【発明の詳細な説明】[Detailed description of the invention]
[産業上の利用分U1
本発明は、主としてアルミニウム合金、マグネシウム合
金、チタン合金等の金属を大気あるいは不活性雰囲気の
加圧下において鋳造を行う鋳造方法に関するものである
。
[従来の技術]
近時、信頼性の高いアルミニウム合金(以下アルミ合金
という)綺耐の製造法が種々開発され多用化しつつあり
、自動車部品の内の重要保安部品の材料も鉄鋼からアル
ミ合金鋳物に代えて軽量化が図られている。このため、
従来は比較的大型の製品まで寸法精度良く、能率的に生
産できる低圧鋳造法による鋳造が行われている。
特註公報平+−48225,4522B二 上下に分
離結合できる鋳造装置で、上部のストッパー付きタンデ
イツシュ内で溶湯金属を保持し、ストッパーを開放して
下部の鋳型内へ鋳込み、容器内を大気圧以上にする加圧
鋳造法。
特許開報平1−309776: 溶湯を鋳型に注湯後
、少なくとも凝固開始から凝固完了までの間、2〜IO
kgf/c−2の圧力を負荷しつつ、かつ、0.8℃7
sec以上の冷却速度で溶湯を冷却・凝固させミクロ結
晶の粒径を70μ囮より細かくすることを特徴とする裏
カアルミニウム合金鋳物の製造方法。
[発明が解決しようとする1L
上記低圧鋳造法による鋳造においては、複雑な形状の薄
肉あるいは縁間鋳物を製造する場合、 または難鋳造材
を適用する場合、鋳造欠陥を完全に防止することは困n
である。そしてこれらを改善するための種☆の使用材料
に対応して、 ピンホール発生やミクロシュリンケージ
欠陥発生を防止する凝固制御手段がない。
本発明は、注入された溶湯が鋳型内で凝固して行く過程
で、製品形状、重量に合わせ適宜に圧力を加えることに
より、凝固収縮時の空間部に溶湯を適切に?i給するこ
とができ、溶湯中のガスを凝固後の鋳物中に残さないこ
とによって、上記従来の低圧鋳造法における問題点を解
消し、種々の使用材質に対応して上記鋳造欠陥の発生を
抑制して、裏品質の鋳物をXN度かつ高能率に製造する
ことができる鋳造方法を提供することを目的とするもの
である。
ctxuを解決するための手段]
金属は凝固時に収縮するためにピンホールや引は巣(以
後ポロシティと呼ぶ)を防止するためには、図1で説明
するiうに溶湯補結されなくてはならない。凝固があま
り進んでいないす塚では液相補給、凝固がかなり進んだ
領域ではデンドライト間流動INによってポロシティ発
生が抑えられる。ポロシティはデンドライトの樹間の根
元で水素ガス気胞が核生成し、 それが凝固の進行と共
にデンドライトから分離して、凝固末期にはデンドライ
ト間の粒間に位置し、凝固収縮作用によって形状は大き
なものになる。ls物中の溶製圧力(P)が水素ガス圧
力(Pc)より小さくなったuni C図1の斜線部分
)でポロシティが核生成して成長する。ここで、凝固時
に不活性ガスで加圧することによって斜線部の傾城がな
くなり、ポロシティが発生しなくなる0本発明はこの効
果を狙ったものである。
鋳物中の液相の水素ガス圧力Paは次のように表される
。
P G: [[Hslハ(1−fL)Kso+fuKt
e)] 2(+ )但し、[)lal: 溶湯中の初
期水素ガス濃度(に)
fL: 液相率
Kin : 係数(0’、06cc/+00g @
at11”’)KLH: 係数(0,6cc/100
ge gtm”2)残留液相中の水素ガス圧力と初期水
素ガス圧力と初期水素ガス1度、液相率の関係を表1に
、初期水素ガス1度が0.2cc/ 100gの時のガ
ス圧力の変化を図2に示す。液相率の減少と共に水素ガ
ス圧力は急激に増大する。
表1 残留液相中の水素ガス圧力と初期水素ガス圧力と
初期水素ガス濃度、液相率の関係〔実施例コ
図3に示すような+OOx+OOx30I1mの平板状
試験片鋳物の中央に押湯を付けた絹物を鋳造した。押湯
下の平板の肉厚中心を原点にして上方向の液相率(f
L)、圧力(P)、デンドライト間の液相流動の速度(
U)を図4に示した。Lは押湯の高さであ る。
Uは次式で表される。
βは凝固に伴う収縮量でACIBの場合は0.059で
ある。
(2)式を積分して、u:o(x:0)とすれば、次式
が得られる。
u : a +本x
(3)また、デンドライト
aの液相流動の速度と溶製圧力とは次のような[1ar
cyの式が成り立つ。
但し、k: 透過率
μ: 液相の粘性係数(ACIBの場合には 4.59
零10−”kg−s/c■2)(3)式と(4)式から
、次式が得られる。
但 し、 a 2ニー a +寥a f
L/ k(5)式を、 P =Pa(x=O)、
P=Pa(x=し)として積分すると次式が得られ
る。
P 、= 0.5零a 2L 2+ P 、
(6)(6)式が、
ポロシティが発生しないために必要な加圧力Paの式で
ある。
Paを計算するためには、あらかじめfLを実験または
コンピュータ・シミュレーションで求めておく。
透過率kについては、次式で計算しておく。
但 し、 d: 7.5零10−4Δ θ 、@
、2GΔθl:L/2の位置での部分凝固
時間
fL:L/2の位置での液相率
ポロシティ発生抑制に必要な加圧力を表2に示す、初期
水素ガス濃度0.2cc/100gの場合の液相率と加
圧力との関係を図5に、初期水素ガス濃度0.6cc/
+00gの場合を図6に示す。本実験の場合には残留液
相が0.2で加圧力が4kgf/ci2以上あればポロ
シティ発生が抑制される。実隙に、表3に引張性質と加
圧力との関係を示すが、加圧力を6及び9kgf/a1
12加えた場合には著しく機械的性質が向上した。
表2 ポロシティ発生抑制に必要な加圧力表3 引張性
質と加圧力との関係[Industrial Application U1] The present invention mainly relates to a casting method for casting metals such as aluminum alloys, magnesium alloys, titanium alloys, etc. under pressure in air or an inert atmosphere. [Prior art] In recent years, various methods of manufacturing highly reliable aluminum alloys (hereinafter referred to as aluminum alloys) with high durability have been developed and are becoming more widely used, and the materials for important safety parts of automobile parts are also changing from steel to aluminum alloy castings. Instead, weight reduction is being attempted. For this reason,
Conventionally, even relatively large products have been cast using a low-pressure casting method that enables efficient production with good dimensional accuracy. Special Note Publication No. 48225, 4522B2 This is a casting device that can be separated into upper and lower parts.The molten metal is held in a tundish with a stopper on the upper part, and the stopper is opened and the metal is poured into the mold on the lower part, and the inside of the container is heated to above atmospheric pressure. Pressure casting method. Patent Publication No. 1-309776: After pouring the molten metal into the mold, at least from the start of solidification to the completion of solidification, 2 to IO
While applying a pressure of kgf/c-2, and at 0.8℃7
A method for producing an aluminum alloy casting, which comprises cooling and solidifying a molten metal at a cooling rate of sec or more to make the grain size of microcrystals finer than 70μ decoy. [1L to be solved by the invention] In casting using the above-mentioned low-pressure casting method, it is difficult to completely prevent casting defects when producing thin-walled or edge-to-edge castings with complex shapes, or when using difficult-to-cast materials. n
It is. In order to improve these problems, there is no coagulation control method to prevent the occurrence of pinholes and microshrinkage defects, depending on the type of material used. In the present invention, as the injected molten metal solidifies in the mold, pressure is applied appropriately according to the shape and weight of the product, so that the molten metal is properly filled in the space during solidification and contraction. By not leaving the gas in the molten metal in the casting after solidification, the above-mentioned problems with the conventional low-pressure casting method can be solved, and the occurrence of the above-mentioned casting defects can be reduced in response to the various materials used. It is an object of the present invention to provide a casting method that can produce castings of inferior quality with high efficiency and suppressing the amount of metal. Measures to solve ctxu] Since metal contracts during solidification, in order to prevent pinholes and cavities (hereinafter referred to as porosity), the molten metal must be bonded as explained in Figure 1. . Porosity generation is suppressed by liquid phase replenishment in the Suzuka area where solidification has not progressed much, and by interdendritic flow IN in areas where solidification has progressed considerably. Porosity occurs when hydrogen gas vesicles are nucleated at the base of the dendrite trees, which separate from the dendrite as solidification progresses, and at the final stage of solidification, are located between the grains between the dendrites, and due to solidification contraction, the shape becomes large. become. Porosity nucleates and grows at the uni C (shaded area in Figure 1) where the melting pressure (P) in the ls material becomes lower than the hydrogen gas pressure (Pc). Here, by pressurizing with an inert gas during solidification, the inclined wall in the shaded area is eliminated and porosity is no longer generated.The present invention aims at this effect. The liquid phase hydrogen gas pressure Pa in the casting is expressed as follows. PG: [[Hslha(1-fL)Kso+fuKt
e)] 2(+) However, [)lal: Initial hydrogen gas concentration in the molten metal (to) fL: Liquid phase ratio Kin: Coefficient (0', 06cc/+00g @
at11"') KLH: Coefficient (0,6cc/100
ge gtm"2) Table 1 shows the relationship between the hydrogen gas pressure in the residual liquid phase, the initial hydrogen gas pressure, the initial hydrogen gas degree, and the liquid phase ratio. The change in pressure is shown in Figure 2. Hydrogen gas pressure increases rapidly as the liquid phase rate decreases. Table 1 Relationship between hydrogen gas pressure in the residual liquid phase, initial hydrogen gas pressure, initial hydrogen gas concentration, and liquid phase rate [Example 1] A silk product with a riser attached to the center of a +OOx+OOx30I1m flat plate specimen as shown in Figure 3 was cast. (f
L), pressure (P), velocity of liquid phase flow between dendrites (
U) is shown in FIG. L is the height of the riser. U is represented by the following formula. β is the amount of contraction accompanying coagulation, and in the case of ACIB, it is 0.059. If equation (2) is integrated and set to u:o(x:0), the following equation is obtained. u: a + book x
(3) Furthermore, the liquid phase flow velocity and melting pressure of dendrite a are as follows [1ar
The formula for cy holds true. However, k: Transmittance μ: Viscosity coefficient of liquid phase (4.59 in the case of ACIB)
010-"kg-s/c■2) From equations (3) and (4), the following equation is obtained. However, a 2 knee a + 寥a f
L/k (5) formula, P = Pa (x = O),
Integrating as P=Pa (x=shi), the following equation is obtained. P , = 0.5 zero a 2L 2+ P ,
(6) Equation (6) is
This is the formula for the pressing force Pa required to prevent porosity from occurring. In order to calculate Pa, fL is determined in advance by experiment or computer simulation. The transmittance k is calculated using the following formula. However, d: 7.5 zero 10-4Δ θ, @
, 2G Δθl: Partial solidification time at the position of L/2 fL: The pressurizing force necessary to suppress the liquid phase ratio porosity generation at the position of L/2 is shown in Table 2, in the case of an initial hydrogen gas concentration of 0.2 cc/100 g. Figure 5 shows the relationship between the liquid phase ratio and the pressurizing force at an initial hydrogen gas concentration of 0.6cc/
The case of +00g is shown in FIG. In the case of this experiment, the generation of porosity is suppressed if the residual liquid phase is 0.2 and the pressurizing force is 4 kgf/ci2 or more. Table 3 shows the relationship between the tensile properties and the applied force.
When 12 was added, the mechanical properties were significantly improved. Table 2 Pressure force required to suppress porosity generation Table 3 Relationship between tensile properties and pressure force
【発明の効果】【Effect of the invention】
上述のように本発明によると、使用材質に制限されるこ
となく、それぞれの材質に対応してポロシティの鋳造欠
陥の発生を抑制することができ、例えば自動車用の重要
保安部品として軽量で信軸性の高い優れた品質を有し、
かつ裏精度のものを能率よく製造できうるものである。
なお1本発明はアルミ合金に限らずマグネシウム合金、
チタン合金等の鋳造に用いても上記同様の効果を達成す
ることができる。As described above, according to the present invention, it is possible to suppress the occurrence of porosity casting defects in accordance with each material without being limited to the materials used. It has excellent quality and
In addition, it is possible to efficiently manufacture products with high accuracy. Note that the present invention is not limited to aluminum alloys, but also magnesium alloys,
Effects similar to those described above can also be achieved when used for casting titanium alloys and the like.
【図面の簡単な説明】[Brief explanation of the drawing]
11図 鋳物内のポロシティ生成の説明図菓2WA 凝
固時の水素ガス圧力の変化側3図 鋳物形状
第4図 鋳物中のデンドライト間液相の流速・圧力0液
相率
第51g 初期水素ガス濃度0.2cc/10(Ig
の場合の液相率と加圧力との関係
第6図 初期水素ガス濃度0.6cc/+OOKの場合
の液相率と加圧力との関係
第1図
第6図
第2図
fL
第4
第3図
u、p、tLFigure 11 Explanation of porosity generation in castings Zukka 2WA Change in hydrogen gas pressure during solidification Figure 3 Casting shape Figure 4 Flow rate and pressure of liquid phase between dendrites in casting 0 Liquid phase ratio No. 51g Initial hydrogen gas concentration 0 .2cc/10(Ig
Relationship between liquid phase ratio and pressurizing force in case of Fig. 6 Relationship between liquid phase ratio and pressurizing force in case of initial hydrogen gas concentration 0.6cc/+OOK Fig. 1 Fig. 6 Fig. 2 Fig. fL 4th 3rd Figure u, p, tL