JPH04337170A - Microvalve - Google Patents

Microvalve

Info

Publication number
JPH04337170A
JPH04337170A JP10424291A JP10424291A JPH04337170A JP H04337170 A JPH04337170 A JP H04337170A JP 10424291 A JP10424291 A JP 10424291A JP 10424291 A JP10424291 A JP 10424291A JP H04337170 A JPH04337170 A JP H04337170A
Authority
JP
Japan
Prior art keywords
valve
film
microvalve
substrate
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10424291A
Other languages
Japanese (ja)
Inventor
Tsukasa Muranaka
司 村中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10424291A priority Critical patent/JPH04337170A/en
Publication of JPH04337170A publication Critical patent/JPH04337170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Check Valves (AREA)

Abstract

PURPOSE:To prevent leakage of fluid and to simplify regulation of a valve opening pressure by removing a sacrifice layer after the sacrifice layer, a stress film, and a valve film are formed on the upper part of a base sheet. CONSTITUTION:An SiO2 film is formed on a base sheet 21 of a monocrystal or multicrystal Si by thermal oxidation and spattering, and etching is applied thereto, for example, in an HF solution, to form the shape of a sacrifice layer 31. Vapor phase growth of a nitride, such as Si3N4, is conducted by CVD and the nitride is etched into the shape of a valve stress film 32 shape. Vapor phase growth of a monocrystal Si film is conducted by CVD, etching is effected by using an etching solution, such as a KOH solution, to form a valve film 32, and thereafter the sacrifice layer 31 is removed by using a HF solution. Or further, after the base sheet 21 of a microvalve is separated away from a valve film 33, positive electrode joining is performed on a flow passage base sheet in which a through-hole is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は流体の流量を制御するマ
イクロバルブに係わり、特に薄膜形成技術を用いたマイ
クロバルブの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microvalve for controlling the flow rate of fluid, and more particularly to a method for manufacturing a microvalve using thin film forming technology.

【0002】0002

【従来の技術】従来、薄膜形成技術を用いたマイクロバ
ルブは、日経エレクトロニクスNo.480(1989
年8月21日発行)p.125−155の”シリコンマ
イクロマシーニング技術”と題する特集によって載せら
れているように、バルブ膜を犠牲層で作ったバルブ膜を
基板上に陽極接合するといった物であった。図2に従来
方式のマイクロバルブを示す。図2(a)がバルブの断
面図である。21がバルブ膜、22が基板である。21
は犠牲層を用いた表面マイクロマシーニング技術を用い
て形成され、21と22は陽極接合によって接合されて
いた。図2(b)が正面図である。
2. Description of the Related Art Conventionally, microvalves using thin film formation technology have been manufactured by Nikkei Electronics No. 480 (1989
Published on August 21, 2016) p. As reported in the special feature entitled "Silicon Micromachining Technology" in 125-155, a valve film made of a sacrificial layer was anodically bonded onto a substrate. Figure 2 shows a conventional microvalve. FIG. 2(a) is a sectional view of the valve. 21 is a valve membrane, and 22 is a substrate. 21
was formed using a surface micromachining technique using a sacrificial layer, and 21 and 22 were joined by anodic bonding. FIG. 2(b) is a front view.

【0003】0003

【発明が解決しようとする課題】しかし、上記21のバ
ルブ膜の突起部23と、上記22の基板間に隙間がある
ため、通常状態において、流体がリークしてしまうとい
う問題点があった。また、開弁圧の制御をバルブの大き
さ、厚みでしか、制御できず開弁圧を大きく出来ないと
いう欠点があった。
However, since there is a gap between the protrusion 23 of the valve membrane 21 and the substrate 22, there is a problem in that fluid leaks under normal conditions. Another disadvantage is that the valve opening pressure cannot be increased because the valve opening pressure can only be controlled by the size and thickness of the valve.

【0004】0004

【課題を解決するための手段】上記問題点を解決するた
めの本発明のマイクロバルブは、基板の上部に、犠牲層
、バルブに応力を加える応力膜、上記バルブ薄膜を薄膜
形成し、犠牲層を除去することによって作られる事を特
徴とする。
[Means for Solving the Problems] The microvalve of the present invention for solving the above-mentioned problems has a sacrificial layer, a stress film that applies stress to the bulb, and the above-mentioned valve thin film formed on the upper part of the substrate, and the sacrificial layer It is characterized by being created by removing.

【0005】上記マイクロバルブにおいて、上記基板と
バルブ膜を剥離した後、スルーホールの形成された流路
基板に接合することを特徴とする。
[0005] The above-mentioned microvalve is characterized in that after the substrate and the valve film are separated, the microvalve is bonded to a channel substrate in which through-holes are formed.

【0006】[0006]

【実施例】以下、本発明の1実施例を図1に示す。図1
には(a)には断面図、図2(b)は正面図を示す。2
1がバルブ膜、22が基板、23がバルブに応力を加え
る応力膜、24がバルブ突起部、25が流体の入力部で
ある。上記バルブ突起部24はバルブ応力膜23によっ
て、基板方向に応力にたわんでいる。そして、バルブ突
起部24は基板22に接触し、ある応力を基板22に加
えている。つまり、ある予圧がバルブ膜23にかかって
いる事になる。
[Embodiment] An embodiment of the present invention is shown in FIG. 1 below. Figure 1
2(a) shows a sectional view, and FIG. 2(b) shows a front view. 2
1 is a valve membrane, 22 is a substrate, 23 is a stress membrane that applies stress to the valve, 24 is a valve protrusion, and 25 is a fluid input part. The valve protrusion 24 is bent by stress in the direction of the substrate due to the valve stress film 23. The valve protrusion 24 then contacts the substrate 22 and applies a certain stress to the substrate 22. In other words, a certain preload is applied to the valve membrane 23.

【0007】図3(a)から(d)には、本発明のマイ
クロバルブの製造方法を示す。図3(a)において、基
板21上にSiO2 膜を熱酸化、スパッタ等により形
成し、例えばHF溶液中でエッチングし、犠牲層31の
形状を得る。SiO2 膜31の場合、パターニング、
エッチング工程が2回で所望の形状が得られる。基板2
1の材料は単結晶、多結晶Siなどが一般的である。図
3(b)において、Si3N4 等の窒化物をCVDに
より、気相成長させ、窒化物をバルブ応力膜32の形状
にエッチングする。エッチング液としては、H3 PO
4 が一般的である。図3(c)において、単結晶Si
膜をCVDにより、気相成長させ、KOH溶液等のエッ
チング液を用いて、エッチングし、バルブ膜33の形状
を得る。図3(d)において、HF溶液を用いて、犠牲
層31を除去する。すると、バルブ膜33は応力膜32
との内部応力の差によって、基板21方向にモーメント
がかかり、バルブ突起部34が基板21と接触し、押さ
えつけられ流体のリークを防ぐことが出来る。
FIGS. 3(a) to 3(d) show a method of manufacturing a microvalve according to the present invention. In FIG. 3A, a SiO2 film is formed on a substrate 21 by thermal oxidation, sputtering, etc., and etched in, for example, an HF solution to obtain the shape of a sacrificial layer 31. In the case of the SiO2 film 31, patterning,
The desired shape can be obtained by performing the etching process twice. Board 2
The material of 1 is generally single crystal, polycrystalline Si, or the like. In FIG. 3B, a nitride such as Si3N4 is grown in a vapor phase by CVD, and the nitride is etched into the shape of the valve stress film 32. In FIG. As an etching solution, H3PO
4 is common. In Figure 3(c), single crystal Si
The film is grown in a vapor phase by CVD and etched using an etching solution such as a KOH solution to obtain the shape of the valve film 33. In FIG. 3(d), the sacrificial layer 31 is removed using an HF solution. Then, the valve film 33 becomes the stress film 32
Due to the difference in internal stress, a moment is applied in the direction of the substrate 21, and the valve protrusion 34 comes into contact with the substrate 21 and is pressed down, thereby preventing fluid leakage.

【0008】図4は請求項2に関する実施例である。図
4(a)は図3と同様の工程を用いて作成されたマイク
ロバルブを示している。41はガラス基板上部に形成さ
れたSiO2 膜であり、42は単結晶Siからなるバ
ルブ膜、43は応力膜であり、バルブ突起部44も応力
膜43で覆われている。これをHF溶液を用いて、犠牲
層をエッチングすると、図4(b)の様な形状のマイク
ロバルブが得られる。次に、図4(c)において、流体
が通るスルーホール46を設けたガラス基板45と図4
(b)の構造物を陽極接合する。すると、バルブ膜42
の周辺部はガラス基板41と接合されるが、バルブ突起
部44は応力膜43が突起部を覆っているため、接合さ
れない。この場合、応力膜43の窒化物を利用すると、
0.1μm程度でも接合しないことが、確かめられてい
る。
FIG. 4 shows an embodiment of claim 2. FIG. 4(a) shows a microvalve made using the same process as FIG. 3. 41 is a SiO2 film formed on the top of the glass substrate, 42 is a bulb film made of single crystal Si, 43 is a stress film, and the bulb protrusion 44 is also covered with the stress film 43. When the sacrificial layer is etched using an HF solution, a microvalve having a shape as shown in FIG. 4(b) is obtained. Next, in FIG. 4(c), a glass substrate 45 provided with a through hole 46 through which a fluid passes and a glass substrate 45 shown in FIG.
The structure in (b) is anodically bonded. Then, the valve membrane 42
The peripheral portion of the bulb is bonded to the glass substrate 41, but the bulb protrusion 44 is not bonded because the stress film 43 covers the protrusion. In this case, if the nitride of the stress film 43 is used,
It has been confirmed that bonding does not occur even when the thickness is about 0.1 μm.

【0009】また、本発明のマイクロバルブの材質とし
て、基板21には、ガラス、単結晶Si、多結晶Si等
様々な材料が考えられる。バルブ膜としても、アルミ、
Ni等。応力膜としても、ZnO、Au、Cr等の様々
な物質が考えられる。
[0009] As for the material of the microvalve of the present invention, the substrate 21 can be made of various materials such as glass, single crystal Si, and polycrystalline Si. Aluminum, also used as a valve membrane.
Ni et al. Various materials such as ZnO, Au, and Cr can be considered as the stress film.

【0010】バルブの構造としても、いわゆる片持ちは
り構造のマイクロバルブも考えられる。
As for the structure of the valve, a so-called cantilever structure micro valve is also considered.

【0011】[0011]

【発明の効果】以上述べたように、本発明のマイクロバ
ルブによれば、表面マイクロマシーニング技術を用い、
応力を利用したバルブ膜を形成できることにより、流体
のリークない、ミクロンオーダーのバルブが形成可能と
なる。例えば、バルブの直径が20μm、厚みが2μm
のマイクロバルブにおいて、応力膜の直径を12μm、
厚みを1μmとすれば、流体が1mH2 Oの圧力でバ
ルブの入力方向にかかっても、流体のリークは生じない
マイクロバルブの構成が可能となる。また、応力膜の厚
みを変化させることによって、開弁圧の調整が簡便に出
来る。
[Effects of the Invention] As described above, according to the microvalve of the present invention, surface micromachining technology is used to
By forming a valve film using stress, it becomes possible to form a micron-order valve that does not leak fluid. For example, the diameter of the bulb is 20 μm and the thickness is 2 μm.
In this microvalve, the diameter of the stress film is 12 μm,
If the thickness is 1 μm, it is possible to construct a microvalve that does not cause fluid leakage even if fluid is applied in the input direction of the valve at a pressure of 1 mH2O. Further, by changing the thickness of the stress film, the valve opening pressure can be easily adjusted.

【0012】図3に述べたように、基板とバルブを一体
として製造できるため、バルブ突起部、流路部にゴミお
よび、コンタミが入りにくくなっているため、精度よく
作ることが、可能である。
As described in FIG. 3, since the substrate and the valve can be manufactured as one unit, it is difficult for dust and contaminants to enter the valve protrusion and flow path, making it possible to manufacture the valve with high precision. .

【0013】このように小型のマイクロバルブを作成す
ることが可能となることにより、小型のマイクロポンプ
を作成することが、可能となる。
[0013] By making it possible to make such a small microvalve, it becomes possible to make a small micropump.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のマイクロバルブの断面図(a)および
、正面図(b)である。
FIG. 1 is a cross-sectional view (a) and a front view (b) of a microvalve of the present invention.

【図2】従来のマイクロバルブの断面図(a)および、
正面図(b)である。
FIG. 2 is a sectional view (a) of a conventional microvalve;
It is a front view (b).

【図3】(a)〜(d)は本発明のマイクロバルブの製
造工程を示す図である。
FIGS. 3(a) to 3(d) are diagrams showing the manufacturing process of the microvalve of the present invention.

【図4】(a)〜(c)は本発明の請求項2のマイクロ
バルブの製造工程を示す図である。
FIGS. 4(a) to 4(c) are diagrams showing the manufacturing process of the microvalve according to claim 2 of the present invention.

【符号の説明】[Explanation of symbols]

1  バルブ膜 2  基板 3  応力膜 4  バルブ突起部 5  流路部 1 Valve membrane 2 Board 3 Stress film 4 Valve protrusion 5 Flow path section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】流体の流量を制御すると、基板と、バルブ
薄膜から構成されるマイクロバルブにおいて、基板の上
部に、犠牲層、バルブに応力を加える応力膜、上記バル
ブ薄膜を薄膜形成し、犠牲層を除去することによって作
られる事を特徴とするマイクロバルブ。
1. In a microvalve composed of a substrate and a valve thin film, a sacrificial layer, a stress film that applies stress to the valve, and the valve thin film are formed on the top of the substrate to control the flow rate of a fluid. A microvalve characterized by being made by removing a layer.
【請求項2】上記マイクロバルブにおいて、上記基板と
バルブ膜を剥離した後、スルーホールの形成された流路
基板に接合することを特徴とするマイクロバルブ。
2. The microvalve described above, wherein after the substrate and the valve film are separated, the microvalve is bonded to a channel substrate in which a through hole is formed.
JP10424291A 1991-05-09 1991-05-09 Microvalve Pending JPH04337170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10424291A JPH04337170A (en) 1991-05-09 1991-05-09 Microvalve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10424291A JPH04337170A (en) 1991-05-09 1991-05-09 Microvalve

Publications (1)

Publication Number Publication Date
JPH04337170A true JPH04337170A (en) 1992-11-25

Family

ID=14375489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10424291A Pending JPH04337170A (en) 1991-05-09 1991-05-09 Microvalve

Country Status (1)

Country Link
JP (1) JPH04337170A (en)

Similar Documents

Publication Publication Date Title
US5408731A (en) Process for the manufacture of integrated capacitive transducers
US7912235B2 (en) Capacitive microphone and method for making the same
KR100809674B1 (en) Method of manufacturing a membrane sensor
US20050241944A1 (en) Membrane and method for the production of the same
US6547973B2 (en) Fabrication of suspended structures using a sacrificial layer
EP0160463B1 (en) Valve element for use in an ink-jet printer head
US7819015B2 (en) Silicon carbide piezoresistive pressure transducer and method of fabrication
US6470904B1 (en) Normally closed in-channel micro check valve
JP2002036198A (en) Micro mechanic component and method of manufacturing the same
KR950020963A (en) Manufacturing Method of Semiconductor Device Using Porous Silicon
EP1296067B1 (en) Passive microvalve
JPH051669A (en) Manufacture of micro-pump and micro-valve
US20030215972A1 (en) Single wafer fabrication of integrated micro-fluidic system
US20090307906A1 (en) Method of producing components for controlling a fluid flow and components produced by this method
JPH04337170A (en) Microvalve
JP2001094159A (en) Method and structure for forming thermal isolation in micro-type theremopile element
JPH06302834A (en) Manufacture of thin-film structure
JP2000028457A (en) Production of sensor film substrate
JPH01213523A (en) Micro-valve mass flow controller
JP2738054B2 (en) Micro valve
JP2007002924A (en) Micro valve
JP2000220766A (en) Semiconductor microvalve and manufacture thereof
GB2295441A (en) Microminature fluid flow device
JP3893077B2 (en) Semiconductor device and manufacturing method thereof
EP4159445A1 (en) Microfluidic mems device comprising a buried chamber and manufacturing process thereof