JPH043376B2 - - Google Patents

Info

Publication number
JPH043376B2
JPH043376B2 JP59186527A JP18652784A JPH043376B2 JP H043376 B2 JPH043376 B2 JP H043376B2 JP 59186527 A JP59186527 A JP 59186527A JP 18652784 A JP18652784 A JP 18652784A JP H043376 B2 JPH043376 B2 JP H043376B2
Authority
JP
Japan
Prior art keywords
copper
nickel
catalyst
reaction
acrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59186527A
Other languages
Japanese (ja)
Other versions
JPS6165852A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59186527A priority Critical patent/JPS6165852A/en
Publication of JPS6165852A publication Critical patent/JPS6165852A/en
Publication of JPH043376B2 publication Critical patent/JPH043376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、固体触媒の存在下、液相でアクリロ
ニトリルと水とを反応させてアクリルアミドを合
成する方法に関する。更に詳しくは、該反応に有
用な高活性の固体触媒に関する。アクリルアミド
は紙力増強剤、凝集剤などに利用されるアクリル
アミド系ポリマーの製造に用いられる他、多方面
の用途に向けられる有用なモノマーである。現在
このアクリルアミドは工業的に安価に生産されて
いるアクリロニトリルを水と反応させることによ
り合成されている。 〔従来の技術〕 アクリロニトリルと水とを反応させてアクリル
アミドを合成するのに用いられる固体触媒として
は、多くの銅系触媒が知られており、就中、次の
ものが一般的である。 (A) 酸化銅を水素ガスなどで還元して得られる気
相還元銅 (B) 銅塩、水酸化銅などを液相でホルマリン、硼
水素化ナトリウムなどの還元剤で処理して得ら
れる液相還元銅 (C) 銅塩、水酸化銅などを、水相で次亜リン酸塩
などと反応させて調製される水素化銅を加熱な
どにより分解して得られるもの (D) ラネー銅合金をカセイソーダなどの塩基性化
合物と反応させて得られるラネー銅 これらの銅系触媒の主たる触媒成分は金属状の
銅であると考えられている。 次に金属状のニツケルを触媒として用いるニト
リル化合物の水和反応が報告されているが、この
場合は酸アミドへの選択率が低いとされている。
即ち、渡辺ら(BULLETIN OF CHEMICAL
SOCIETY OF JAPAN,37,1325(1964))によ
れば、ウルシバラニツケル触媒は芳香族ニトリル
の水和により相当する酸アミド化合物を合成する
に適しているが、脂肪族ニトリルの場合には酸性
物質などの副生を伴い酸アミドへの選択率が低
い。 また三浦ら(日本化学会誌、1982、No.4,692)
によれば、γ−アルミナに担持された気相還元ニ
ツケル触媒を用いてアクリロニトリルを水和した
場合のアクリルアミドへの選択率は42.8%で、同
様にして得られた還元銅の場合の92.9%にくらべ
て著しく低い。 従つて金属状ニツケルは、アクリルアミド合成
用の触媒としては適さないと考えられている。 更に金属銅触媒にニツケルを含有させた複合触
媒も次のように、多くの例が知られている。 (1) 特公昭52−41241には、酸化銅とニツケル等
の金属酸化物の組成物を還元して得られるもの
が触媒として提案されているが、銅とニツケル
などどとの適当な比率は示されておらず、単に
銅塩0.80モルとニツケル塩0.15モルの混合物か
ら得られる該触媒の例が示されているに過ぎな
い。 (2) 米国特許3795629には、触媒量のニツケルの
存在下に、酸化銅を液相で水素で還元して得ら
れる銅触媒が提案されており、この銅触媒は少
量のニツケルを含むものと解されるが、その量
は示されていない。 (3) 米国特許4250111には、ニツケル等の重金属
が銅に対し1/250〜10/100の重量比となるよ
うにそれら重金属の酸化物を含有させた酸化銅
を水素還元して得られる触媒が提案され、ニツ
ケルを0.48%(対銅分重量比)含有させた例が
示されている。 (4) 特公昭53−3927には銅化合物とニツケル等の
第2元素の化合物との混合物を硼水素化物で処
理して得られる銅系触媒は高活性、高選択率及
び長寿命であるとされ、第2元素は0.05〜10%
(対銅分原子比)となるような割合で用いられ
るとされている。またニツケルを0.5%含有さ
せた例が示されている。 (5) 特公昭53−43924には、水素化銅をニツケル
等の第2元素の化合物の存在下に分解してこれ
らの第2元素を含有させた銅系触媒は高活性で
あるとされ、第2元素は該触媒中の含有量とし
て0.05〜50%(対銅分原子比)となるように用
いられるとされている。但し、ニツケルに関し
ては実施例などの具体的な説明は示されていな
い。 これらの例では、ニツケルの適当な含有量とし
て、50%(ニツケル/銅原子比)以下の範囲が示
されてるか、又は更に低い含有量の例が記されて
いる。 〔発明が解決しようとする問題点〕 以上に述べた種々の触媒の使用法は、それ自身
か又は担体に担持させたものを粒状物として固定
床式に用いる方法と、それ自身か又は担体に担持
させたものの粉状物として懸濁床式に用いる方法
とに大別される。このうち懸濁床式は反応後の反
応液から触媒を分離することが困難であるのに対
し、固定床式は、そのような困難はなく、又固定
床式では劣化した触媒を水素ガス処理、薬液処理
などの公知の方法による再生が容易であるなどの
利点を有する。そして、固定床に適した触媒とし
ては、前記した金属銅触媒のうちの気相還元銅の
如く、金属酸化物を水素ガスなどで気相で還元し
て得られるものが挙げられる。 そこで本発明者らはそのような気相還元型触媒
として、これまでに知られた触媒のいずれとも異
る、より優れた触媒を見出すべく鋭意検討した。 〔問題点を解決するための手段〕 その結果、銅を含有させた気相還元ニツケル触
媒が特定の銅含有量の領域で高い活性と選択性を
有することを見出し、本発明を完成した。即ち本
発明は、固体触媒の存在下、液相でアクリロニト
リルと水とを反応させてアクリルアミドを合成す
るに際し、銅/ニツケル原子比が45/55〜15/85
なる組成を有する酸化ニツケルと酸化銅の組成物
を気相で水素又は水素含有ガスで還元して得られ
る還元ニツケル銅を触媒として用いることを特徴
とするアクリルアミドの合成法である。 これまで、金属ニツケル触媒は、アクリロニト
リルからアクリルアミドへの選択率が著しく低い
為に実用に耐えないと考えられていたにもかかわ
らず、ニツケルより少量の銅を含有させることに
よりこの欠点が完全に解消したことは驚くべきこ
とであり、また銅よりも多い量のニツケルを含有
させることにより金属銅触媒よりもはるかに高い
活性が得られたことも注目すべきである。 本発明の触媒は次のようにして調製される。 硝酸ニツケルと硝酸銅の如く水溶性の塩を用い
て両者の混合水溶液とし、これにカセイソーダな
どの塩基性物質を加えて水酸化ニツケルと水酸化
銅の組成物とするか、或いは同様の原料から別々
に水酸化ニツケルを水酸化銅を調製した後、両者
を混合する。かくして得られた水酸化物組成物を
常法により焼成して酸化ニツケルと酸化銅の組成
物を得る。また水酸化物の代りにニツケル及び銅
の炭酸塩、蓚酸、酢酸塩、その他の分解しやすい
塩の組成物を調製し、これを焼成して酸化ニツケ
ルと酸化銅の組成物としても良い。担体に担持さ
せる場合は例えばこれら水酸化物又は分解性塩の
状態で担体に含浸させた後、焼成する。或いは、
特開昭50−12001の如く、ニツケル塩、銅塩及び
マグネシウム塩の水溶液に珪酸アルカリを加えて
得られる沈殿物を瀘過乾燥して、珪酸マグネシウ
ムにニツケルと銅の酸化物ないし水酸化物を担持
させたものとする方法でも良い。また固定床反応
型式に適した大きさの粒状とする為に、錠剤化な
どを行なつても良い。いずれの方法によるにせ
よ、得られた酸化物の組成物に於て、銅/ニツケ
ル原子比45/55〜15/85となるように調製する。 こうして得られた酸化物を目的物たる還元金属
型触媒とするには、これを所定の温度に保つて水
素ガス又はこれを窒素などで稀釈した水素含有ガ
スで還元する。還元温度は150〜400℃就中200〜
350℃が適している。 なお、得られた触媒は貯蔵中及び取扱い中を通
じて、酸素ガス及び酸素含有ガスとの接触を避け
ることが望ましい。酸素は触媒と反応してある限
度内であれば触媒の活性を損わないか、逆に活性
を高めるが、それ以上では活性を損い、或いは目
的とするアクリルアミドの他にエチレンシアンヒ
ドリンなどの副生物の生成させる原因となる。 本発明の触媒を用いアクリロニトリルと水とを
反応させて、アクリルアミドを合成する方法は凡
そ次のようである。 触媒は粉状で懸濁床として、或いは好ましくは
粒状で固定床で用いられ、流通式又は回分式の反
応型式がとられる。 反応に供されるアクリロニトリルと水との重量
比率は本質的には任意であるが、好ましくは67:
40〜5:95であり、更に好ましくは50:50〜10:
90の範囲である。 好ましい反応温度は70〜150℃である。アクリ
ロニトリルのアクリルアミドへの転化率は好まし
くは10〜98%であり、更に好ましくは30〜95%で
ある。 上記したアクリロニトリルと水との重量比、反
応温度及びアクリロニトリルの転化率に於て、未
反応アクリロニトリル、未反応水及び生成アクリ
ルアミドの3者が均一な溶液系を形成しないこと
がある。これを避ける為に、合成されたアクリル
アミドを溶剤として再びこの反応系に加えても良
いし、他の不活性な溶剤を用いても良い。 反応器内は上記した温度と組成に於ける蒸気圧
又はそれに窒素などの不活性ガスを加えた圧力に
保たれるが、その圧力は通常、常圧ないし20気圧
の範囲である。 反応器に供給される触媒、アクリロニトリル、
水、溶剤などに含まれる溶存酸素は、先に述べた
と同様に触媒活性を損い、エチレンシアンヒドリ
ンなどの副生物を増加させるので、反応器に供給
する前に十分に除去することが望ましい。また同
じ理由から、反応器内は酸素ガスを含まない雰囲
気に保つことが望ましい。 次に実施例により更に説明する。 実施例 1 〔触媒の調製〕 硝酸銅と硝酸ニツケルを夫々次表のように11通
りの重量の組合わせで秤取して純水400mlに溶解
した。
[Industrial Application Field] The present invention relates to a method for synthesizing acrylamide by reacting acrylonitrile and water in a liquid phase in the presence of a solid catalyst. More specifically, the present invention relates to a highly active solid catalyst useful for this reaction. Acrylamide is a useful monomer that is used in the production of acrylamide-based polymers used as paper strength agents, flocculants, etc., and has many other uses. Currently, acrylamide is synthesized by reacting acrylonitrile, which is industrially produced at low cost, with water. [Prior Art] Many copper-based catalysts are known as solid catalysts used to synthesize acrylamide by reacting acrylonitrile and water, and among them, the following are common. (A) Gas-phase reduced copper obtained by reducing copper oxide with hydrogen gas, etc. (B) Liquid obtained by treating copper salts, copper hydroxide, etc. in the liquid phase with a reducing agent such as formalin or sodium borohydride. Phase-reduced copper (C) Copper salt, copper hydroxide, etc., prepared by reacting with hypophosphite etc. in the aqueous phase, and obtained by decomposing copper hydride by heating etc. (D) Raney copper alloy Raney copper obtained by reacting with a basic compound such as caustic soda.The main catalyst component of these copper-based catalysts is thought to be metallic copper. Next, a hydration reaction of nitrile compounds using metallic nickel as a catalyst has been reported, but the selectivity to acid amide is said to be low in this case.
That is, Watanabe et al. (BULLETIN OF CHEMICAL
SOCIETY OF JAPAN, 37 , 1325 (1964)), the Urushibara nickel catalyst is suitable for synthesizing the corresponding acid amide compound by hydration of aromatic nitriles, but in the case of aliphatic nitriles, it is suitable for synthesizing acidic substances. The selectivity to acid amide is low due to by-products such as. Also, Miura et al. (Journal of the Chemical Society of Japan, 1982, No. 4, 692)
According to the authors, when acrylonitrile is hydrated using a gas-phase reduced nickel catalyst supported on γ-alumina, the selectivity to acrylamide is 42.8%, which is 92.9% for reduced copper obtained in the same way. It is significantly lower than that. Therefore, metallic nickel is considered unsuitable as a catalyst for acrylamide synthesis. Furthermore, many examples of composite catalysts in which nickel is contained in a metallic copper catalyst are known, as shown below. (1) Japanese Patent Publication No. 52-41241 proposes a catalyst obtained by reducing a composition of copper oxide and metal oxides such as nickel, but the appropriate ratio of copper and nickel etc. is not known. No, but merely an example of the catalyst obtained from a mixture of 0.80 mol of copper salt and 0.15 mol of nickel salt is given. (2) U.S. Pat. No. 3,795,629 proposes a copper catalyst obtained by reducing copper oxide with hydrogen in the liquid phase in the presence of a catalytic amount of nickel; this copper catalyst is said to contain a small amount of nickel. However, the amount is not indicated. (3) U.S. Patent No. 4,250,111 describes a catalyst obtained by hydrogen reduction of copper oxide containing oxides of heavy metals such as nickel to copper in a weight ratio of 1/250 to 10/100. has been proposed, and an example is shown in which nickel is contained at 0.48% (weight ratio to copper). (4) Japanese Patent Publication No. 53-3927 states that a copper-based catalyst obtained by treating a mixture of a copper compound and a compound of a second element such as nickel with a borohydride has high activity, high selectivity, and long life. and the second element is 0.05-10%
(atomic ratio to copper). Also, an example containing 0.5% nickel is shown. (5) Japanese Patent Publication No. 53-43924 states that copper-based catalysts containing these second elements by decomposing copper hydride in the presence of compounds of second elements such as nickel are highly active; It is said that the second element is used in a content of 0.05 to 50% (atomic ratio to copper) in the catalyst. However, regarding nickel, no specific explanations such as examples are given. In these examples, a range of 50% (nickel/copper atomic ratio) or less is shown as a suitable nickel content, or examples of even lower contents are described. [Problems to be Solved by the Invention] The various catalysts described above can be used in two ways: using the catalyst itself or supported on a carrier as granules in a fixed bed type; It is broadly divided into two methods: a method in which a supported powder is used in a suspended bed method; Among these, in the suspended bed type, it is difficult to separate the catalyst from the reaction liquid after the reaction, whereas in the fixed bed type, there is no such difficulty, and in the fixed bed type, the deteriorated catalyst can be treated with hydrogen gas. It has the advantage that it can be easily regenerated by known methods such as chemical treatment. Catalysts suitable for fixed beds include those obtained by reducing metal oxides in the gas phase with hydrogen gas or the like, such as the gas-phase reduced copper of the metal copper catalysts mentioned above. Therefore, the present inventors conducted extensive research in order to find a superior catalyst that is different from any of the previously known catalysts as such a gas phase reduction catalyst. [Means for Solving the Problems] As a result, it was discovered that a gas-phase reduced nickel catalyst containing copper has high activity and selectivity in a specific copper content range, and the present invention was completed. That is, in the present invention, when synthesizing acrylamide by reacting acrylonitrile and water in a liquid phase in the presence of a solid catalyst, the copper/nickel atomic ratio is 45/55 to 15/85.
This is a method for synthesizing acrylamide, which is characterized in that reduced copper nickel obtained by reducing a composition of nickel oxide and copper oxide having the following composition with hydrogen or hydrogen-containing gas in the gas phase is used as a catalyst. Until now, metal nickel catalysts had been thought to be impractical due to their extremely low selectivity from acrylonitrile to acrylamide, but this drawback has been completely overcome by incorporating a smaller amount of copper than nickel. This is surprising, and it is also noteworthy that much higher activity than the metallic copper catalyst was obtained by including a higher amount of nickel than copper. The catalyst of the present invention is prepared as follows. A water-soluble salt such as nickel nitrate and copper nitrate is used to make a mixed aqueous solution of both, and a basic substance such as caustic soda is added to this to form a composition of nickel hydroxide and copper hydroxide, or a composition of nickel hydroxide and copper hydroxide is prepared from similar raw materials. After separately preparing nickel hydroxide and copper hydroxide, the two are mixed. The hydroxide composition thus obtained is fired by a conventional method to obtain a composition of nickel oxide and copper oxide. Alternatively, instead of hydroxide, a composition of nickel and copper carbonate, oxalic acid, acetate, and other easily decomposed salts may be prepared and fired to obtain a composition of nickel oxide and copper oxide. When supported on a carrier, for example, the carrier is impregnated in the form of these hydroxides or decomposable salts, and then fired. Or,
As in JP-A-50-12001, the precipitate obtained by adding alkali silicate to an aqueous solution of nickel salt, copper salt, and magnesium salt is filtered and dried, and oxides or hydroxides of nickel and copper are added to magnesium silicate. A method in which it is supported may also be used. Further, in order to form particles of a size suitable for a fixed bed reaction type, it may be formed into tablets. Whichever method is used, the resulting oxide composition is adjusted to have a copper/nickel atomic ratio of 45/55 to 15/85. In order to make the oxide thus obtained into the desired reduced metal type catalyst, it is maintained at a predetermined temperature and reduced with hydrogen gas or a hydrogen-containing gas obtained by diluting it with nitrogen or the like. Reduction temperature is 150~400℃, 200~
350℃ is suitable. Note that it is desirable to avoid contact of the obtained catalyst with oxygen gas and oxygen-containing gas during storage and handling. Oxygen reacts with the catalyst and, within a certain limit, does not impair the activity of the catalyst, or conversely increases its activity, but beyond that it impairs the activity, or it reacts with the target acrylamide, such as ethylene cyanohydrin. This causes the formation of by-products. The method for synthesizing acrylamide by reacting acrylonitrile and water using the catalyst of the present invention is generally as follows. The catalyst is used in powder form as a suspended bed, or preferably in granular form in a fixed bed, and a flow or batch reaction type is adopted. The weight ratio of acrylonitrile and water to be subjected to the reaction is essentially arbitrary, but is preferably 67:
40-5:95, more preferably 50:50-10:
The range is 90. The preferred reaction temperature is 70-150°C. The conversion rate of acrylonitrile to acrylamide is preferably 10 to 98%, more preferably 30 to 95%. At the above-described weight ratio of acrylonitrile to water, reaction temperature, and conversion rate of acrylonitrile, the three components of unreacted acrylonitrile, unreacted water, and produced acrylamide may not form a uniform solution system. In order to avoid this, the synthesized acrylamide may be added again to this reaction system as a solvent, or another inert solvent may be used. The inside of the reactor is maintained at the vapor pressure at the above-mentioned temperature and composition, or at a pressure obtained by adding an inert gas such as nitrogen, and the pressure is usually in the range of normal pressure to 20 atmospheres. Catalyst, acrylonitrile, fed to the reactor
Dissolved oxygen contained in water, solvent, etc. impairs catalyst activity and increases by-products such as ethylene cyanohydrin, as mentioned above, so it is desirable to remove it thoroughly before supplying it to the reactor. . For the same reason, it is desirable to maintain an atmosphere in the reactor that does not contain oxygen gas. Next, it will be further explained by examples. Example 1 [Preparation of catalyst] Copper nitrate and nickel nitrate were each weighed out in 11 weight combinations as shown in the table below and dissolved in 400 ml of pure water.

【表】 得られた溶液に濃度5重量%の炭酸ナトリウム
水溶液を1.5時間かけて滴下してPH9.5とした。そ
の後1.5時間攪拌を続けて熟成し、更に19時間放
置した後、生成した沈殿物を吸引瀘過した。これ
を2000mlの純水中に投入し、30分間激しく攪拌し
て懸濁させ、吸引瀘過した。更に新たな純水200
mlを用いて懸濁、瀘過を繰返した。この洗浄操作
を瀘液のPHが8.0〜8.5になるまで繰返した。得ら
れた沈殿物を蒸発皿により、120℃で8時間乾燥
し、乾燥物を粉砕し、300℃で3時間焼成して酸
化銅、酸化ニツケル又はそれらの組成物を得た。
これらの金属酸化物から金属として2.5g得られ
るように化学量論的に計算された量を秤取して、
反応槽に入れ、100c.c./分の水素気流中で300℃で
3時間還元した。 〔アクリルアミドの合成〕 還元後、反応槽内に空気が混入しないようにし
ながら、予め脱酸素した純水100mlを加え、反応
槽上部に還流冷却器をつけ、その上部を窒素シー
ルすることによつて、反応槽内に空気が混入しな
いようにした。この反応槽を75℃の温浴中に漬
け、内容物が75℃になつた時点で、予め脱酸素し
たアクリロニトリル8.5mlを注入した。内容物を
攪拌して凡そ75℃に6時間保つて反応させた。6
時間後、反応液を冷却し、ガスクロマトグラフに
よりアクリロニトリル、アクリルアミド及び副生
物としてエチレンシアンヒドリン、β−ヒドロキ
シプロピオンアミド及びビスシアノエチルエーテ
ルを定量した。アクリルアミドと副生物の合計量
からアクリロニトリルの転化率を求め、アクリル
アミドと副生物との比率からアクリルアミドへの
選択率を求めた。 以上の実験によつて次表の結果が得られた。
[Table] A sodium carbonate aqueous solution having a concentration of 5% by weight was added dropwise to the obtained solution over 1.5 hours to adjust the pH to 9.5. Thereafter, stirring was continued for 1.5 hours to age the mixture, and after being allowed to stand for an additional 19 hours, the resulting precipitate was suction-filtered. This was poured into 2000 ml of pure water, stirred vigorously for 30 minutes to suspend it, and was suction-filtered. More new pure water 200
Suspension and filtration were repeated using ml. This washing operation was repeated until the pH of the filtrate became 8.0 to 8.5. The obtained precipitate was dried in an evaporating dish at 120°C for 8 hours, and the dried product was pulverized and calcined at 300°C for 3 hours to obtain copper oxide, nickel oxide, or a composition thereof.
Weigh out the stoichiometrically calculated amount to obtain 2.5 g of metal from these metal oxides,
The mixture was placed in a reaction tank and reduced at 300° C. for 3 hours in a hydrogen flow of 100 c.c./min. [Synthesis of acrylamide] After reduction, add 100 ml of deoxygenated pure water to the reaction tank while preventing air from entering the reaction tank, attach a reflux condenser to the top of the reaction tank, and seal the top with nitrogen. , to prevent air from entering the reaction tank. This reaction tank was immersed in a 75°C hot bath, and when the contents reached 75°C, 8.5 ml of acrylonitrile, which had been deoxygenated in advance, was poured into the tank. The contents were stirred and kept at approximately 75°C for 6 hours to react. 6
After a period of time, the reaction solution was cooled, and acrylonitrile, acrylamide, and by-products such as ethylene cyanohydrin, β-hydroxypropionamide, and biscyanoethyl ether were determined by gas chromatography. The conversion rate of acrylonitrile was determined from the total amount of acrylamide and by-products, and the selectivity to acrylamide was determined from the ratio of acrylamide to by-products. Through the above experiments, the results shown in the following table were obtained.

【表】【table】

【表】 実施例 2 〔触媒の調製〕 実施例1と同様にして得られた11通りの金属酸
化物を打錠器にかけて径5mm、長さ5mmの円柱状
の錠剤とし、これを各々300g秤取して内径30mm
のステンレススチール製の反応管に充填し、窒素
で稀釈した水素気流中で300℃で3時間還元した。 〔アクリルアミドの合成〕 還元後、反応管内に空気が混入しないようにし
ながら、反応管を反応設備の所定の場所に据付け
た。この反応設備は、反応管、脱酸素されたアク
リロニトリルの貯槽とその供給ポンプ、脱酸素さ
れた純水の貯槽とそのポンプ、及び反応液循環ポ
ンプからなる。アクリロニトリルと純水を夫々
300g/hrと700g/hrの速度で反応管の底部に供
給し、反応管の頂部より反応液1000g/hrを抜出
すと共に、反応液60/hrを反応管の底部に循環
した。反応管の外側に巻きつけて電熱線により反
応温度を120℃に保つて反応を続けた。 3時間後に反応液をサンプリングし、実施例1
と同様にして分析し転化率と選択率を求めた。 以上の実験によつて次表の結果が得られた。
[Table] Example 2 [Preparation of catalyst] Eleven types of metal oxides obtained in the same manner as in Example 1 were made into cylindrical tablets with a diameter of 5 mm and a length of 5 mm, and weighed 300 g each. Inner diameter 30mm
The mixture was packed in a stainless steel reaction tube and reduced at 300°C for 3 hours in a hydrogen stream diluted with nitrogen. [Synthesis of acrylamide] After the reduction, the reaction tube was installed at a predetermined location in the reaction equipment while preventing air from entering the reaction tube. This reaction equipment consists of a reaction tube, a deoxygenated acrylonitrile storage tank and its supply pump, a deoxygenated pure water storage tank and its pump, and a reaction liquid circulation pump. Acrylonitrile and pure water respectively
The reaction solution was supplied to the bottom of the reaction tube at a rate of 300 g/hr and 700 g/hr, and 1000 g/hr of the reaction solution was drawn out from the top of the reaction tube, and 60 g/hr of the reaction solution was circulated to the bottom of the reaction tube. The reaction was continued by wrapping it around the outside of the reaction tube and keeping the reaction temperature at 120°C using a heating wire. After 3 hours, the reaction solution was sampled and
The conversion rate and selectivity were determined by analysis in the same manner as above. Through the above experiments, the results shown in the following table were obtained.

【表】【table】

【表】 〔発明の効果〕 本発明によつて、アクリロニトリルと水との反
応によるアクリルアミド合成の際、固定床反応型
式に適し、水素ガス処理や薬液処理に適した気相
還元金属型の触媒であつて、かつ高活性で高選択
性の触媒が容易に調製されることとなつた。
[Table] [Effects of the Invention] According to the present invention, when synthesizing acrylamide through the reaction of acrylonitrile and water, a gas phase reduction metal type catalyst suitable for a fixed bed reaction type and suitable for hydrogen gas treatment and chemical liquid treatment is used. A highly active and highly selective catalyst can now be easily prepared.

Claims (1)

【特許請求の範囲】[Claims] 1 固体触媒の存在下、液相でアクリロニトリル
と水とを反応させてアクリルアミドを合成するに
際し、銅/ニツケル原子比が45/55〜15/85なる
組成を有する酸化ニツケルと酸化銅の組成物を気
相で水素又は水素含有ガスで還元して得られる還
元ニツケル銅を触媒として用いることを特徴とす
るアクリルアミドの合成法。
1. When synthesizing acrylamide by reacting acrylonitrile and water in a liquid phase in the presence of a solid catalyst, a composition of nickel oxide and copper oxide having a copper/nickel atomic ratio of 45/55 to 15/85 is used. A method for synthesizing acrylamide, characterized in that reduced copper nickel obtained by reduction with hydrogen or hydrogen-containing gas in the gas phase is used as a catalyst.
JP59186527A 1984-09-07 1984-09-07 Synthesis of acrylamide Granted JPS6165852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59186527A JPS6165852A (en) 1984-09-07 1984-09-07 Synthesis of acrylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186527A JPS6165852A (en) 1984-09-07 1984-09-07 Synthesis of acrylamide

Publications (2)

Publication Number Publication Date
JPS6165852A JPS6165852A (en) 1986-04-04
JPH043376B2 true JPH043376B2 (en) 1992-01-23

Family

ID=16190050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186527A Granted JPS6165852A (en) 1984-09-07 1984-09-07 Synthesis of acrylamide

Country Status (1)

Country Link
JP (1) JPS6165852A (en)

Also Published As

Publication number Publication date
JPS6165852A (en) 1986-04-04

Similar Documents

Publication Publication Date Title
RU2154630C2 (en) Method of preparing aliphatic alpha, omega-aminotriles
KR0142192B1 (en) Process for preparation of allyl acetate
US4083809A (en) Hydrogenation catalyst and method of producing same
US3664970A (en) Ethylene oxide catalyst
RU2434676C9 (en) Catalysts based on mixed oxides for hydrogenating organic compounds, production method thereof and hydrogenation method
SK279974B6 (en) Silver-containing carrier catalyst and method for the catalytic decomposition of nitrous oxide
CA2446989C (en) A process for the manufacture of diethylenetriamine and higher polyethylenepolyamines
US6903046B2 (en) Metal modified Pd/Ni catalysts
JP2007530257A (en) Catalyst composition for selective conversion of alkane to unsaturated carboxylic acid, process for its preparation and process for its use
RU2378189C2 (en) Hydrogen peroxide synthesis method
KR100870790B1 (en) Method for producing molybdenum-bismuth-iron containing composite oxide fluid bed catalyst
US3700605A (en) Catalysts
US3927121A (en) Phenyl methyl carbinol manufacture by hydrogenation of acetophenone
US4184982A (en) Preparation of a silicate hydrogenation catalyst
EP3438078A1 (en) Method for preparing butadiene with excellent catalyst reproducibility
US4169107A (en) Process for manufacturing an amide compound using aluminum nitrate promoter
JPH043376B2 (en)
JPS63224737A (en) Titanium oxide carrying palladium catalyst
US4521527A (en) Molded iron catalyst and its preparation
RU2190468C2 (en) Catalyst for dehydrogenation of cyclohexanol into cyclohexanone and method of its production
US3987099A (en) Process for hydrogenation of dodecanedioic acid dinitrile
KR20230093017A (en) Method for producing methionine
JPH0129174B2 (en)
JPS5914457B2 (en) Hydrogenation method for producing polyamines from polynitrile
GB2051785A (en) Preparation of benzophenone-azines