JPH04338089A - Braking device - Google Patents

Braking device

Info

Publication number
JPH04338089A
JPH04338089A JP10708491A JP10708491A JPH04338089A JP H04338089 A JPH04338089 A JP H04338089A JP 10708491 A JP10708491 A JP 10708491A JP 10708491 A JP10708491 A JP 10708491A JP H04338089 A JPH04338089 A JP H04338089A
Authority
JP
Japan
Prior art keywords
force
fluid
braking
fluid pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10708491A
Other languages
Japanese (ja)
Inventor
Ichiro Nakamura
一朗 中村
Takeshi Ogasawara
剛 小笠原
Haruo Watanabe
春夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10708491A priority Critical patent/JPH04338089A/en
Publication of JPH04338089A publication Critical patent/JPH04338089A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high-performance and safe braking device actuated by small capacity-emergency power source even in the case of power failure or the like in addition to being compact but of large capacity, of high responsiveness and optionally-controlled braking force. CONSTITUTION:The force of pressing a shoe 22 to a drum or a disk 20, or the separating force is generated using a spring 24 and a hydraulic cylinder 25 jointly. The optimum braking force to the inertial mass and speed to be braked of a cage or the like is obtained, and the fluid pressure is controlled to control the force of pressing the shoe 22 to the drum or the disk 20. Accordingly, the optimum braking force is constantly generated to a braking device. In addition, a control device for controlling the pressure of the hydraulic cylinder 25 is operated by emergency power source.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はエレベータ,クレーン等
の昇降装置等で負荷を昇降させる駆動装置の制動装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a braking device for a drive device for raising and lowering a load using a lifting device such as an elevator or a crane.

【0002】0002

【従来の技術】昇降装置では、停止時のかごの位置保持
と、走行中の停電等の非常時の安全な制動及び停止のた
めに制動装置を備えている。この制動装置はばね等の機
械的な手段によって、一定の力でシューをドラムに押し
つけて、その時の摩擦力でかごを制動あるいは保持する
力を発生させている。一般に、摩擦力は摩擦係数と押し
つけ力の積であり、摩擦係数は非線形で、摺動速度や押
しつけ力の関数になっている。このために、摩擦係数が
安定するように、ドラムとシューの材料の組合わせや最
適な押しつけ面圧等が選ばれてきた。昇降装置を運転す
るときには、電気的にこの押しつけ力を解除してモータ
等でかごを駆動している。
2. Description of the Related Art A lifting device is equipped with a braking device to maintain the position of the car when the car is stopped, and to safely brake and stop the car in an emergency such as a power outage while the car is running. This braking device uses a mechanical means such as a spring to press the shoe against the drum with a constant force, and the frictional force generated at this time generates a force to brake or hold the car. Generally, frictional force is the product of friction coefficient and pressing force, and the friction coefficient is nonlinear and is a function of sliding speed and pressing force. For this reason, the combination of materials for the drum and shoe, the optimal pressing surface pressure, etc. have been selected to stabilize the coefficient of friction. When operating the lifting device, this pressing force is electrically released and the car is driven by a motor or the like.

【0003】0003

【発明が解決しようとする課題】昇降装置が高速になる
と摺動速度範囲が広くなり、従来の方法だけでは制動装
置の摩擦力の変化が大きくなる。すなわち、従来のよう
に単に機械的に一定の力で押しつけた構造では、摺動速
度による摩擦力の変化が大きくなって、材料の組合わせ
を選択しても安定した制動が困難になった。このため、
制動加速度が変化し、制動距離が長くなったり、逆に大
きな制動ショックを生じたりする。特に、ロープを介し
てシーブでかごを駆動する構造の場合には、制動力が大
きすぎるとロープとシーブとの間で滑りを生じ、かえっ
てかごを制動できなくなる場合がある。またロープとシ
ーブとの間の滑りはロープの寿命を短くする。
[Problems to be Solved by the Invention] As the speed of the lifting device increases, the sliding speed range becomes wider, and the change in the frictional force of the braking device becomes large if only the conventional method is used. In other words, with the conventional structure in which the brakes are simply mechanically pressed with a constant force, the frictional force changes greatly depending on the sliding speed, making it difficult to achieve stable braking no matter the combination of materials selected. For this reason,
The braking acceleration changes, causing the braking distance to become longer or, conversely, causing a large braking shock. Particularly in the case of a structure in which the car is driven by a sheave via a rope, if the braking force is too large, slippage may occur between the rope and the sheave, making it impossible to brake the car. Also, slippage between the rope and sheave shortens the life of the rope.

【0004】かごの行程が長くなるとロープ等の重量が
大きくなるので、相対的に不釣合重量が小さくなり、制
動すべき慣性質量が大きくなる。このためかごの停止位
置を保持する力が比較的小さいにもかかわらず相対的に
制動力が大きくなる。すなわち制動力が位置保持力より
はるかに大きくなる。このため、ばね等の機械的な手段
でこの制動力を発生させようとすると、大型の装置にな
る。
[0004] As the stroke of the car becomes longer, the weight of ropes and the like increases, so the unbalanced weight becomes relatively smaller and the inertial mass to be braked becomes larger. Therefore, the braking force becomes relatively large even though the force for holding the car in the stopped position is relatively small. In other words, the braking force becomes much larger than the position holding force. Therefore, if an attempt is made to generate this braking force using mechanical means such as a spring, the device will be large-sized.

【0005】本発明の目的は小型の装置で、その制動力
を高速から低速まで安定させ、安全な制動装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a safe braking device that is small in size and has a stable braking force from high to low speeds.

【0006】[0006]

【課題を解決するための手段】本発明の制動装置ではド
ラム、或いは、ディスクへシューを押しつける力或いは
引き離す力の発生をばねと流体圧シリンダとを併用して
行う。そして制御装置でかご等の制動すべき慣性質量や
速度に対して最適な制動力を求め、流体圧を制御してシ
ューをドラム、或いは、ディスクへ押しつける力を制御
し、制動装置には常に最適な制動力を発生させる。さら
に、流体圧シリンダの圧力を制御する制御装置は非常用
電源で作動させる。
SUMMARY OF THE INVENTION In the braking device of the present invention, a spring and a fluid pressure cylinder are used in combination to generate a force for pressing or separating a shoe from a drum or disk. Then, the control device determines the optimal braking force for the inertial mass and speed of the car etc., and controls the fluid pressure to control the force that presses the shoes against the drum or disk. Generates strong braking force. Furthermore, the control device that controls the pressure of the hydraulic cylinder is operated by emergency power.

【0007】[0007]

【作用】通常時には機械的な手段でかごの位置を保持し
、更に、流体圧を利用して位置保持力を増大して確実性
を高め、非常時には制動すべき慣性質量や速度に最適な
制動力に制御するので、小さな制動衝撃で、且つ、最短
の制動距離でかごを安全に停止させることができる。 また、シーブとロープとの間のスリップを防ぐことがで
きるので、ロープの傷みを軽減することができる。
[Function] Under normal conditions, the car position is maintained by mechanical means, and in addition, fluid pressure is used to increase the position holding force to increase reliability, and in emergencies, the optimum control is applied to the inertial mass and speed to be braked. Since it is controlled by power, the car can be safely stopped with a small braking impact and in the shortest braking distance. Furthermore, since slippage between the sheave and the rope can be prevented, damage to the rope can be reduced.

【0008】[0008]

【実施例】図1は本発明になる制動装置を説明するため
に、昇降装置を例にとって、その構成を、図2はその機
械系の構成を示す図である。かご1,それの駆動装置3
,昇降装置の制御装置63を主要構成要素とし、本発明
の対象である制動装置9の制御部で構成する。かご1と
釣合い錘2とはシーブ4,反らせ車4aに張り渡した主
ロープ6で結合し、コンペンプーリ5に張り渡したコン
ペンロープ7でも結合している。かご1には必要な電気
及び信号をテールコード8で供給する。コンペンプーリ
5及び錘5aは主ロープ6に適当な張力を設定し、シー
ブ4とロープ6の間の滑りを防止している。ガバナプー
リ10a,10bに張り渡し、かご1に結合したガバナ
ロープ10cでガバナ10を駆動し、かごの速度、特に
異常速度を検出し、制動制御装置60へ速度異常信号を
送る。駆動装置3はモータ12,減速機11,制動装置
9及びシーブ4で構成し、モータ12の回転を減速機1
1で減速してシーブ4に伝え、主ロープ6を介してかご
1,釣合い錘2を駆動する。制動装置9は昇降装置が停
止しているときのかご1の位置保持及び非常時の制動を
行う。本実施例では減速機11を用いた場合を示したが
、低速モータ12で直接シーブ4を駆動する場合もある
。昇降制御装置63は各階床13からの呼び信号、かご
1からの行先信号等に従って駆動装置3の制御,階床や
かごでの案内表示等、昇降装置を統括,制御する。制動
制御装置60は昇降制御装置63からの指令、ガバナ1
0からの信号やかご1の慣性質量,速度等からその時の
運転状態に最適な制動力を算出し、それを制動装置9の
流体圧シリンダの圧力に換算して制御弁40を制御する
。制御弁40は流体圧ユニット61からの流体圧を制御
して制動装置9の流体圧シリンダへ供給し、その圧力(
制動力)を制御する。非常電源62は停電等でも制動制
御装置,制御弁,流体圧ユニット等の昇降装置の安全に
かかわる最低限の装置、機器は駆動する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the construction of a lifting device as an example for explaining the braking device according to the present invention, and FIG. 2 is a diagram showing the construction of its mechanical system. Car 1, its drive device 3
, the control device 63 of the lifting device is the main component, and the control device of the braking device 9, which is the subject of the present invention. The car 1 and the counterweight 2 are connected by a main rope 6 stretched over a sheave 4 and a warping wheel 4a, and also connected by a compensating rope 7 stretched around a compensating pulley 5. The car 1 is supplied with necessary electricity and signals through a tail cord 8. The compensator pulley 5 and the weight 5a set an appropriate tension on the main rope 6 to prevent slippage between the sheave 4 and the rope 6. The governor 10 is driven by a governor rope 10c stretched between governor pulleys 10a and 10b and connected to the car 1, detects the speed of the car, especially abnormal speed, and sends a speed abnormality signal to the brake control device 60. The drive device 3 is composed of a motor 12, a reducer 11, a brake device 9, and a sheave 4, and the rotation of the motor 12 is controlled by the reducer 1.
1 and transmits the deceleration to the sheave 4, which drives the car 1 and the counterweight 2 via the main rope 6. The braking device 9 maintains the position of the car 1 when the lifting device is stopped and performs braking in an emergency. In this embodiment, a case is shown in which the reduction gear 11 is used, but there is also a case where the sheave 4 is directly driven by the low-speed motor 12. The elevator control device 63 centralizes and controls the elevator device, such as controlling the drive device 3 and displaying guidance on floors and cars in accordance with call signals from each floor 13, destination signals from the car 1, and the like. The brake control device 60 receives commands from the lift control device 63 and the governor 1.
The optimum braking force for the current operating condition is calculated from the signal from 0, the inertial mass of the car 1, the speed, etc., and the control valve 40 is controlled by converting it into the pressure of the fluid pressure cylinder of the braking device 9. The control valve 40 controls the fluid pressure from the fluid pressure unit 61 and supplies it to the fluid pressure cylinder of the braking device 9, and controls the pressure (
braking force). The emergency power source 62 drives the minimum equipment and equipment related to the safety of the lifting device, such as a brake control device, a control valve, and a fluid pressure unit, even in the event of a power outage or the like.

【0009】制動装置9は通常の運転では図3に示すよ
うに、昇降装置の停止によりブレーキ力を設定、昇降装
置の起動の前にブレーキ力の解除を行い、かご1の速度
制御はすべてモータ12で行う。昇降装置の運転中(制
動装置9の解除中)に定格速度を超えてかご1が走行し
始め、ガバナ10が速度異常を検出した場合、或いは停
電してモータ11の駆動力が無くなった場合等異常状態
が発生すると、制動制御装置60は制御弁40に信号を
送り、速やかに昇降装置を停止させる。この時、かご1
の制動衝撃が過大にならないこと、ロープ6とシーブ4
との間に滑りを生じないこと等、その時の負荷状態(全
慣性質量の大きさ)と走行速度に応じて最適な制動力を
算出し、それをもとにして制動装置9を制御する。従っ
て制動装置9には図4に示すように、異常発生により最
適な制動力を迅速に発生させて、かご1を減速,停止さ
せ、かごの停止後により確実にその位置を保持できる制
動力を発生する。
In normal operation, as shown in FIG. 3, the braking device 9 sets the braking force by stopping the lifting device and releases the braking force before starting the lifting device, and the speed control of the car 1 is entirely controlled by the motor. Do it at 12. When the car 1 starts running at a speed exceeding the rated speed while the lifting device is operating (while the braking device 9 is released) and the governor 10 detects a speed abnormality, or when the driving force of the motor 11 is lost due to a power outage, etc. When an abnormal condition occurs, the brake control device 60 sends a signal to the control valve 40 to immediately stop the lifting device. At this time, basket 1
The braking impact of rope 6 and sheave 4 should not be excessive.
The optimum braking force is calculated according to the current load condition (size of total inertial mass) and traveling speed, and the braking device 9 is controlled based on this. Therefore, as shown in Fig. 4, the braking device 9 has a braking force that can quickly generate an optimal braking force when an abnormality occurs, decelerate and stop the car 1, and more reliably maintain the position after the car has stopped. Occur.

【0010】図5は本発明の制動装置の一実施例の構造
を示す。ドラム20は駆動軸14に固定され、かご1の
上昇,下降に従って時計方向或いは反時計方向に駆動さ
れる。制動装置台15,固定枠16を昇降装置の駆動装
置のベース(図示せず)に固定し、シュー22a,22
bを持つアーム21a,21bをピン21A,21Bで
制動装置台15に結合する。アーム21をロッド23a
,23bとばね24a,24bで固定枠16側へ押しつ
けて、制動力を発生させる。流体圧シリンダ25のピス
トン26の動きをリンク28a,28bを介して左右の
アーム21に伝える。この時ピストンの力が左右のアー
ムへ均等に伝達されるようにリンクとアームの間隔を調
整するために位置調整部27a,27bを設ける。すな
わち、ピストン26の力でばね24の力に打ち勝ち、シ
ュー22をドラム20から引き離して、制動装置を解除
する。流路51を経て流体圧シリンダ25の流体室25
aに働く流体圧力を制御すればピストン26の出力、す
なわち、シュー22をドラム20に押し付ける力を制御
でき、制動力を制御できる。
FIG. 5 shows the structure of an embodiment of the braking device of the present invention. The drum 20 is fixed to a drive shaft 14 and driven clockwise or counterclockwise as the car 1 moves up and down. The braking device stand 15 and the fixed frame 16 are fixed to the base (not shown) of the driving device of the lifting device, and the shoes 22a, 22
The arms 21a and 21b having the arms 21a and 21b are connected to the brake device stand 15 with pins 21A and 21B. The arm 21 is connected to the rod 23a
, 23b and springs 24a, 24b to press against the fixed frame 16 side to generate a braking force. The movement of the piston 26 of the fluid pressure cylinder 25 is transmitted to the left and right arms 21 via links 28a and 28b. At this time, position adjusting portions 27a and 27b are provided to adjust the distance between the link and the arm so that the force of the piston is transmitted equally to the left and right arms. That is, the force of the piston 26 overcomes the force of the spring 24, pulling the shoe 22 away from the drum 20 and releasing the braking device. The fluid chamber 25 of the fluid pressure cylinder 25 via the flow path 51
By controlling the fluid pressure acting on a, the output of the piston 26, that is, the force that presses the shoe 22 against the drum 20, can be controlled, and the braking force can be controlled.

【0011】昇降装置が正常な状態では、かごが停止し
ているときにはばね24の力でシュー22をドラム20
に押しつけ摩擦力で駆動軸14の動きを止めている。昇
降装置の運転指令により流体圧シリンダ25へ高圧流体
を供給してピストン26を押し、ばね24に打ち勝って
シュー22をドラム20から離し、制動解除を行う。そ
の後、モータ11でかご1を上昇或いは下降方向に加速
,走行,減速し、かご1が停止すると流体圧シリンダ2
5の高圧流体を排出してばね24の力でシュー22をド
ラム20へ押しつけドラム20の位置を保持する。この
時、設定された制動力は、負荷の不平衡或いは非常制動
時等、いかなる状態であってもかご1を安全に制動する
に十分な大きさに設定する。
In the normal state of the lifting device, when the car is stopped, the force of the spring 24 moves the shoe 22 to the drum 20.
The movement of the drive shaft 14 is stopped by the friction force. High pressure fluid is supplied to the fluid pressure cylinder 25 in response to the operation command of the lifting device to push the piston 26, which overcomes the force of the spring 24 and separates the shoe 22 from the drum 20, thereby releasing the brake. Thereafter, the motor 11 accelerates, runs, and decelerates the car 1 in the upward or downward direction, and when the car 1 stops, the hydraulic cylinder 2
5 is discharged and the shoe 22 is pressed against the drum 20 by the force of the spring 24 to maintain the position of the drum 20. At this time, the set braking force is set to be large enough to safely brake the car 1 under any conditions, such as load imbalance or emergency braking.

【0012】昇降装置の運転中(流体圧シリンダ25に
は高圧流体を供給して制動装置9を解除している)に異
常を生じた時、負荷が大きい場合や小さい場合、かごが
上昇している場合や下降している場合など、図4に示す
ように制動装置に要求される制動力が異なる。制動制御
装置60は昇降制御装置63やガバナ10からの信号に
より、その時の運転状態に最適な制動力、すなわち、流
体圧シリンダ25の最適な圧力を求め、流体圧制御弁4
0で流体圧シリンダ25の圧力を制御しながら高圧流体
を排出して、ばね24によりシュー22をドラム20へ
押し付け、両者の間の摩擦力でかごを制動する。これに
より制動時にシーブ3と主ロープ6との間での滑りを防
止でき、かご1は小さな制動衝撃で、且つ最短の制動距
離で安全に制動、停止させられる。
When an abnormality occurs during operation of the lifting device (high pressure fluid is supplied to the fluid pressure cylinder 25 to release the braking device 9), if the load is large or small, the car may rise. As shown in FIG. 4, the braking force required of the braking device differs depending on whether the vehicle is moving or descending. The brake control device 60 determines the optimal braking force for the current operating condition, that is, the optimal pressure of the fluid pressure cylinder 25, based on signals from the lift control device 63 and the governor 10, and controls the fluid pressure control valve 4.
0, high pressure fluid is discharged while controlling the pressure of the fluid pressure cylinder 25, the shoe 22 is pressed against the drum 20 by the spring 24, and the car is braked by the frictional force between the two. This prevents slippage between the sheave 3 and the main rope 6 during braking, and the car 1 can be safely braked and stopped with a small braking impact and within the shortest braking distance.

【0013】階床数の多い高層建築物ではかご1の行程
が長くなる。そこで、輸送効率の向上を目的に、かご1
の定員を大きくすると共に高速運転が図られる。このこ
とは負荷質量が大きくなる以上に、かご1や釣合い錘2
の慣性質量が大きくなると共に、主ロープ6の重量及び
これに釣り合うコンペンロープ7の重量はそれ以上に増
加する。すなわち、乗客の増減に伴う不平衡重量の増加
以上に慣性質量の増加が大きくなり、制動装置9に要求
される制動力も、静的にかご1の位置を保持する力より
、走行している慣性質量を制動する制動力が相対的に大
きくなる。このため制動力を全てばね24の押し付け力
に頼るとばねが大きくなり、装置自体も大きく、且つ、
設置スペースも大きくなる。
[0013] In high-rise buildings with many floors, the distance of the car 1 is long. Therefore, with the aim of improving transportation efficiency, we decided to
The capacity of the train will be increased and high-speed operation will be achieved. This means that the weight of car 1 and counterweight 2 is larger than the load mass.
As the inertial mass of the main rope 6 increases, the weight of the main rope 6 and the weight of the compensating rope 7 that balances this increase even more. In other words, the increase in inertial mass is greater than the increase in unbalanced weight due to increase or decrease in the number of passengers, and the braking force required from the braking device 9 is also greater than the force required to statically hold the position of the car 1 while the car is running. The braking force for braking the inertial mass becomes relatively large. Therefore, if the braking force is entirely dependent on the pressing force of the spring 24, the spring will be large, and the device itself will also be large.
The installation space will also be larger.

【0014】図6はシュー22をドラム20に押しつけ
る力の発生をばね24と流体圧シリンダ29とで分担し
、流体圧シリンダ25でその力を解除する実施例を示す
。流体圧シリンダ29a,29bはばね24a,24b
と並列にアーム21a,21bに取り付け、ピン29A
、29Bで固定枠16に結合する。流体圧シリンダ29
のロッド側流体室には流路52を介して一定圧力の高圧
流体を供給する。これにより流体圧シリンダ29a,2
9bはピストン30a,30bでアーム21a,21b
をドラム20へ押し付ける。この時、ばね24には停止
中のかご等を停止位置に保持する力を発生させ、流体圧
シリンダ29には、走行中の慣性質量を制動するに必要
な力からばね24による力を差し引いた力を発生させる
。同じ出力ならば流体圧シリンダはばねより小形であり
、装置の小形化が図れる。ロッド側流体室の圧力を一定
に制御すれば出力も一定になる。流体圧シリンダ25に
はばね24と流体圧シリンダ29の力の合計より大きい
力を発生させ、制動力の制御は流体室25aの圧力を制
御して、図5の実施例と同様に制御する。
FIG. 6 shows an embodiment in which the generation of the force that presses the shoe 22 against the drum 20 is shared between the spring 24 and the fluid pressure cylinder 29, and the fluid pressure cylinder 25 releases the force. The fluid pressure cylinders 29a, 29b are springs 24a, 24b.
Attach to arms 21a and 21b in parallel with pin 29A.
, 29B to the fixed frame 16. Fluid pressure cylinder 29
High-pressure fluid at a constant pressure is supplied to the rod-side fluid chamber through the flow path 52. As a result, the fluid pressure cylinders 29a, 2
9b is the piston 30a, 30b and the arm 21a, 21b
is pressed onto the drum 20. At this time, the spring 24 generates a force to hold the stopped car, etc. at the stopped position, and the fluid pressure cylinder 29 generates a force that is generated by subtracting the force generated by the spring 24 from the force necessary to brake the inertial mass while the car is running. generate force. For the same output, the fluid pressure cylinder is smaller than the spring, and the device can be made smaller. If the pressure in the rod side fluid chamber is controlled to be constant, the output will also be constant. A force greater than the sum of the forces of the spring 24 and the hydraulic cylinder 29 is generated in the fluid pressure cylinder 25, and the braking force is controlled by controlling the pressure in the fluid chamber 25a in the same manner as in the embodiment shown in FIG.

【0015】図7は、ピストンを二個設けた流体圧シリ
ンダ25でアーム22を直接駆動する構造の制動装置の
実施例で、相違点は、図6の実施例では流体圧シリンダ
25が一個のピストン26を持ち、リンク28を介して
その出力をアーム21a,21bに伝えたのに対し、図
7の実施例では、流体圧シリンダ25は対向する二個の
ピストン26a,26bを持ち、シリンダボディは固定
枠16に固定され、両側へピストンロッドが伸縮して直
接アーム21a,21bを駆動することである。シュー
22をドラム20に押しつける力の制御は、ピストン2
6aと26bの間の流体室25aの流体圧を制御するこ
とによって行う。すなわち、流体室25aの圧力が高い
と流体圧シリンダ25の出力が大きくなって、シュー2
2をドラム20に押しつける力が小さくなり、制動力は
小さくなる。逆に流体室25aの圧力が小さいと制動力
は大きくなる。このように制動装置の設定及び解除の方
法は図6に示す実施例と同様である。図6に比べリンク
を不要とするので構造が簡単になる反面流体圧の出力を
増幅することはできない。
FIG. 7 shows an embodiment of a braking device having a structure in which an arm 22 is directly driven by a fluid pressure cylinder 25 provided with two pistons.The difference is that in the embodiment of FIG. In the embodiment of FIG. 7, the hydraulic cylinder 25 has two pistons 26a, 26b facing each other, and the cylinder body is fixed to the fixed frame 16, and the piston rod extends and contracts to both sides to directly drive the arms 21a and 21b. The force with which the shoe 22 is pressed against the drum 20 is controlled by the piston 2.
This is done by controlling the fluid pressure in the fluid chamber 25a between 6a and 26b. That is, when the pressure in the fluid chamber 25a is high, the output of the fluid pressure cylinder 25 becomes large, and the shoe 2
2 against the drum 20 becomes smaller, and the braking force becomes smaller. Conversely, if the pressure in the fluid chamber 25a is small, the braking force will be large. In this way, the method of setting and releasing the braking device is similar to the embodiment shown in FIG. Compared to FIG. 6, no link is required, so the structure is simpler, but on the other hand, the output of fluid pressure cannot be amplified.

【0016】図8はシュー22をドラム20へ押しつけ
る力の発生をばね24とシリンダ25の引く動作で分担
し、流体圧シリンダ25の伸びる動作でその力を解除す
る。すなわち、図7に示す実施例におけるシュー22を
押しつける流体圧シリンダ29と制動装置を解除する流
体圧シリンダ25とを一個の流体圧シリンダ25に集約
した実施例である。流体圧シリンダ25は二個のピスト
ンを持ち、ピストンロッドを調整部27a,27bを介
してアーム21に連結する。シリンダボディは固定枠1
6に固定され、ピストン26が両側に伸縮してアーム2
1を、直接、駆動する。ピストン26aと26bとの間
の流体室25aには流路51を経て圧力を制御した高圧
流体を、ピストンロッド側の流体室25b,25cには
流路52を経て一定の圧力に制御した流体圧を供給する
。流体室25b,25cには常時流体圧を作用させてシ
ュー22をドラム20に押しつけ、流体室25aには制
御した流体圧を作用させて逆に押しつけ力を解除する。 従って、図7と同様に流体室25aに供給する高圧流体
の圧力を制御することで制動力を制御できる。この実施
例では流体圧シリンダ29が不要になるので、制動装置
9の構造を簡単にできる。
In FIG. 8, the generation of the force that presses the shoe 22 against the drum 20 is shared by the pulling action of the spring 24 and the cylinder 25, and the force is released by the extending action of the fluid pressure cylinder 25. That is, this is an embodiment in which the fluid pressure cylinder 29 that presses the shoe 22 and the fluid pressure cylinder 25 that releases the braking device in the embodiment shown in FIG. 7 are combined into one fluid pressure cylinder 25. The fluid pressure cylinder 25 has two pistons, and a piston rod is connected to the arm 21 via adjustment parts 27a and 27b. Cylinder body is fixed frame 1
6, and the piston 26 expands and contracts on both sides to open the arm 2.
1 directly. The fluid chamber 25a between the pistons 26a and 26b receives high-pressure fluid with a controlled pressure through a flow path 51, and the fluid chambers 25b and 25c on the piston rod side receive fluid pressure controlled to a constant pressure through a flow path 52. supply. Fluid pressure is constantly applied to the fluid chambers 25b and 25c to press the shoe 22 against the drum 20, and a controlled fluid pressure is applied to the fluid chamber 25a to release the pressing force. Therefore, similarly to FIG. 7, the braking force can be controlled by controlling the pressure of the high-pressure fluid supplied to the fluid chamber 25a. In this embodiment, since the fluid pressure cylinder 29 is not required, the structure of the braking device 9 can be simplified.

【0017】図9は片ロッドシリンダ25でシュー22
をドラム20に押し付け、或いは、引き離すようにした
実施例である。流体室25bに一定の流体圧を作用させ
るとアーム21を引き、ばね24と協同してシュー22
をドラム20へ押し付け、流体室25aに制御した圧力
流体を供給すると先の押し付け力を小さくする。従って
、図6ないし図8と同様に、流体室25aの圧力を制御
すれば制動力を制御できる。
FIG. 9 shows a single rod cylinder 25 and a shoe 22.
This is an embodiment in which the drum 20 is pressed against the drum 20 or separated from the drum 20. When a constant fluid pressure is applied to the fluid chamber 25b, the arm 21 is pulled, and the shoe 22 cooperates with the spring 24.
is pressed against the drum 20 and a controlled pressure fluid is supplied to the fluid chamber 25a, thereby reducing the previous pressing force. Therefore, similarly to FIGS. 6 to 8, the braking force can be controlled by controlling the pressure in the fluid chamber 25a.

【0018】図10,図11はディスク型制動装置に適
用した実施例を示し、図10は駆動軸14に直角方向か
ら見た図、図11は駆動軸14と平行な方向から見た図
である。ディスク20は駆動軸14に固定され、かご1
の上昇或いは下降により時計方向或いは反時計方向に駆
動される。制動装置台15,固定枠16は昇降装置の駆
動装置のベース(図示せず)に固定され、シュー22a
,22bを持つアーム21a,21bはピン21A,2
1Bで制動装置台15に結合され、アーム21a,21
bはロッド23a,23bとばね24a,24bで固定
枠16側へ押しつけられる。すなわち、シュー22をデ
ィスク20へ押しつけ、制動力を発生させる。流体圧シ
リンダ25のピストン26の動きをリンク28a,28
bを介して左右のアーム21a,21bに伝える。流体
圧シリンダ25は片ロッドシリンダで、流体室25bに
高圧流体を供給してばね24と協同してシュー22をデ
ィスク20へ押し付けさせ、流体室25aへ高圧流体を
供給してその押し付け力を解除する。すなわち、流体圧
シリンダ25とばね24の力でシュー22をディスク2
0へ押し付けて、制動力を設定し、流体圧シリンダ25
の力でばね24の力に打ち勝ちシュー22をディスク2
0から引き離して、制動力を解除する。流路51を経て
流体圧シリンダ25の流体室25aに働く流体圧力を制
御すればピストン26の出力を制御でき、シュー22と
ドラム20との間に生じる制動力を制御できる。本実施
例ではドラムより低慣性のディスクを使っているので、
制動力を小さくすることができる。
10 and 11 show an embodiment applied to a disc-type braking device, FIG. 10 is a view seen from a direction perpendicular to the drive shaft 14, and FIG. 11 is a view seen from a direction parallel to the drive shaft 14. be. The disk 20 is fixed to the drive shaft 14 and the car 1
is driven clockwise or counterclockwise by rising or falling. The braking device stand 15 and the fixed frame 16 are fixed to the base (not shown) of the driving device of the lifting device, and the shoe 22a
, 22b have pins 21A, 2
1B is connected to the brake device stand 15, and the arms 21a, 21
b is pressed toward the fixed frame 16 by rods 23a, 23b and springs 24a, 24b. That is, the shoe 22 is pressed against the disk 20 to generate braking force. The movement of the piston 26 of the fluid pressure cylinder 25 is controlled by links 28a and 28.
It is transmitted to the left and right arms 21a and 21b via b. The fluid pressure cylinder 25 is a single rod cylinder that supplies high pressure fluid to the fluid chamber 25b to press the shoe 22 against the disk 20 in cooperation with the spring 24, and supplies high pressure fluid to the fluid chamber 25a to release the pressing force. do. In other words, the force of the fluid pressure cylinder 25 and the spring 24 causes the shoe 22 to move toward the disk 2.
0 to set the braking force, and the hydraulic cylinder 25
The force overcomes the force of the spring 24 and moves the shoe 22 to the disk 2.
Pull it away from 0 to release the braking force. By controlling the fluid pressure acting on the fluid chamber 25a of the fluid pressure cylinder 25 via the flow path 51, the output of the piston 26 can be controlled, and the braking force generated between the shoe 22 and the drum 20 can be controlled. In this example, a disk with lower inertia than a drum is used, so
Braking force can be reduced.

【0019】図12は図10の実施例で、二個用いてい
るばねを一個にした実施例である。すなわち、左右のシ
ュー22a,22bをディスク20に押し付けるに当た
って、左右のアーム21a,21bを一個のばね23で
引き付け、さらに流体圧シリンダ25の出力を付加する
。逆に制動装置を解除するときにはリンク28a,28
bを介して流体圧シリンダ25で左右のアーム21a,
21bを押し開く。動作及び力の制御は図10の実施例
と同様であるのでここでは説明を省略する。本実施例で
はばね24を一本としたことで、左右のアームを押すば
ね力を均質にでき、且つ調整が容易になる。
FIG. 12 is an embodiment in which the two springs used in the embodiment shown in FIG. 10 are reduced to one. That is, when pressing the left and right shoes 22a, 22b against the disk 20, the left and right arms 21a, 21b are attracted by a single spring 23, and the output of the fluid pressure cylinder 25 is further applied. Conversely, when releasing the braking device, the links 28a, 28
The left and right arms 21a,
Push open 21b. The operation and force control are the same as in the embodiment shown in FIG. 10, so their explanation will be omitted here. In this embodiment, by using only one spring 24, the spring force that presses the left and right arms can be made uniform, and adjustment can be facilitated.

【0020】図13は流体圧シリンダ25の流体室25
aの圧力を制御する流体圧回路の実施例を示す。流体圧
制御装置は、流体圧制御弁40,フィルタ47,モータ
41,流体圧ポンプ42,リリーフ弁43,逆止め弁4
4,アキュムレータ45,圧力スイッチ46、及び流体
タンク48で構成する。モータ41で駆動される流体圧
ポンプ42によって、流体タンク48の作動流体を高圧
にし、アキュムレータ45に蓄える。この時、圧力スイ
ッチ46の信号を利用して流体圧ポンプ42の運転,休
止を行い、アキュムレータ45に蓄えた高圧流体の圧力
を、常時、ほぼ一定にする。フィルタ47は流体中の異
物の除去のために、リリーフ弁43は流体圧ポンプ出口
が異常高圧になるのを防ぐために、逆止め弁44は流体
圧ポンプ42を停止しても高圧流体がポンプ方向に逆流
しないようにするために用いる。制御弁40は流路51
で前述の実施例の流体圧シリンダ25の流体室25aに
連通しており、通常時には流体室25aをタンク解放し
、制動制御装置60からの指令に従って、アキュムレー
タ45に蓄えられた高圧流体の圧力を制御しながら流体
室25aへ供給し、その圧力を制御する。
FIG. 13 shows the fluid chamber 25 of the fluid pressure cylinder 25.
An example of a fluid pressure circuit for controlling the pressure of a is shown. The fluid pressure control device includes a fluid pressure control valve 40, a filter 47, a motor 41, a fluid pressure pump 42, a relief valve 43, and a check valve 4.
4, an accumulator 45, a pressure switch 46, and a fluid tank 48. A hydraulic pump 42 driven by a motor 41 makes the working fluid in a fluid tank 48 high pressure and stores it in an accumulator 45 . At this time, the fluid pressure pump 42 is operated and stopped using the signal from the pressure switch 46, and the pressure of the high pressure fluid stored in the accumulator 45 is kept almost constant at all times. The filter 47 is used to remove foreign matter in the fluid, the relief valve 43 is used to prevent the fluid pressure pump outlet from becoming abnormally high pressure, and the check valve 44 is used to prevent high pressure fluid from flowing in the pump direction even if the fluid pressure pump 42 is stopped. Used to prevent backflow. The control valve 40 is connected to the flow path 51
It communicates with the fluid chamber 25a of the fluid pressure cylinder 25 of the above-mentioned embodiment, and under normal conditions, the fluid chamber 25a is opened and the pressure of the high-pressure fluid stored in the accumulator 45 is released according to a command from the brake control device 60. The fluid is supplied to the fluid chamber 25a under control, and its pressure is controlled.

【0021】すなわち、通常の昇降装置の運転では、起
動に当たって、制動制御装置60からの指令でアキュム
レータ45の高圧流体を流体室25aに供給して制動装
置を解除し、かご1が停止すると流体室25aの高圧流
体を排出して制動装置を設定する。この時には制動装置
の解除、設定を高速に実行するために、流量は大きいこ
とが要求される。昇降装置が走行中に停電等の非常事態
が発生すると、制動制御装置60はこの時の慣性質量の
大きさや走行速度を勘案して、最適な制動力、すなわち
、シュー22をドラム或いはディスク20へ押し付ける
力を算出し、これを流体圧シリンダ25の圧力に換算し
て流体圧制御弁40に指令を出す。流体圧制御弁40は
制動制御装置60の指令に従って流体室25aの高圧流
体を排出して圧力を制御する。この時、流体室25aの
容積が小さいためにわずかな流体の排出によっても流体
室25aの圧力は大きく低下するので、制御弁40はア
キュムレータ45に蓄えた高圧とタンク48の低圧との
間で圧力制御を行う。これにより前述したような制動力
の制御ができる。このように制御弁40は通常時の流量
制御と非常時の圧力制御の両方を実行することを要求さ
れる。
That is, in normal operation of the lifting device, upon startup, the high-pressure fluid of the accumulator 45 is supplied to the fluid chamber 25a in response to a command from the brake control device 60 to release the brake device, and when the car 1 stops, the fluid chamber The high pressure fluid at 25a is discharged and the braking device is set. At this time, a large flow rate is required in order to quickly release and set the brake system. If an emergency situation such as a power outage occurs while the elevating device is running, the brake control device 60 takes into account the size of the inertial mass and the traveling speed at this time, and applies the optimal braking force, that is, applies the shoe 22 to the drum or disk 20. The pressing force is calculated, converted into the pressure of the fluid pressure cylinder 25, and a command is issued to the fluid pressure control valve 40. The fluid pressure control valve 40 controls the pressure by discharging the high pressure fluid from the fluid chamber 25a in accordance with a command from the brake control device 60. At this time, since the volume of the fluid chamber 25a is small, the pressure in the fluid chamber 25a will drop significantly even if a small amount of fluid is discharged. Take control. This makes it possible to control the braking force as described above. In this way, the control valve 40 is required to perform both flow control during normal times and pressure control during emergencies.

【0022】図14は本発明になる流量制御弁40の特
性を示すもので、横軸に指令信号、縦軸に制御流量及び
制御圧力を表している。指令が0のときはシリンダとタ
ンクを連通し、指令の定格値e0 では高圧とシリンダ
を連通する。e0 より小さいe1,e2を設定し(e
1<e2)、0からe1の間とe2からe0の間は流量
制御範囲とし、e1とe2の範囲は圧力制御範囲とする
。制御弁40の制御部の具体的構造の一実施例を図15
に示す。55はスリーブ、56は切欠き56a,56b
を有するスプールで、制御弁は流体室55a,55b,
55cを有し、それぞれ高圧流路53,シリンダ25へ
の流路51,タンク48への流路54に連通している。 スプール56の駆動は、流量及び圧力の制御をするに当
たって十分な応答を得られるなら、機械的,電気的,電
磁気的或いは流体圧的のいずれでも良い。同図(a)は
指令が0の場合、(b)は指令が(e1+e2)/2の
場合、(c)は指令がe0 の場合のスプールの位置と
流体の流れの状態を説明している。指令が0のとき(a
)には流路51(シリンダポート)と低圧側流路54(
タンクポート)が連通しシリンダ25の流体室25aを
低圧に解放している。指令が大きくなるとスプール56
は右へ移動し、流体室55bと55cとの間の開口面積
が小さくなって流量は小さくなる。信号がe1 になる
と左側スプールランドの端面56dは流体室55bと5
5cの間を塞ぎ、切欠き56bでわずかに連通するが、
右側スプールランドでは切欠き56aが開口していない
状態になる。この時、スプール56の変位の増加に従っ
て流量は小さくなる。さらに指令が増大すると切欠き5
6aも開口し流路51は低圧側流路54と高圧側流路5
3とに同時に狭い面積で連通する。指令が(e1+e2
)/2のとき(b)には左右のスプールランドの切欠き
56a,56bのわずかな連通面積が等しくなり、流路
51へは高圧側流路53からの流入、低圧側流路54へ
の流出が等しくなり、高圧側流体圧の1/2の圧力にな
る。更に指令が大きくなってe2になり、スプール56
が右へ移動すると、左側スプールランドの切欠き56b
が塞がれ、右側スプールランドの端面56cが開くので
流路51には高圧流体が流入する。すなわち指令がe1
とe2の間では切欠き56aと56bとで流体を制御す
るので、流量は小さいが圧力を高精度に制御できる。信
号がさらに増大してスプール56が変位すると開口面積
も大きくなって流量が増加し、e0になると流体室55
aと55bとの間の開口面積は最大となり流量も定格流
量となる。 従って、図14に示す流量の制御及び圧力の制御を実行
できる。
FIG. 14 shows the characteristics of the flow rate control valve 40 according to the present invention, with the horizontal axis representing the command signal and the vertical axis representing the controlled flow rate and control pressure. When the command is 0, the cylinder and the tank are communicated, and when the command is at the rated value e0, the high pressure and the cylinder are communicated. Set e1 and e2 smaller than e0 (e
1<e2), the range between 0 and e1 and between e2 and e0 is the flow rate control range, and the range between e1 and e2 is the pressure control range. An example of a specific structure of the control section of the control valve 40 is shown in FIG.
Shown below. 55 is a sleeve, 56 is a notch 56a, 56b
The control valve has fluid chambers 55a, 55b,
55c, which communicate with the high-pressure flow path 53, the flow path 51 to the cylinder 25, and the flow path 54 to the tank 48, respectively. The spool 56 may be driven mechanically, electrically, electromagnetically, or hydraulically as long as a sufficient response can be obtained in controlling the flow rate and pressure. The figure (a) explains the spool position and fluid flow state when the command is 0, (b) when the command is (e1+e2)/2, and (c) when the command is e0. . When the command is 0 (a
) has a flow path 51 (cylinder port) and a low pressure side flow path 54 (
tank port) communicates with each other to release the fluid chamber 25a of the cylinder 25 to low pressure. When the command becomes large, the spool 56
moves to the right, the opening area between fluid chambers 55b and 55c becomes smaller, and the flow rate becomes smaller. When the signal becomes e1, the end surface 56d of the left spool land is connected to the fluid chambers 55b and 5.
5c and communicate slightly with the notch 56b,
In the right spool land, the notch 56a is not opened. At this time, the flow rate decreases as the displacement of the spool 56 increases. If the command increases further, the notch 5
6a is also opened, and the flow path 51 is connected to the low pressure side flow path 54 and the high pressure side flow path 5.
3 and communicates with each other in a narrow area at the same time. The command is (e1+e2
)/2, in (b), the slight communication areas of the notches 56a and 56b of the left and right spool lands are equal, and the inflow from the high pressure side flow path 53 to the flow path 51 and the inflow to the low pressure side flow path 54. The outflow becomes equal and the pressure becomes 1/2 of the high pressure side fluid pressure. Furthermore, the command becomes larger and becomes e2, and the spool 56
moves to the right, the notch 56b of the left spool land
is closed, and the end face 56c of the right spool land is opened, allowing high-pressure fluid to flow into the flow path 51. In other words, the command is e1
Since the fluid is controlled by the notches 56a and 56b between and e2, the pressure can be controlled with high precision although the flow rate is small. When the signal further increases and the spool 56 is displaced, the opening area also becomes larger and the flow rate increases, and when it reaches e0, the fluid chamber 55
The opening area between a and 55b becomes maximum and the flow rate becomes the rated flow rate. Therefore, the flow rate control and pressure control shown in FIG. 14 can be executed.

【0023】図16は流体圧シリンダ25と流体圧シリ
ンダ29を同時に、或いは、流体圧シリンダ25の流体
室25aと25b,25cの流体圧を同時に制御する流
体圧回路である。流体圧ポンプ42の吐出流体をアキュ
ムレータ45に蓄えておき、制御弁40で流量或いは圧
力を制御して流体圧シリンダ25の変位或いは出力を制
御することは図13の実施例と同様である。更に流体圧
ポンプ42の吐出流体を分岐して制御弁49に導き、こ
れで制御した高圧流体を流路52を経て流体圧シリンダ
29、或いは、25の流体室25b,25cに供給する
。そしてばね24の力に加えてアーム21をドラム或い
はディスク方向に押す。流路52にはアキュムレータ5
0を設け、流体圧シリンダ29、或いは、25が動作し
ても流体室の圧力が変動してアームを押す力が変動する
ことがないようにする。これにより流体圧シリンダ29
、或いは、25はばね24と協同してアーム21をドラ
ム或いはディスク20へほぼ一定の力で押し付けておき
、流体圧シリンダ25の流体室25aの圧力を制御する
ことで制動装置9の解除,設定,制動力の制御等を高速
、且つ、高精度に行える。
FIG. 16 shows a fluid pressure circuit that controls the fluid pressures of the fluid pressure cylinder 25 and the fluid pressure cylinder 29 at the same time, or the fluid pressures of the fluid chambers 25a, 25b, and 25c of the fluid pressure cylinder 25. The discharge fluid of the fluid pressure pump 42 is stored in the accumulator 45, and the flow rate or pressure is controlled by the control valve 40 to control the displacement or output of the fluid pressure cylinder 25, as in the embodiment shown in FIG. Further, the discharge fluid of the fluid pressure pump 42 is branched and guided to the control valve 49, and the high pressure fluid controlled by this is supplied to the fluid pressure cylinder 29 or the fluid chambers 25b and 25c of the fluid pressure cylinder 25 through the flow path 52. In addition to the force of the spring 24, the arm 21 is pushed toward the drum or disk. An accumulator 5 is provided in the flow path 52.
0 is provided so that even if the fluid pressure cylinder 29 or 25 operates, the pressure in the fluid chamber will not fluctuate and the force pushing the arm will not fluctuate. As a result, the fluid pressure cylinder 29
, or 25 cooperates with the spring 24 to press the arm 21 against the drum or disk 20 with a substantially constant force, and releases and sets the braking device 9 by controlling the pressure in the fluid chamber 25a of the fluid pressure cylinder 25. , braking force can be controlled at high speed and with high precision.

【0024】図17に更に他の流体圧回路の実施例を示
す。流体圧シリンダ29或いは25の流体室25b,2
5cにアキュムレータ45に蓄えた高圧流体を供給して
、アーム21を一定の力でドラム或いはディスク20へ
押し付けておき、流体室25aの圧力を制御弁40で制
御して、制動装置9の解除,設定,制動力の制御等を高
速且つ高精度に行う。図16に示す実施例と比較して、
制御弁49及びアキュムレータ50を省略して回路を簡
素化した構成である。従って動作及び効果は図16の実
施例と同様である。
FIG. 17 shows yet another embodiment of a fluid pressure circuit. Fluid chamber 25b, 2 of fluid pressure cylinder 29 or 25
5c is supplied with high-pressure fluid stored in the accumulator 45 to press the arm 21 against the drum or disk 20 with a constant force, and the pressure in the fluid chamber 25a is controlled by the control valve 40 to release the braking device 9. Settings, braking force control, etc. are performed quickly and with high precision. Compared to the example shown in FIG.
This configuration simplifies the circuit by omitting the control valve 49 and accumulator 50. Therefore, the operation and effect are similar to the embodiment of FIG. 16.

【0025】図18に更に他の流体圧回路の実施例を示
す。図6ないし図12に示す流体圧シリンダ25,29
の制御を全て四方形の制御弁40で行うものである。流
体圧ポンプ42の吐出流量をアキュムレータ45に蓄え
、制御弁40の制御ポート51,52に圧力を制御した
流体を供給して流体圧シリンダ25,29の出力,速度
を制御する。この実施例では流体圧シリンダ25でアー
ム21をドラム或いはディスク20から引き離す力と同
時に、シリンダ29或いは25でアーム21をドラム、
或いは、ディスク20へ押し付ける力を制御する。 従って、流体圧シリンダ25でアーム21をドラム(デ
ィスク)20から引き離す時にはシリンダ29或いは2
5でアーム21をドラム(ディスク)20へ押し付ける
力を小さくでき、流体圧シリンダ25を小形に、すなわ
ち流体圧制御弁40を含めた油圧装置を小形にできる。
FIG. 18 shows yet another embodiment of a fluid pressure circuit. Hydraulic cylinders 25, 29 shown in FIGS. 6 to 12
All of these controls are performed by a rectangular control valve 40. The discharge flow rate of the fluid pressure pump 42 is stored in the accumulator 45, and pressure-controlled fluid is supplied to the control ports 51, 52 of the control valve 40 to control the output and speed of the fluid pressure cylinders 25, 29. In this embodiment, the hydraulic cylinder 25 applies a force to separate the arm 21 from the drum or disk 20, and at the same time, the cylinder 29 or 25 applies a force to separate the arm 21 from the drum or disk 20.
Alternatively, the force with which the disk 20 is pressed is controlled. Therefore, when the arm 21 is separated from the drum (disc) 20 by the hydraulic cylinder 25, the cylinder 29 or 2
5, the force for pressing the arm 21 against the drum (disc) 20 can be reduced, and the hydraulic cylinder 25 can be made smaller, that is, the hydraulic device including the fluid pressure control valve 40 can be made smaller.

【0026】[0026]

【発明の効果】本発明によれば、小形大容量で高応答、
且つ、その制動力を任意に制御でき、更に停電等の場合
でも小容量の非常電源で動作させることのできる高性能
で安全な制動装置が得られる。従って、平常時にはかご
等の負荷の確実な位置保持と、非常時にはかご等の負荷
と速度とに応じて最適な制動力を発生し、小さな制動衝
撃と最短の制動距離を実現できる。
[Effects of the Invention] According to the present invention, small size, large capacity, high response,
In addition, a high-performance and safe braking device can be obtained that can arbitrarily control its braking force and can be operated with a small-capacity emergency power supply even in the event of a power outage. Therefore, during normal times, it is possible to reliably maintain the position of the load such as a car, and in an emergency, it is possible to generate an optimal braking force according to the load and speed of the car, etc., and to achieve a small braking impact and the shortest braking distance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】昇降装置の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of a lifting device.

【図2】昇降装置の機械系の一実施例を示す説明図。FIG. 2 is an explanatory diagram showing an example of a mechanical system of a lifting device.

【図3】通常時の制動装置の動作の説明図。FIG. 3 is an explanatory diagram of the operation of the braking device under normal conditions.

【図4】非常制動時の制動装置の動作の説明図。FIG. 4 is an explanatory diagram of the operation of the braking device during emergency braking.

【図5】本発明になる制動装置の一実施例を示す説明図
FIG. 5 is an explanatory diagram showing an embodiment of a braking device according to the present invention.

【図6】本発明になる制動装置の第二の実施例を示す説
明図。
FIG. 6 is an explanatory diagram showing a second embodiment of the braking device according to the present invention.

【図7】本発明になる制動装置の第三の実施例を示す説
明図。
FIG. 7 is an explanatory diagram showing a third embodiment of the braking device according to the present invention.

【図8】本発明になる制動装置の第四の実施例を示す説
明図。
FIG. 8 is an explanatory diagram showing a fourth embodiment of the braking device according to the present invention.

【図9】本発明になる制動装置の第五の実施例を示す説
明図。
FIG. 9 is an explanatory diagram showing a fifth embodiment of the braking device according to the present invention.

【図10】本発明になる制動装置の第六の実施例を示す
説明図。
FIG. 10 is an explanatory diagram showing a sixth embodiment of the braking device according to the present invention.

【図11】図10の実施例を駆動軸方向から見た説明図
FIG. 11 is an explanatory diagram of the embodiment of FIG. 10 viewed from the drive shaft direction.

【図12】本発明になる制動装置の第七の実施例を示す
説明図。
FIG. 12 is an explanatory diagram showing a seventh embodiment of the braking device according to the present invention.

【図13】本発明になる流体圧シリンダを駆動する流体
圧回路の一実施例の系統図。
FIG. 13 is a system diagram of an embodiment of a fluid pressure circuit that drives a fluid pressure cylinder according to the present invention.

【図14】制御弁の特性の説明図。FIG. 14 is an explanatory diagram of characteristics of a control valve.

【図15】制御弁の制御部の説明図。FIG. 15 is an explanatory diagram of a control section of a control valve.

【図16】本発明になる流体圧シリンダを駆動する他の
流体圧回路の第二の実施例の系統図。
FIG. 16 is a system diagram of a second embodiment of another fluid pressure circuit for driving a fluid pressure cylinder according to the present invention.

【図17】本発明になる流体圧シリンダを駆動する他の
流体圧回路の第三の実施例の系統図。
FIG. 17 is a system diagram of a third embodiment of another fluid pressure circuit for driving a fluid pressure cylinder according to the present invention.

【図18】本発明になる流体圧シリンダを駆動する他の
流体圧回路の第四の実施例の系統図。
FIG. 18 is a system diagram of a fourth embodiment of another fluid pressure circuit for driving a fluid pressure cylinder according to the present invention.

【符号の説明】[Explanation of symbols]

14…駆動軸、15…制動装置台、16…固定枠、20
…ドラムまたはディスク、21…アーム、21A,21
B,23A,23B…ピン、22…シュー、23…ロッ
ド、24…ばね、25…流体圧シリンダ、26…ピスト
ン、27…位置調整、28…リンク、28A,28B…
ピン。
14... Drive shaft, 15... Brake device stand, 16... Fixed frame, 20
...Drum or disk, 21...Arm, 21A, 21
B, 23A, 23B...Pin, 22...Shoe, 23...Rod, 24...Spring, 25...Fluid pressure cylinder, 26...Piston, 27...Position adjustment, 28...Link, 28A, 28B...
pin.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ドラム或いはディスク、これに押し付けら
れるシュー、前記シューを前記ドラム或いはディスクに
押し付けるアーム、前記アームの動作を制御する制御装
置からなる制動装置において、ばねと流体圧シリンダと
を併用してアームを前記ドラム或いはディスクに押し付
け、前記流体圧シリンダの圧力を制御して制動力を制御
することを特徴とする制動装置。
1. A braking device comprising a drum or a disk, a shoe pressed against the drum, an arm that presses the shoe against the drum or disk, and a control device that controls the operation of the arm, which uses a spring and a fluid pressure cylinder in combination. A braking device characterized in that the braking force is controlled by pressing an arm against the drum or disk and controlling the pressure of the fluid pressure cylinder.
JP10708491A 1991-05-13 1991-05-13 Braking device Pending JPH04338089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10708491A JPH04338089A (en) 1991-05-13 1991-05-13 Braking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10708491A JPH04338089A (en) 1991-05-13 1991-05-13 Braking device

Publications (1)

Publication Number Publication Date
JPH04338089A true JPH04338089A (en) 1992-11-25

Family

ID=14450074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10708491A Pending JPH04338089A (en) 1991-05-13 1991-05-13 Braking device

Country Status (1)

Country Link
JP (1) JPH04338089A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328772A (en) * 2000-05-19 2001-11-27 Mitsubishi Electric Corp Brake device for elevator
JP2008508158A (en) * 2004-07-30 2008-03-21 コネ コーポレイション elevator
CN102020146A (en) * 2009-09-18 2011-04-20 东芝电梯株式会社 Brake apparatus for hoister in elevator and method for adjusting the brake apparatus
CN102653381A (en) * 2011-03-02 2012-09-05 东芝电梯株式会社 Adjusting method for brake switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328772A (en) * 2000-05-19 2001-11-27 Mitsubishi Electric Corp Brake device for elevator
JP2008508158A (en) * 2004-07-30 2008-03-21 コネ コーポレイション elevator
JP2014101230A (en) * 2004-07-30 2014-06-05 Kone Corp Elevator
CN102020146A (en) * 2009-09-18 2011-04-20 东芝电梯株式会社 Brake apparatus for hoister in elevator and method for adjusting the brake apparatus
CN102653381A (en) * 2011-03-02 2012-09-05 东芝电梯株式会社 Adjusting method for brake switch

Similar Documents

Publication Publication Date Title
US5323878A (en) Braking apparatus for elevator cage
JPH04292391A (en) Elevator
US5244060A (en) Elevator apparatus
US5788018A (en) Traction elevators with adjustable traction sheave loading, with or without counterweights
US3174585A (en) Elevator hoisting mechanism
US6193026B1 (en) Elevator brake
JP5726374B2 (en) Elevator equipment
CN114787060A (en) Brake, circuit arrangement and method for actuating a brake
JP5591504B2 (en) elevator
JPH04338089A (en) Braking device
CN113165839B (en) Elevator system
US5285027A (en) Hydraulic elevator and a control method thereof
KR101941388B1 (en) Elevator with a brake device
JP5314347B2 (en) Elevator hoisting machine
KR100614145B1 (en) Emergency brake device for elevator
US20220135368A1 (en) Brake system and a method for an elevator and an elevator
US3578817A (en) Control of mine hoist braking
JP7146119B2 (en) Elevator and its safety device
JPH0840662A (en) Elevator device
JP2001002342A (en) Emergency stop device for elevator
JPH08333058A (en) Elevator device
JPH107350A (en) Safety device of elevator
JPH061560A (en) Elevator and its emergency suspension device including accumulator and pressure fluid bomb
JP2003212450A (en) Traction type elevator
CN114014193B (en) Control method of winch braking system