqueous dispersion (A), and 1
When the amount is less than 200% by weight, no significant improvement in stain resistance can be obtained, and on the other hand, when it is used in a large amount exceeding 200% by weight, the water repellency of the resulting aqueous dispersion composition is significantly reduced. Therefore, the desired high degree of weather resistance cannot be achieved. The method for adding and mixing this colloidal silica (C) to the aqueous dispersion (A) is as follows: (1) When emulsifying and copolymerizing the various monomers described above, colloidal silica (C) is added in advance. (2) In the emulsion copolymerization step, for example, when adding the monomer dropwise, the monomer and colloidal silica (C) are simultaneously added dropwise or Examples include a method of emulsion mixing and dropping, and a method of (3) adding colloidal silica (C) to the resulting aqueous dispersion (A) after emulsion copolymerization of monomers.
Either method may be used. In the present invention, the addition of wax (B) and colloidal silica (C) to the aqueous dispersion (A) is performed by adding methods (1) to (4) of the wax (B) and colloidal silica (C). It is generally carried out by a combination of addition methods (1) to (3), but when using wax (B) and colloidal silica (C) within the range defined in the present invention in the aqueous dispersion (A), Even if other addition methods are used, the effects of the present invention will not be impaired. Thus, the composition of the present invention has water repellency and resistance due to the combination of the aqueous dispersion (A) of a specific emulsion copolymer constituting the composition, the wax (B) having a specific melting point range, and the colloidal silica (C). It provides a coating film with excellent stain resistance and high weather resistance. Although it is not necessarily clear why the composition of the present invention can achieve the above effects by combining the constituent components (A), (B), and (C), the aqueous dispersion (A), When wax (B) and colloidal silica (C) are mixed, their compatibility becomes good, and a homogeneous sea-island structure is formed on the coating surface, resulting in the water repellency of the aqueous dispersion (A) and wax (B) This is probably because the hardness of colloidal silica (C), an inorganic polymer, is fully demonstrated. Furthermore, colloidal silica (C) also reacts with the OH groups present on the surface of the inorganic substrate and cross-links, thereby forming a strong organic and inorganic composite coating on the surface of the substrate. It is thought that it was possible to obtain a high degree of weather resistance that was previously unattainable. When producing a paint using the aqueous dispersion composition of the present invention thus obtained, pigments or extender pigments may be directly added to the aqueous dispersion composition and kneaded and dispersed. A method may also be used in which a pigment or extender pigment is previously dispersed in water using a dispersant and water to prepare a pigment paste, and then the aqueous dispersion composition of the present invention is added to the pigment paste. In addition, it is also possible to use all of the other compounding agents commonly used in emulsion paints, such as wetting agents, thickeners, plasticizers, film-forming agents, antifoaming agents, preservatives, and antifungal agents. be. Furthermore, the aqueous dispersion composition of the present invention can be made into a sand wall-like paint by blending aggregates such as crushed stone or sand, or by blending these aggregates into the emulsion paint as described above. , extremely useful. The above-mentioned various paints made from the aqueous dispersion composition of the present invention can be applied by any of the commonly used methods, such as brush coating, roller coating, spray coating, and dip coating. Next, the present invention will be specifically explained using examples. Hereinafter, all parts and percentages are based on weight unless otherwise specified. Example 1 In a stainless steel reaction vessel, 55 parts of deionized water,
40% emulsion of parfine wax (melting point 70℃)
50. Charge 100 parts of Snowtex 30 (30% colloidal silica aqueous dispersion), 1.5 parts of sodium dodecylbenzenesulfonate, 3.5 parts of polyoxyethylene nonyl phenyl ether, and 0.5 parts of ammonium persulfate, and heat at 75 to 80°C in a nitrogen stream. The temperature rose to . 2-ethylhexyl acrylate (25℃
A mixture consisting of 39 parts (solubility in water = 0.03%), 60 parts of methyl methacrylate, and 1 part of acrylic acid was added dropwise over 180 minutes to copolymerize, and then kept at the same temperature for an additional 30 minutes. Copolymerization was completed. Next, cool to 30℃ and PH with 28% ammonia water.
Adjusted to 7.5. The aqueous dispersion composition obtained here had a nonvolatile content of 50°C, a viscosity of 200 cps, and a pH of 7.5. This aqueous dispersion composition was made into a paint according to the paint formulation shown in Table 1, and then this paint was applied to a slate board with a brush and dried at room temperature for 7 days, after which the physical properties of the paint film were observed and measured. The results are shown in Table 2. Example 2 "Beoba 10" (Versatric acid vinyl ester manufactured by Ciel Chemical Co., Ltd.; solubility in water at 25°C =
The same procedure as in Example 1 was carried out, except that monomers consisting of 50 parts of vinyl acetate, 19 parts of methyl methacrylate, and 1 part of acrylic acid were used. The resulting aqueous dispersion composition had a nonvolatile content of 49.7%;
The viscosity was 130 cps and the pH was 7.5. The same operations as in Example 1 were repeated for this composition to observe and measure the physical properties of the coating film. The results are shown in Table 2. Example 3 In a stainless steel reaction vessel, 55 parts of deionized water was charged and sodium dodecylbenzenesulfonate was added.
1.5 parts of polyoxyethylene nonyl phenyl ether, 3.5 parts of polyoxyethylene nonyl phenyl ether, and 0.5 parts of ammonium persulfate were dissolved, and the temperature was raised to 75 to 80°C in a nitrogen stream. A monomer mixture consisting of 50 parts of "Beoba 10", 30 parts of vinyl acetate, 19 parts of methyl methacrylate and 1 part of acrylic acid, 50 parts of a 40% emulsion of paraffin wax (melting point 70°C), and 30 parts of Snowtex
(100 parts of colloidal silica 30% aqueous dispersion) was added dropwise in parallel to polymerize, and then the same temperature was further maintained for 30 minutes to complete the polymerization. The mixture was then cooled to 30°C, and the pH was adjusted to 7.5 with 28% aqueous ammonia.
The resulting aqueous dispersion composition had a nonvolatile content of 49.8%, a viscosity of 140 cps, and a pH of 7.5. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Example 4 The composition of the monomer mixture was changed to 30 parts of styrene (solubility at 25°C = 0.029%), 30 parts of 2-ethylhexyl acrylate, 29 parts of methyl methacrylate, 10 parts of ethyl acrylate, and 1 part of acrylic acid. Non-volatile content was 50.1 by the same operation as in Example 3.
%, a viscosity of 350 cps, and a pH of 7.5. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Example 5 In a stainless steel reaction vessel, 50 parts of deionized water was charged, and 1.5 parts of sodium dodecylbenzenesulfonate was added.
Part, polyoxyethylene nonyl phenyl ether
Dissolve 3.5 parts and 0.5 parts of ammonium persulfate,
The temperature was raised to 75-80°C in a nitrogen stream. A monomer mixture consisting of 30 parts of styrene, 30 parts of 2-ethylhexyl acrylate, 29 parts of methyl methacrylate, 10 parts of ethyl acrylate, and 1 part of acrylic acid was added thereto for 180 minutes to polymerize, and then further heated to the same temperature. The polymerization was maintained for 30 minutes to complete the polymerization. The mixture was then cooled to 30°C and adjusted to pH 8.0 with 28% aqueous ammonia. Afterwards, the obtained aqueous dispersion (solid content
100 parts) of a 40% emulsion of wax with a melting point of 70°C (50 parts)
and 100 parts of Snowtex 30 were added at room temperature with stirring to obtain a non-volatile content of 50.1%, a viscosity of 320 cps,
An aqueous dispersion composition with a pH of 8.1 was obtained. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Example 6 The same operation as in Example 5 was carried out except that 15 parts of Snowtex 30 (30% water medium of colloidal silica) was added as colloidal silica, and the nonvolatile content was 57.2
%, a viscosity of 4500 cps, and a pH of 8.1. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Example 7 The same operation as in Example 5 was carried out except that 500 parts of Snowtex 30 (30% colloidal silica aqueous dispersion) was added as colloidal silica, and the non-volatile content was
An aqueous dispersion composition of 40.1%, viscosity 30 cps, and PH 8.2 was obtained. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The second result is
Shown in the table. Comparative Example 1 The same operation as in Example 1 was repeated except for using a monomer mixture consisting of 20 parts of "Beoba 10", 60 parts of vinyl acetate, 19 parts of methyl methacrylate, and 1 part of acrylic acid, and the nonvolatile content was 50.0%. Viscosity 100cps,
An aqueous dispersion composition with a pH of 7.5 was obtained. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Comparative Example 2 The same operation as in Example 1 was repeated except that the composition of the monomer mixture was changed to 50 parts of "Beoba 10", 30 parts of vinyl acetate, 10 parts of methyl methacrylate, and 10 parts of acrylic acid, and the nonvolatile content was 49.8 parts. %, viscosity 7000cps, PH
An aqueous dispersion composition of 6.5 was obtained. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Comparative Example 3 The same operation as in Example 5 was performed except that wax and colloidal silica were not added and 55 parts of deionized water was added, resulting in a nonvolatile content of 50.1%, viscosity of 300 cps, and pH of 8.0.
An aqueous dispersion composition was obtained. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Comparative Example 4 The same operation as in Example 5 was performed except that the amount of wax added was changed to 120 parts, and the nonvolatile content was 49.2% and the viscosity was
An aqueous dispersion composition of 320 cps and pH 8.0 was obtained. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Comparative Example 5 The same procedure as in Example 5 was carried out except that the type of wax was changed to one with a melting point of 20°C, and the nonvolatile content was 49.8
%, a viscosity of 300 cps, and a pH of 8.0. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Comparative Example 6 The same procedure as in Example 5 was carried out except that the type of wax was changed to one with a melting point of 150°C, and the non-volatile content was 50.0.
%, a viscosity of 290 cps, and a pH of 8.1. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Comparative Example 7 The same operation as in Example 5 was performed except that 55 parts of deionized water was added without adding colloidal silica to obtain an aqueous dispersion composition having a nonvolatile content of 50.1%, a viscosity of 350 cps, and a pH of 8.1. This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured. The results are shown in Table 2. Comparative example 8 The type of colloidal silica was Snotex 40.
(Colloidal silica 40% aqueous dispersion) The same operation as in Example 5 was performed except that 625 parts of this was added to obtain an aqueous dispersion composition with a non-volatile content of 42.5%, a viscosity of 65 cps, and a pH of 8.1. . This composition was subjected to the same operations as in Example 1, and the physical properties of the coating film were observed and measured.
The results are shown in Table 2. Table 1 Paint formulation (for gloss paint) "Taipeke R-630" (rutile type titanium oxide manufactured by Ishihara Sangyo Co., Ltd.) 275.0 parts "Tamol 731" (pigment dispersant manufactured by Rohm & Haas Company, USA) 9.0〃 "Nougen EA-120" (nonionic surfactant manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 2.2〃 Ethylene glycol 50.0〃 "Nobuco NDW" (antifoaming agent manufactured by Nobuco Chemical Company, USA) 2.0〃 Water 105.0〃 28% Ammonia water 1.0〃 3% aqueous solution of "Cellocise QP-4400" (Hydroxyethyl cellulose manufactured by Union Carbide, USA) ... Colloid mill dispersion ... 50% aqueous dispersion composition 616.5 parts 3% aqueous solution of "Cellocise QP-4400" 37.5 〃 “Texanol” (membrane aid manufactured by Kodatsu, USA)
24.7〃Water 35.0〃Total 1170.4〃 Pigment volume concentration 20% Non-volatile content 50.3% [Table]

Claims (1)

【特許請求の範囲】[Claims] 1 25℃なる温度における水への溶解度が0.3重
量%以下である疎水性モノエチレン性不飽和単量
体の30重量%以上と、これと共重合し得る他のモ
ノエチレン性不飽和単量体の0〜70重量%と、
α,β−モノエチレン性カルボン酸の0.1〜5重
量%とからなる単量体混合物を乳化重合せしめて
得られる水性分散液(A)に、該分散液(A)の固形分に
対し、2〜40重量%(固形分換算)なる範囲内
の、融点が50〜100℃なるワツクス(B)と、1〜200
重量%(固形分換算)なる範囲内のコロイダルシ
リカ(C)とを含有せしめることを特徴とする、塗料
用水性分散体組成物。
1 30% by weight or more of a hydrophobic monoethylenically unsaturated monomer whose solubility in water at a temperature of 25°C is 0.3% by weight or less, and other monoethylenically unsaturated monomers that can be copolymerized with it. 0 to 70% by weight of
An aqueous dispersion (A) obtained by emulsion polymerization of a monomer mixture consisting of 0.1 to 5% by weight of α,β-monoethylenic carboxylic acid is added to Wax (B) with a melting point of 50 to 100°C within the range of ~40% by weight (solid content equivalent) and 1 to 200% by weight
1. An aqueous dispersion composition for paint, characterized in that it contains colloidal silica (C) within a range of % by weight (based on solid content).
JP1546183A 1983-02-03 1983-02-03 Aqueous dispersion composition for paint Granted JPS59142262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1546183A JPS59142262A (en) 1983-02-03 1983-02-03 Aqueous dispersion composition for paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1546183A JPS59142262A (en) 1983-02-03 1983-02-03 Aqueous dispersion composition for paint

Publications (2)

Publication Number Publication Date
JPS59142262A JPS59142262A (en) 1984-08-15
JPH0433824B2 true JPH0433824B2 (en) 1992-06-04

Family

ID=11889430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1546183A Granted JPS59142262A (en) 1983-02-03 1983-02-03 Aqueous dispersion composition for paint

Country Status (1)

Country Link
JP (1) JPS59142262A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434215A (en) 1994-06-14 1995-07-18 Air Products And Chemicals, Inc. Water-based polymeric emulsions incorporating wax
KR100414558B1 (en) * 2001-10-31 2004-01-13 강칠만 method of producing waterproofing agent

Also Published As

Publication number Publication date
JPS59142262A (en) 1984-08-15

Similar Documents

Publication Publication Date Title
EP0623659A2 (en) Use of a multi-staged latex and a process for making the multi-staged latex
JPS5971316A (en) Water-dispersible coating composition
EP0286008B1 (en) Use of aqueous cationic polymer dispersions in the impregnation and priming of absorbent substrates
US6815010B2 (en) Method of inhibiting the loss of solar reflectance over time of an exterior elastomeric
DE60101762T2 (en) Polymer latex and method of producing a glossy coating on concrete
JPS61155474A (en) Aqueous coating composition
JP2008038144A (en) Reemulsifiable resin powder, aqueous emulsion and finish coating material for building produced by using the same
JP4979494B2 (en) Re-emulsifiable resin powder composition for hydraulic material, aqueous emulsion for hydraulic material, and building finish coating material using them
JP2001342219A (en) Synthetic resin emulsion and sealer composition using the same and used for reapplication of new coated membrane
JPH1046099A (en) Low pollution type emulsion for single layer elastic coating
JPH05202260A (en) Aqueous curable resin composition
JPH0433824B2 (en)
JPS6153388B2 (en)
JPS59147058A (en) Concentrated binder for plaster
JP3602180B2 (en) Emulsion for finishing paint of ceramic cement exterior material
EP0761778A1 (en) Method for providing gloss control of latex films and compositions for use therein
JP3166862B2 (en) Fluororesin aqueous dispersion and aqueous coating composition containing the aqueous dispersion
JP2961814B2 (en) Aqueous paint composition
JP2000191975A (en) Synthetic resin emulsion for exterior material sealer and production of the emulsion
JPH09221525A (en) Aqueous emulsion polymer
JPS6322812A (en) Resin for antiblocking paint
CN113557250A (en) Aqueous copolymer dispersions and their use in coating compositions
JP3519119B2 (en) Aqueous coating composition and method for producing the same
JP3030906B2 (en) Aqueous coating composition
EP3289030B1 (en) Low sheen paint composition with effective opacity