JPH04337192A - Reduction method of pressure increase in case of water column separation - Google Patents

Reduction method of pressure increase in case of water column separation

Info

Publication number
JPH04337192A
JPH04337192A JP3107099A JP10709991A JPH04337192A JP H04337192 A JPH04337192 A JP H04337192A JP 3107099 A JP3107099 A JP 3107099A JP 10709991 A JP10709991 A JP 10709991A JP H04337192 A JPH04337192 A JP H04337192A
Authority
JP
Japan
Prior art keywords
water column
column separation
pressure
case
pressure increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3107099A
Other languages
Japanese (ja)
Inventor
Naomi Otsuka
直美 大塚
Teiji Tanaka
田中 定司
Saburo Maru
三郎 丸
Yoshihiko Yoshikawa
慶彦 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3107099A priority Critical patent/JPH04337192A/en
Publication of JPH04337192A publication Critical patent/JPH04337192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)
  • Pipe Accessories (AREA)

Abstract

PURPOSE:To provide the reduction method of pressure increase in the case of water column separation with a simple construction not requiring a control and a wide installation place. CONSTITUTION:The pressure increase in the case of water column separation is reduced by providing an air valve 3 as one sample of parts by which an air is mixed or generation in the case of negative pressure in the upstream and downstream sides or either one side of a pipe passage 2 in which the generation of water column separation is forecasted. The pressure increase in the case of water column separating can be reduced by a simple constitution not requiring the control and wide installation place.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】上下水道等の管路系における、水
柱分離現象時の圧力上昇低減方法に関する。
[Industrial Application Field] This invention relates to a method for reducing pressure rise during water column separation phenomenon in water and sewage pipeline systems.

【0002】0002

【従来の技術】ポンプを備えた管路内の圧力低下が蒸気
圧まで低下すると、そこで水柱分離が起こり空洞が発生
する。この空洞の消減に伴い管路内に高い圧力上昇が生
じ、その衝撃圧により管路が破損するおそれがある。そ
こで管路の破損等の原因となる空洞消減時の高い圧力上
昇を防止し空洞を生じないように対策していた。その具
体例を以下に示す。
BACKGROUND OF THE INVENTION When the pressure drop in a pipeline equipped with a pump drops to vapor pressure, separation of the water column occurs and cavities are created. As this cavity disappears, a high pressure rise occurs within the pipe, and the impact pressure may cause the pipe to be damaged. Therefore, measures were taken to prevent the formation of cavities by preventing the high pressure rise when the cavities disappear, which could cause damage to the pipelines. A specific example is shown below.

【0003】すなわち、 (1)管路に立上り部のないように配管系を設ける。[0003] That is, (1) Install the piping system so that there are no rising parts of the pipe.

【0004】(2)サージタンクを設ける。(2) Provide a surge tank.

【0005】(3)ワンウェイサージタンクを設ける。(3) A one-way surge tank is provided.

【0006】(4)空気弁を設ける。(4) Provide an air valve.

【0007】(5)圧力水槽を設ける。(5) Provide a pressure water tank.

【0008】(6)ポンプにフライホイールを設ける。(6) A flywheel is provided on the pump.

【0009】(出典「水撃解析法」John Parm
akian著  小堀,横山訳  出版  コロナ社)
これら従来の技術は地形的な制約を受けたり、装置の設
置場所、大きさを考慮しなければならない。また、(6
)のように制御を必要とするとポンプ等の特性を考慮し
なければならず、負圧軽減対策にも問題が出てくる。
(Source: “Water hammer analysis method” John Parm
Written by Akian, translated by Kobori and Yokoyama, published by Coronasha)
These conventional techniques are subject to topographical constraints and must take into consideration the installation location and size of the device. Also, (6
), if control is required, the characteristics of the pump, etc. must be taken into account, and problems arise in measures to reduce negative pressure.

【0010】そこで、負圧対策として圧力降下が起こっ
た時、エアー弁よりエアを吸入することにより水柱分離
を防止し、逆止弁および逆止弁を迂回するバイパス管の
作用と合わせて圧力上昇を防止する。(実公昭48−9
681号公報)のものも考案されている。しかし実公昭
48−968 号公報に記載のものは、逆止弁の制御が
重要でありこの制御の方法によっては、弁閉鎖による水
撃現象が生じてしまう。また、管路は、ほとんど、地下
に埋設されるのでバイパス管の設置には費用,設置場所
等の問題も出てくる。
[0010] Therefore, as a countermeasure against negative pressure, when a pressure drop occurs, air is sucked in from the air valve to prevent water column separation, and together with the action of the check valve and the bypass pipe that bypasses the check valve, the pressure rises. prevent. (Jikko 48-9
681) has also been devised. However, in the device described in Japanese Utility Model Publication No. 48-968, control of the check valve is important, and depending on the control method, a water hammer phenomenon may occur due to valve closure. Furthermore, since most pipelines are buried underground, installation of bypass pipes poses problems such as cost and location.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、制御
及び広い設置場所を必要としない、水柱分離時の圧力上
昇低減方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for reducing pressure rise during water column separation that does not require control or a large installation space.

【0012】0012

【課題を解決するための手段】本発明は管路破損等の原
因となる高い圧力上昇を防止するため、水柱分離の発生
が予測される場所で負圧になったとき、その場所の上流
と下流側、または、そのどちらか一方、空気を混入また
は発生させる部品を設ける。
[Means for Solving the Problems] In order to prevent high pressure increases that may cause pipeline breakage, the present invention provides a system for preventing high pressure increases that may cause pipeline breakage, etc. when negative pressure occurs at a location where water column separation is expected to occur A part that mixes or generates air is provided on the downstream side or either of them.

【0013】[0013]

【作用】管路内の流速が急に変化すると、それに伴って
管路内の圧力が急激に変化し圧力上昇、圧力降下を繰り
返す。この圧力降下時に、圧力が蒸気圧まで低下すると
そこで蒸気が起こり、空洞をふくむ二相流となる。この
空洞が圧力波の伝播によりつぶされたとき、水撃現象時
より高い圧力上昇が起こり管路を破損する。しかし、管
路内で水柱分離が生じてもそれは空洞が消減するときに
高い圧力上昇が起こることを必ずしも意味するものでは
ない。管路を破損する高い圧力を発生するのに十分に流
速を生じるには、大きな動水勾配が必要である。この動
水勾配は基準面からの配管の高さと圧力水頭の和で表わ
される。
[Operation] When the flow velocity in the pipe changes suddenly, the pressure in the pipe changes rapidly, and the pressure rises and falls repeatedly. During this pressure drop, when the pressure decreases to the vapor pressure, steam is generated there, resulting in a two-phase flow that includes the cavity. When this cavity is collapsed by the propagation of pressure waves, a higher pressure rise than during the water hammer phenomenon occurs, causing damage to the pipeline. However, the occurrence of water column separation within the conduit does not necessarily mean that a high pressure rise will occur as the cavity disappears. Large hydraulic gradients are required to generate flow velocities sufficient to generate high pressures that can rupture the pipeline. This hydraulic gradient is expressed as the sum of the height of the pipe from the reference plane and the pressure head.

【0014】水撃現象時の圧力水頭は、文献「明解  
水理学」日野幹雄著に示されるように式(1)で示され
る。
[0014] The pressure head during the water hammer phenomenon is described in the literature ``Clear explanation.
As shown in "Hydraulics" written by Mikio Hino, it is expressed by equation (1).

【0015】[0015]

【数1】[Math 1]

【0016】そこで本発明では式(1)の圧力波伝播速
度を低下させることにより動水勾配を小さくし、高い圧
力上昇を低減する。
Therefore, in the present invention, the hydraulic gradient is reduced by lowering the pressure wave propagation velocity in equation (1), thereby reducing the high pressure rise.

【0017】文献FLUID TRANSIENT W
ylie/Streeter著の141ページのFig
ure 8−3,P141ページのFigure8−4
に示されるように液体で満たされている管路内の圧力波
伝播速度は管路内の空気量により低下する。 例えば、Figure8−3によれば、圧力水頭が16
mのとき、空気量がボイド率で0.0001% の場合
、圧力波伝播速度は約1300m/Sなのに対し、空気
量がボイド率で1.0% の場合では、圧力波伝播速度
は200m/S以下になっている。
Literature FLUID TRANSIENT W
Fig on page 141 by ylie/Streeter
ure 8-3, Figure 8-4 on page 141
As shown in , the pressure wave propagation velocity in a liquid-filled pipe decreases depending on the amount of air in the pipe. For example, according to Figure 8-3, the pressure head is 16
m, when the air volume is 0.0001% in void ratio, the pressure wave propagation velocity is approximately 1300 m/s, whereas when the air volume is 1.0% in void ratio, the pressure wave propagation velocity is 200 m/s. It is below S.

【0018】本発明の水柱分離現象時の圧力上昇低減方
法は、水柱分離の発生が予測される場所の上流と下流側
、または、そのどちらか一方の圧力波伝播速度を低下さ
せる。それにより水柱分離時の負圧波の伝播を遅くする
ことで空洞消減時の高い圧力上昇を抑える。従って、水
柱分離時の空洞消減に伴う高い圧力上昇を低減し、管路
の破損等を防ぐことができる。
The method of reducing pressure rise during a water column separation phenomenon according to the present invention reduces the pressure wave propagation velocity upstream and/or downstream of a location where water column separation is predicted to occur. This slows down the propagation of negative pressure waves when the water column separates, thereby suppressing the high pressure rise when the cavity disappears. Therefore, it is possible to reduce the high pressure increase caused by the disappearance of cavities during water column separation, and to prevent damage to the pipe line.

【0019】[0019]

【実施例】次に本発明を図1に従って説明する。図1は
本発明を適用した停電等によりポンプの電動機の電源が
しや断されて急に動力を失った場合の水柱分離時の圧力
上昇低減方法を示している。
EXAMPLE Next, the present invention will be explained with reference to FIG. FIG. 1 shows a method of reducing pressure rise during water column separation to which the present invention is applied when the power to the motor of the pump is suddenly cut off due to a power outage or the like and the power is suddenly lost.

【0020】図1は、貯水池1,管路2,吐出し槽4,
ポンプ5,逆止弁6より成る管路系を示したものである
。停電等によりポンプが急に動力を失った場合、管路の
立上り部aで水柱分離が起こり空洞が発生する。従来は
管路の立上り部にサージタンク等を設けることにより水
柱分離を生じないような対策を行っていた。サージタン
クは管路との接続管が十分大きいと見掛け上は吐出し水
槽となり、サージタンク以降、吐出し負圧は防止される
。また、サージタンクは単なる水槽のため、制御がいら
ず信頼性はもっとも高い。しかし、サージタンク水面を
動水勾配以上としなければならず、また、管内径の太い
長距離管の場合は、逆流量を考慮しサージタンク容量は
大きくとらなくてはならない。そのため地形的な制約を
受け設置が不可能である場合がある。そこで本発明によ
れば、立上り部aの水柱分離の発生の予測場所で、負圧
が生じたときその上流側と下流側に空気弁3等により空
気を混入させる。それにより管路内の圧力波伝播速度を
低下させ、水柱分離aの負圧波の伝播を遅くすることで
空洞消減時の高い圧力上昇を抑える。一例を示すと管内
径2.2m ,管路長さ4167m,管肉厚28mm,
材質が鋼管の場合、空気が存在しない場合の圧力波伝播
速度は1004.0m/S であるが、管路内の圧力水
頭が100mで図1の立上り部の上流と下流側に約0.
5m3ずつ空気弁3等の部品により空気を混入する場合
、圧力波伝播速度は約650m/Sに下がり、水柱分離
時の高い圧力上昇は三分の二に抑えられる。
FIG. 1 shows a reservoir 1, a pipe line 2, a discharge tank 4,
This figure shows a pipe system consisting of a pump 5 and a check valve 6. If the pump suddenly loses power due to a power outage or the like, water column separation occurs at the rising portion a of the pipe, creating a cavity. Conventionally, measures have been taken to prevent water column separation by providing a surge tank or the like at the rising end of the pipeline. If the surge tank has a sufficiently large connection pipe to the pipeline, it will appear to be a discharge water tank, and discharge negative pressure will be prevented from the surge tank onwards. Also, since the surge tank is just a water tank, it requires no control and has the highest reliability. However, the surge tank water level must be higher than the hydraulic gradient, and in the case of long-distance pipes with large inner diameters, the surge tank capacity must be increased to account for backflow. Therefore, installation may be impossible due to topographical constraints. Therefore, according to the present invention, when negative pressure is generated at the predicted location of the water column separation in the rising portion a, air is mixed into the upstream and downstream sides thereof using the air valve 3 or the like. This reduces the pressure wave propagation speed within the pipe and slows down the propagation of the negative pressure wave in the water column separation a, thereby suppressing a high pressure rise when the cavity disappears. As an example, the inner diameter of the pipe is 2.2 m, the length of the pipe is 4167 m, the wall thickness is 28 mm,
When the material is steel pipe, the pressure wave propagation velocity in the absence of air is 1004.0 m/s, but when the pressure head in the pipe is 100 m, there is a pressure wave propagation velocity of about 0.0 m/s on the upstream and downstream sides of the rising part in Fig. 1.
When air is mixed in by 5 m3 using parts such as the air valve 3, the pressure wave propagation velocity is reduced to about 650 m/s, and the high pressure increase during water column separation is suppressed to two-thirds.

【0021】公知例(実公昭48−9681号公報)で
は、水柱分離の発生が予測される場所に空気を混入し、
最初の水柱分離は下流側の吐出し水槽等へ自然流下させ
る。しかし、管路系によっては吐出し水槽側の水が逆流
し空気弁より空気を押し出すとともに、その流速差によ
りポンプ側の水柱へ衝突し、大きな圧力上昇の問題があ
るためバイパス管により水の逆流を緩和している。その
ため、バイパス管のような余分な設備が必要であった。 本発明では、水柱分離の発生が予測される場所ではなく
、その少し離れた上流側と下流側、または、そのどちら
か一方に空気を混入または発生させ、圧力波伝播速度を
低下させることにより、空洞消減に伴う高い圧力上昇を
低減する。それにより空洞消減後に、再び、水撃現象及
び水柱分離現象の発生することを防ぎ、余分な設備を必
要としない。
In a known example (Japanese Utility Model Publication No. 48-9681), air is mixed into a place where water column separation is expected to occur,
The first separation of the water column is carried out by allowing it to flow naturally to a discharge tank or the like on the downstream side. However, depending on the pipe system, the water from the discharge tank side flows backwards, pushing air out of the air valve, and due to the difference in flow velocity, it collides with the water column on the pump side, causing a problem with a large pressure increase, so the water flows backwards through the bypass pipe. is being eased. Therefore, extra equipment such as a bypass pipe was required. In the present invention, air is mixed in or generated not at the location where water column separation is expected to occur, but at a slightly distant upstream and downstream side, or either of the two, thereby reducing the pressure wave propagation speed. Reduces the high pressure rise associated with cavity elimination. This prevents the water hammer phenomenon and water column separation phenomenon from occurring again after the cavity has disappeared, and no extra equipment is required.

【0022】[0022]

【発明の効果】本発明によれば制御及び広い設置場所な
しの簡単な構成で、水柱分離時の圧力上昇低減が可能で
ある。
According to the present invention, it is possible to reduce pressure rise during water column separation with a simple configuration that does not require control or a large installation space.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す系統図。FIG. 1 is a system diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…貯水池、2…管路、3…空気弁、4…吐出し槽、5
…ポンプ、6…逆止弁。
1...Reservoir, 2...Pipe line, 3...Air valve, 4...Discharge tank, 5
...Pump, 6...Check valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ポンプを備えた管路系で、水柱分離の発生
が予想される場所の上流と下流側またはそのどちらか一
方に、負圧時に空気を混入または発生させる部品を設け
ることを特徴とする水柱分離時の圧力上昇低減方法。
Claim 1: A pipeline system equipped with a pump, characterized in that a component that mixes or generates air when negative pressure is provided is provided upstream and/or downstream of a location where water column separation is expected to occur. A method for reducing pressure rise during water column separation.
JP3107099A 1991-05-13 1991-05-13 Reduction method of pressure increase in case of water column separation Pending JPH04337192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3107099A JPH04337192A (en) 1991-05-13 1991-05-13 Reduction method of pressure increase in case of water column separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3107099A JPH04337192A (en) 1991-05-13 1991-05-13 Reduction method of pressure increase in case of water column separation

Publications (1)

Publication Number Publication Date
JPH04337192A true JPH04337192A (en) 1992-11-25

Family

ID=14450437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107099A Pending JPH04337192A (en) 1991-05-13 1991-05-13 Reduction method of pressure increase in case of water column separation

Country Status (1)

Country Link
JP (1) JPH04337192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022131059A (en) * 2021-02-26 2022-09-07 株式会社シンテック Water hammer cushioning method and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022131059A (en) * 2021-02-26 2022-09-07 株式会社シンテック Water hammer cushioning method and its device

Similar Documents

Publication Publication Date Title
Karney et al. Transient analysis of water distribution systems
US5288312A (en) Fluid slug flow mitigation and gas separation system
Gisonni et al. Supercritical flow in the 90 junction manhole
Gargano et al. Supercritical flow across sewer manholes
JPH04337192A (en) Reduction method of pressure increase in case of water column separation
GB2054041A (en) Surge Suppression Device
EP0107459A1 (en) Pump control-surge reliever system
Bergant et al. Water hammer analysis of pumping systems for control of water in underground mines
EP0238535A1 (en) Slug-catcher that can be pigged.
Richards Water-column separation in pump discharge lines
CN108560512A (en) Surge-chamber with flexible sudden expansion interface and impedance,motional
Parmakian One-way surge tanks for pumping plants
Richards Air binding in large pipelines flowing under vacuum
Elbashir et al. Hydraulic transient in a pipeline (using computer model to calculate and simulate transient)
Samani et al. Experimental results of pressure fluctuations in a water conduit section due to formation of unstable two-phase air-water flow
Singh et al. Rigid versus Flexible Pipe Material Surge Response: A Case Study for a Raw Water Pipeline
CN212776831U (en) Underground pressure reducing device for mine
Li et al. Air/vacuum valve breakage caused by pressure surges—Analysis and solution
Hamad et al. Water Hammer Analysis in Water Pipelines and Methods for Protection
JP3218326B2 (en) Emergency transport stop device in port handling such as crude oil
JP2002174392A (en) Water hammer preventing device
Jalut et al. Surge Tank Analysis for Water Hammer Remedy for Long Distance Pipeline
Van Vuuren The advantages and modeling of controlled air release from pipelines
Al-Ghamdi TRANSIENTS ANALYSIS IN PARALLEL PUNIPS LLLLGGLGLL GGGGLGL GGLGGGGGS
Abdulridha et al. Transient state analysis and mitigation of water hammer for Al-Dbbouni water supply project