JPH04337006A - Production of raw material compound for injection molding of metallic powder - Google Patents

Production of raw material compound for injection molding of metallic powder

Info

Publication number
JPH04337006A
JPH04337006A JP3110289A JP11028991A JPH04337006A JP H04337006 A JPH04337006 A JP H04337006A JP 3110289 A JP3110289 A JP 3110289A JP 11028991 A JP11028991 A JP 11028991A JP H04337006 A JPH04337006 A JP H04337006A
Authority
JP
Japan
Prior art keywords
kneading
metal powder
injection molding
compound
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3110289A
Other languages
Japanese (ja)
Other versions
JP2793919B2 (en
Inventor
Kimihiro Nishimura
西 村 公 宏
Hiroshi Otsubo
大 坪  宏
Kenji Yoshino
吉 野 健 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3110289A priority Critical patent/JP2793919B2/en
Publication of JPH04337006A publication Critical patent/JPH04337006A/en
Application granted granted Critical
Publication of JP2793919B2 publication Critical patent/JP2793919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly produce the compd. for injection molding of metallic powder having an excellent flow property and uniformity by previously kneading the metallic powder and high-molecular compds. at the time of using the high- molecular compds. and the components of the mol.wt. lower than the mol.wt. thereof as the essential components of an org. binder. CONSTITUTION:The metallic powder and the high-molecular compds. are first kneaded and thereafter the remaining low molecular components are added thereto and the mixture is kneaded at the time of using >=1 kinds of the high- molecular compds. and >=1 kinds of the low mol.wt. components as the essential components of the org. binder. The time of the stage for previously kneading the metallic powder and the high-polymer compds. is preferably >=10 minutes and the viscosity of the molten high-molecular compds. at the time of previously kneading the metallic powder and the high-molecular compds. is preferably >=1000poise viscosity (1000s<-1> shearing rate).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は金属粉末射出成形用コン
パウンドの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal powder injection molding compound.

【0002】0002

【従来の技術】複雑形状の金属部品を製造する技術とし
て、金属粉末射出成形法が、近年、利用されることが多
くなっている。この方法においては、金属粉末はまず熱
可塑性の有機バインダと混練され原料コンパウンドとな
る。次に、そのコンパウンドを射出成形して得られた成
形体を脱脂、焼結して部品を製造する。
2. Description of the Related Art In recent years, metal powder injection molding has been increasingly used as a technique for manufacturing metal parts with complex shapes. In this method, metal powder is first kneaded with a thermoplastic organic binder to form a raw material compound. Next, the compound is injection molded, and the resulting molded body is degreased and sintered to produce parts.

【0003】金属粉末射出成形法に用いられるバインダ
の構成要素としては、熱可塑性の樹脂、ワックス、可塑
剤、滑剤などが挙げられる。樹脂はバインダの主成分と
して原料コンパウンドに流動性を与え、また成形体の常
温での強度を持たせる。さらに、バインダが1成分では
脱脂が困難なので通常、樹脂よりも低分子の有機物であ
るワックスや可塑剤などを添加する。また、この低分子
成分は原料の射出成形時の流動性を改善する意味もある
。このように金属粉末射出成形用原料コンパウンドは金
属粉末と樹脂、ワックス、可塑剤など数種の有機物の混
合物であるのが一般的である。
Components of the binder used in the metal powder injection molding method include thermoplastic resins, waxes, plasticizers, lubricants, and the like. As the main component of the binder, the resin provides fluidity to the raw material compound and also provides strength to the molded product at room temperature. Furthermore, since degreasing is difficult when the binder is a single component, wax, a plasticizer, or the like, which is an organic substance with a lower molecular weight than the resin, is usually added. This low molecular weight component also has the meaning of improving the fluidity of the raw material during injection molding. As described above, the raw material compound for metal powder injection molding is generally a mixture of metal powder and several types of organic substances such as resin, wax, and plasticizer.

【0004】金属粉末射出成形法においてバインダに金
属粉末を均一に分散させることは重要である。分散が不
十分であると、原料中に金属粉末の凝集が起こるなどし
て不均一になったり、射出成形時の流動性が悪化したり
する。また、原料が不均一であると、成形体に密度分布
が生じ、焼結体の寸法精度が低下したり、そりなどの欠
陥がでることもある。さらに、原料コンパウンドは射出
成形時に金型に充填されるために良好な流動性を有して
いる必要がある。この流動性を得るためにも金属粉末の
バインダ中への均一な分散は必要である。
[0004] In the metal powder injection molding method, it is important to uniformly disperse the metal powder in the binder. If the dispersion is insufficient, the metal powder may aggregate in the raw material, resulting in non-uniformity or poor fluidity during injection molding. Furthermore, if the raw material is non-uniform, a density distribution will occur in the molded body, which may reduce the dimensional accuracy of the sintered body or cause defects such as warpage. Furthermore, the raw material compound needs to have good fluidity because it is filled into a mold during injection molding. In order to obtain this fluidity, it is necessary to uniformly disperse the metal powder in the binder.

【0005】金属粉末をバインダ中に均一に分散させる
方法として、金属粉末をあらかじめミキサ−等の機械的
な力によって凝集粉を分散したり、混練時間を長時間と
ることが行われている。また、均一性と流動性の改善の
ために、混練時に高い剪断力をかける方法も採られてい
る。
[0005] As a method for uniformly dispersing metal powder in a binder, the metal powder is dispersed in advance by mechanical force such as a mixer to disperse agglomerated powder, or kneading is carried out for a long time. Additionally, in order to improve uniformity and fluidity, a method of applying high shearing force during kneading has also been adopted.

【0006】[0006]

【発明が解決しようとする課題】金属粉末射出成形法に
おいて混練工程は原料コンパウンドの均質性と流動性を
支配する重要な工程である。このため、前述したように
粉末の前処理や、長時間の混練が行われている。
[Problems to be Solved by the Invention] In the metal powder injection molding method, the kneading step is an important step that controls the homogeneity and fluidity of the raw material compound. For this reason, as mentioned above, powder pretreatment and long-time kneading are performed.

【0007】しかし、原料である金属粉末を混練前に、
機械的な力で分散させる方法は、製造工程が1つ増える
ことになって煩雑であり、機械的な分散には、多大なエ
ネルギーを必要とし、時間もかかるという問題がある。 また、均一分散のために、混練を長時間行うと混練中に
低分子成分が飛散し、バインダ添加率が変化して結果的
に焼結体の寸法が変化するという弊害を生ずる。さらに
、長時間の混練は生産効率の面からも好ましくない。 高剪断力を加える混練は、その時の剪断発熱による低分
子成分の飛散が促進され前述したようなバインダ添加率
の変化がおこるほか、発熱による有機物の分解、劣化が
起こる場合がある。このような場合には、分解によって
生じたガスが射出成形体内部の「す」などの成形欠陥の
原因になる。
However, before kneading the raw metal powder,
The method of dispersing by mechanical force is complicated because it adds one manufacturing process, and mechanical dispersion requires a large amount of energy and takes time. Furthermore, if kneading is carried out for a long time in order to achieve uniform dispersion, low-molecular components will scatter during kneading, causing a problem in that the binder addition rate will change and, as a result, the dimensions of the sintered body will change. Furthermore, long-time kneading is not preferable from the viewpoint of production efficiency. When kneading with high shearing force applied, the shear heat generated at the time promotes the scattering of low-molecular components, causing the change in the binder addition rate as described above, and may also cause decomposition and deterioration of organic substances due to the heat generated. In such cases, the gas generated by decomposition causes molding defects such as "s" inside the injection molded product.

【0008】[0008]

【課題を解決するための手段】上記の問題を解決するた
めに、検討を重ねた結果、まず高粘性である高分子化合
物と金属粉末を先に混練して短時間で凝集粉を分散させ
、その後にバインダの低分子成分を加え混練を続けると
いう方法が有効であることを見いだした。この方法によ
れば、短時間の混練で、金属粉末が均一に分散した、な
おかつ流動性に優れた原料コンパウンドが製造できる。
[Means for solving the problem] In order to solve the above problem, after repeated studies, we first kneaded a highly viscous polymer compound and metal powder to disperse the agglomerated powder in a short time. It has been found that it is effective to add the low molecular weight component of the binder and continue kneading. According to this method, a raw material compound with uniformly dispersed metal powder and excellent fluidity can be produced by kneading for a short time.

【0009】すなわち、本発明は、金属粉末射出成形用
の金属粉末と有機物の混合物を製造する工程において、
有機バインダとして高分子化合物の1種以上とそれより
も低分子量の成分の1種以上を必須成分として用いると
き、まず金属粉末と前記高分子化合物を先に混練した後
、残りの低分子成分を加えて混練することを特徴とする
金属粉末射出成形用コンパウンドの製造方法を提供する
ものである。
That is, the present invention provides a process for producing a mixture of metal powder and organic substance for metal powder injection molding.
When using one or more polymeric compounds and one or more components with a lower molecular weight as essential components as an organic binder, first knead the metal powder and the polymeric compound, and then mix the remaining low molecular weight components. The present invention provides a method for producing a metal powder injection molding compound, which comprises additionally kneading the compound.

【0010】ここで、金属粉末と高分子化合物を先に混
練する工程の時間は10分以上が好ましく、また金属粉
末と高分子化合物を先に混練するときの、溶融した高分
子化合物の粘度は1000poise (剪断速度10
00s−1において)以上であるのが好ましい。
[0010] Here, the time for the step of first kneading the metal powder and the polymer compound is preferably 10 minutes or more, and the viscosity of the molten polymer compound when the metal powder and the polymer compound are first kneaded is 1000poise (shear rate 10
00s-1) or more.

【0011】[0011]

【作用】以下に本発明の内容をさらに詳しく説明する。[Operation] The contents of the present invention will be explained in more detail below.

【0012】使用される原料金属粉末としては、高圧水
アトマイズ粉、ガスアトマイズ粉、あるいはカルボニル
粉などが挙げられる。これらの粉末は一般に平均粒径が
10μm 以下である微粉末で、焼結性が良く、製品で
ある焼結体で高密度が達成され、機械的特性、耐食性な
どの特性に優れたものとなる。
[0012] Examples of the raw metal powder used include high-pressure water atomized powder, gas atomized powder, and carbonyl powder. These powders are generally fine powders with an average particle size of 10 μm or less, have good sintering properties, achieve high density in the sintered product, and have excellent properties such as mechanical properties and corrosion resistance. .

【0013】有機バインダとしては、少なくとも1種の
熱可塑性の高分子化合物、およびワックス、可塑剤など
の少なくとも1種の低分子成分を配合したものが用いら
れる。具体的には、高分子化合物としては、ポリエチレ
ン、ポリプロピレン、ポリスチレン、エチレン−酢酸ビ
ニル共重合体、ポリメタクリル酸アルキルエステルなど
が用いられる。また、低分子の成分としては、パラフィ
ンワックス、モンタンワックス、カルバナワックスなど
のワックスや可塑剤としてフタル酸ジブチル、フタル酸
ジオクチルなどが使用される。
[0013] As the organic binder, a compound containing at least one thermoplastic polymer compound and at least one low-molecular component such as a wax or a plasticizer is used. Specifically, as the polymer compound, polyethylene, polypropylene, polystyrene, ethylene-vinyl acetate copolymer, polymethacrylic acid alkyl ester, etc. are used. Further, as low-molecular components, waxes such as paraffin wax, montan wax, and carbana wax, and as plasticizers, dibutyl phthalate, dioctyl phthalate, and the like are used.

【0014】金属粉末射出成形用コンパウンドの混練工
程では良好な均一性と流動性を十分に達成する必要があ
る。本発明はこれを従来よりも短時間の混練で達成する
方法を開示する。具体的には、バインダの高分子成分と
金属粉末を先に混練し、しかる後に残りの低分子成分を
添加して混練して原料コンパウンドを製造する。
[0014] In the kneading process of metal powder injection molding compounds, it is necessary to sufficiently achieve good uniformity and fluidity. The present invention discloses a method of achieving this with a shorter kneading time than conventionally. Specifically, the polymeric component of the binder and metal powder are first kneaded, and then the remaining low-molecular components are added and kneaded to produce a raw material compound.

【0015】バインダは粉末間の空隙を確実に満たすこ
とが必要であるが、その樹脂成分だけと粉末を先に混練
するということは必要量よりも少ないバインダ量で混練
していることになる。従って、混練物は流動状態とはい
えずこの状態で混練を行うと、粉末には大きな剪断力が
かかる。この大きな剪断力によって凝集した粉末は分散
、解砕され長時間混練したときと同様な、均一性と流動
性の改善がなされる。
It is necessary for the binder to reliably fill the voids between the powders, but if only the resin component and the powder are kneaded first, the binder is kneaded with a smaller amount than the required amount. Therefore, the kneaded material cannot be said to be in a fluid state, and when kneading is performed in this state, a large shearing force is applied to the powder. The agglomerated powder is dispersed and crushed by this large shearing force, and the uniformity and fluidity are improved in the same way as when kneaded for a long time.

【0016】混練機としては、加圧ニーダなどが使用さ
れる。混練の手順としては、加圧ニーダを加熱しておき
、高分子化合物を先に投入して溶融させ、次に金属粉末
を投入して混練を行うが、高分子化合物と金属粉末を同
時に投入して混練を始めてもよい。ここで、金属粉末と
バインダの高分子化合物成分を混練する工程時間は10
分以上かけることが好ましい。この工程が10分未満で
あると、金属粉末の凝集の分散が十分でなく、均一性と
流動性を得るために、残りの低分子成分を投入した後に
長時間の混練が必要だからである。
[0016] As the kneading machine, a pressure kneader or the like is used. The kneading procedure is to heat the pressure kneader and first charge the polymer compound and melt it, then add the metal powder and knead it. You can start kneading. Here, the process time for kneading the metal powder and the polymer compound component of the binder is 10
It is preferable to spend more than a minute. If this step takes less than 10 minutes, the agglomerated metal powder will not be sufficiently dispersed, and in order to obtain uniformity and fluidity, a long time of kneading will be required after adding the remaining low-molecular components.

【0017】また、この工程における、溶融した高分子
化合物の粘度は1000poise 以上であることが
好ましい(粘度は剪断速度1000s−1において測定
されたものとし、以下粘度はこの剪断速度におけるもの
とする)。溶融した高分子化合物の粘度が1000po
ise 未満であると、金属粉末に作用する剪断力が不
十分でやはり凝集粉の分散が効率的に行われないからで
ある。したがって、金属粉末とバインダの高分子化合物
成分を混練するときには、混練機のヒータの温度を下げ
、必要であれば冷却水を併用して溶融した高分子化合物
の粘度が1000poise 以上にすることが望まし
い。
[0017] Further, in this step, the viscosity of the molten polymer compound is preferably 1000 poise or more (the viscosity is measured at a shear rate of 1000 s-1, and hereinafter the viscosity will be referred to at this shear rate). . The viscosity of the molten polymer compound is 1000po
This is because if it is less than is, the shearing force acting on the metal powder will be insufficient and the agglomerated powder will not be efficiently dispersed. Therefore, when kneading the metal powder and the polymeric compound component of the binder, it is desirable to lower the temperature of the heater of the kneader and, if necessary, use cooling water so that the viscosity of the molten polymeric compound reaches 1000 poise or more. .

【0018】以上のような工程の後、残りの低分子成分
を混練機に投入して混練を続け射出成形用原料コンパウ
ンドを製造する。混練機から取り出された混練物は粉砕
、あるいは造粒して射出成形用原料コンパウンドとする
After the above steps, the remaining low-molecular components are put into a kneading machine and kneading is continued to produce a raw material compound for injection molding. The kneaded material taken out from the kneader is pulverized or granulated to obtain a raw material compound for injection molding.

【0019】[0019]

【実施例】次に本発明を実施例および比較例に基づいて
具体的に説明する。
[Examples] Next, the present invention will be specifically explained based on Examples and Comparative Examples.

【0020】(実施例1〜5、比較例1〜4)原料粉末
として平均粒径10μm の水アトマイズステンレス鋼
粉を用意した。これを用い、以下の様にして射出成形用
コンパウンドを作製した。
(Examples 1 to 5, Comparative Examples 1 to 4) Water atomized stainless steel powder with an average particle size of 10 μm was prepared as a raw material powder. Using this, an injection molding compound was prepared in the following manner.

【0021】(実施例1)高分子成分としてポリエチレ
ンを、低分子成分としてパラフィンワックスを成分とす
るバインダを用いて射出成形用コンパウンドを製造した
。混練には加圧ニーダを用い、最初にステンレス鋼粉末
とポリエチレンとを加圧ニーダに投入して15分混練を
行った。このとき加圧ニーダの温度は120℃に制御し
た。120℃における使用したポリエチレンの粘度は1
300poise であった。その後、残りのパラフィ
ンワックス投入して混練を続けた。混練に要した時間は
30分であった。
(Example 1) An injection molding compound was produced using a binder containing polyethylene as a high molecular component and paraffin wax as a low molecular component. A pressure kneader was used for kneading, and stainless steel powder and polyethylene were first put into the pressure kneader and kneaded for 15 minutes. At this time, the temperature of the pressure kneader was controlled at 120°C. The viscosity of the polyethylene used at 120°C is 1
It was 300 poise. Thereafter, the remaining paraffin wax was added and kneading was continued. The time required for kneading was 30 minutes.

【0022】(実施例2)バインダとして実施例1に記
載のポリエチレンとパラフィンワックスを用い、配合も
実施例1と同じにした。最初にステンレス鋼粉末とポリ
エチレンとを加圧ニーダに投入して5分混練を行った。 このとき加圧ニーダ内の温度は120℃に制御した。1
20℃における使用したポリエチレンの粘度は1300
poise であった。その後、残りのパラフィンワッ
クス投入して混練を続けた。混練に要した時間は30分
であった。
(Example 2) The polyethylene and paraffin wax described in Example 1 were used as binders, and the formulation was the same as in Example 1. First, stainless steel powder and polyethylene were put into a pressure kneader and kneaded for 5 minutes. At this time, the temperature inside the pressure kneader was controlled at 120°C. 1
The viscosity of the polyethylene used at 20°C is 1300
It was poise. Thereafter, the remaining paraffin wax was added and kneading was continued. The time required for kneading was 30 minutes.

【0023】(実施例3)バインダとして実施例1に記
載のポリエチレンとパラフィンワックスを用い、配合も
実施例1と同じにした。最初にステンレス鋼粉末とポリ
エチレンとを加圧ニーダに投入して15分混練を行った
。このとき加圧ニーダ内の温度は150℃に制御した。 150℃における使用したポリエチレンの粘度は800
poise であった。その後、残りのパラフィンワッ
クス投入して混練を続けた。混練に要した時間は30分
であった。
(Example 3) The polyethylene and paraffin wax described in Example 1 were used as binders, and the formulation was the same as in Example 1. First, stainless steel powder and polyethylene were put into a pressure kneader and kneaded for 15 minutes. At this time, the temperature inside the pressure kneader was controlled at 150°C. The viscosity of the polyethylene used at 150°C is 800
It was poise. Thereafter, the remaining paraffin wax was added and kneading was continued. The time required for kneading was 30 minutes.

【0024】(実施例4)高分子成分としてポリエチレ
ンとエチレン−酢酸ビニル共重合体の2種を、低分子成
分としてパラフィンワックスを成分とするバインダを用
いて射出成形用コンパウンドを製造した。混練には加圧
ニーダを用い、最初にステンレス鋼粉末とポリエチレン
およびエチレン−酢酸ビニル共重合体とを加圧ニーダに
投入して15分混練を行った。このとき加圧ニーダ内の
温度は110℃に制御した。110℃におけるポリエチ
レンとエチレン−酢酸ビニル共重合体の混合物の粘度は
1100poise であった。その後、残りのパラフ
ィンワックスを投入して混練を続けた。混練に要した時
間は30分であった。
(Example 4) An injection molding compound was produced using two types of polymer components, polyethylene and ethylene-vinyl acetate copolymer, and a binder containing paraffin wax as a low molecular component. A pressure kneader was used for kneading, and the stainless steel powder, polyethylene, and ethylene-vinyl acetate copolymer were first put into the pressure kneader and kneaded for 15 minutes. At this time, the temperature inside the pressure kneader was controlled at 110°C. The viscosity of the mixture of polyethylene and ethylene-vinyl acetate copolymer at 110°C was 1100 poise. Thereafter, the remaining paraffin wax was added and kneading was continued. The time required for kneading was 30 minutes.

【0025】(実施例5)高分子成分としてポリエチレ
ンを、低分子成分としてパラフィンワックスとステアリ
ン酸の2種を成分とするバインダを用いて射出成形用コ
ンパウンドを製造した。混練には加圧ニーダを用い、最
初にステンレス鋼粉末とポリエチレンとを加圧ニーダに
投入して15分混練を行った。このとき加圧ニーダ内の
温度は120℃に制御した。120℃における使用した
ポリエチレンの混合物の粘度は1300poise で
あった。その後、残りのパラフィンワックスおよびステ
アリン酸を投入して混練を続けた。混練に要した時間は
30分であった。
(Example 5) An injection molding compound was produced using a binder containing polyethylene as a high molecular component and paraffin wax and stearic acid as low molecular components. A pressure kneader was used for kneading, and stainless steel powder and polyethylene were first put into the pressure kneader and kneaded for 15 minutes. At this time, the temperature inside the pressure kneader was controlled at 120°C. The viscosity of the polyethylene mixture used at 120°C was 1300 poise. Thereafter, the remaining paraffin wax and stearic acid were added and kneading was continued. The time required for kneading was 30 minutes.

【0026】(比較例1)バインダとして実施例1に記
載のポリエチレンとパラフィンワックスを用い、配合も
実施例1と同じにした。混練は実施例1と同じ加圧ニー
ダを用い、ステンレス鋼粉末とバインダの全成分とを最
初から混練を行い30分保持した。このとき加圧ニーダ
内の温度は120℃に制御した。
(Comparative Example 1) The polyethylene and paraffin wax described in Example 1 were used as binders, and the formulation was the same as in Example 1. For kneading, the same pressure kneader as in Example 1 was used, and the stainless steel powder and all components of the binder were kneaded from the beginning and held for 30 minutes. At this time, the temperature inside the pressure kneader was controlled at 120°C.

【0027】(比較例2)バインダとして実施例1に記
載のポリエチレンとパラフィンワックスを用い、配合も
実施例1と同じにした。混練は実施例1と同じ加圧ニー
ダを用い、ステンレス鋼粉末とバインダの全成分とを最
初から混練を行い60分保持した。このとき加圧ニーダ
内の温度は120℃に制御した。
(Comparative Example 2) The polyethylene and paraffin wax described in Example 1 were used as binders, and the formulation was the same as in Example 1. For kneading, the same pressure kneader as in Example 1 was used, and the stainless steel powder and all components of the binder were kneaded from the beginning and held for 60 minutes. At this time, the temperature inside the pressure kneader was controlled at 120°C.

【0028】(比較例3)バインダとして実施例4に記
載のポリエチレンとエチレン−酢酸ビニル共重合体およ
びパラフィンワックスを用い配合も実施例4と同じにし
た。そして、加圧ニーダを使用してステンレス鋼粉末と
バインダ全成分とを最初から混練を行い60分保持した
。このとき加圧ニーダの温度は110℃に保持した。
(Comparative Example 3) The polyethylene, ethylene-vinyl acetate copolymer and paraffin wax described in Example 4 were used as binders, and the blending was the same as in Example 4. Then, the stainless steel powder and all binder components were kneaded from the beginning using a pressure kneader and held for 60 minutes. At this time, the temperature of the pressure kneader was maintained at 110°C.

【0029】(比較例4)バインダとして実施例5に記
載のポリエチレンとパラフィンワックスおよびステアリ
ン酸を用い配合も実施例5と同じにした。そして、加圧
ニーダを使用してステンレス鋼粉末とバインダ全成分と
を最初から混練を行い60分保持した。このとき加圧ニ
ーダの温度は120℃に保持した。
(Comparative Example 4) The polyethylene, paraffin wax, and stearic acid described in Example 5 were used as binders, and the blending was the same as in Example 5. Then, the stainless steel powder and all binder components were kneaded from the beginning using a pressure kneader and held for 60 minutes. At this time, the temperature of the pressure kneader was maintained at 120°C.

【0030】この様にして製造したコンパウンドを粉砕
して、その射出成形温度(140℃)における粘度を測
定した。さらに3mm×3mm×35mmの試験片に射
出成形を行った。その試験片を加熱脱脂後、1300℃
、1時間の真空焼結を行った。得られた焼結体の変形量
を測定した。ここで変形量とは各焼結体において図1に
示す長さのことである。表1には各混練法で製造された
原料コンパウンドの射出成形温度における粘度と焼結体
の変形量の平均値を示している。これらは全て同一バッ
チで脱脂、焼結を行っているので、この差は成形体の均
質性の差であると考えられる。
The compound thus produced was pulverized and its viscosity at injection molding temperature (140° C.) was measured. Furthermore, injection molding was performed on a test piece of 3 mm x 3 mm x 35 mm. After heating and degreasing the test piece, it was heated to 1300°C.
, vacuum sintering was performed for 1 hour. The amount of deformation of the obtained sintered body was measured. Here, the amount of deformation refers to the length shown in FIG. 1 in each sintered body. Table 1 shows the average values of the viscosity and deformation of the sintered body at the injection molding temperature of the raw material compounds produced by each kneading method. Since all of these were degreased and sintered in the same batch, this difference is considered to be a difference in the homogeneity of the molded bodies.

【0031】実施例1は最初にステンレス鋼粉末と高分
子化合物であるポリエチレンのみとの混練を行い、しか
もその工程を10分以上行い、混練時の温度をポリエチ
レンの粘度が1000poise 以上である120℃
に制御しているので、比較例1、2に比べて、著しく流
動性が改善されている。また比較例1、2では混練時の
粉末の分散が不十分で、結果的に成形体内部に密度分布
が生じ、焼結体の変形が大きくなっているのに対し、実
施例1では原料の均質性が良好なため、成形体密度の不
均一も少なく、焼結体の変形も少ない。
[0031] In Example 1, stainless steel powder and only polyethylene, which is a polymer compound, were first kneaded, and this process was continued for more than 10 minutes, and the temperature during kneading was set to 120°C, at which the viscosity of the polyethylene was 1000 poise or more.
The fluidity is significantly improved compared to Comparative Examples 1 and 2. In addition, in Comparative Examples 1 and 2, the dispersion of the powder during kneading was insufficient, resulting in a density distribution inside the compact, resulting in large deformation of the sintered compact, whereas in Example 1, the powder Since the homogeneity is good, there is little non-uniformity in the density of the compact, and there is little deformation of the sintered compact.

【0032】実施例2は最初にポリエチレンのみとの混
練を行い、混練時の温度ポリエチレンの粘度が1000
poise 以上である120℃に制御しているが、そ
の工程が10分に満たない5分であるために実施例1よ
りは粘度が高く、焼結体の変形量も大きいが、比較例1
、2よりも改善されている。実施例3では最初の混練を
15分おこなっているものの、混練時の温度におけるポ
リエチレンの粘度が1000poise 未満なので実
施例1ほどの改善がなされてないが比較例1、2よりも
改善されている。
In Example 2, kneading with only polyethylene was first carried out, and the temperature at the time of kneading was such that the viscosity of polyethylene was 1000.
Although the temperature is controlled at 120°C, which is higher than the poise temperature, the viscosity is higher than that of Example 1 because the process takes 5 minutes (less than 10 minutes), and the amount of deformation of the sintered body is also larger.
, 2 is improved. In Example 3, the initial kneading was carried out for 15 minutes, but since the viscosity of the polyethylene at the temperature during kneading was less than 1000 poise, the improvement was not as great as in Example 1, but it was better than in Comparative Examples 1 and 2.

【0033】比較例1、2は、実施例1〜3と同じバイ
ンダ、同じ配合で金属粉末とバインダの全成分とを最初
から混練を行ったものであるが粉末の分散が不十分で、
原料の粘度も高く、焼結体の変形量も大きい。比較例2
では実施例1〜3よりも混練時間が長いのであるが、粘
度と均一性は本発明による混練を行った実施例1〜3の
方が優れている。
In Comparative Examples 1 and 2, the metal powder and all the components of the binder were kneaded from the beginning using the same binder and the same composition as in Examples 1 to 3, but the powder was not sufficiently dispersed.
The viscosity of the raw material is high, and the amount of deformation of the sintered body is large. Comparative example 2
Although the kneading time was longer than that of Examples 1 to 3, Examples 1 to 3, which were kneaded according to the present invention, were superior in terms of viscosity and uniformity.

【0034】実施例4、比較例3は高分子成分として2
種の樹脂を用いたバインダでコンパウンドを製造したも
のである。実施例4は高分子成分とステンレス鋼粉末と
を先に混練しており、しかも溶融した樹脂の粘度が10
00poise以上の温度で10分以上混練しているの
で、同じバインダ、同じ配合で作製した比較例3に比べ
原料の粘度も焼結体の変形も著しく改善されている。比
較例3は実施例4よりも混練時間が長いのであるが金属
粉末とバインダの全成分とを最初から混練を行ったもの
であり、製造された原料の粘度も高く、均一性も劣って
いる。
In Example 4 and Comparative Example 3, 2 was used as the polymer component.
The compound is manufactured using a binder using seed resin. In Example 4, the polymer component and stainless steel powder were first kneaded, and the viscosity of the molten resin was 10.
Since the mixture was kneaded for 10 minutes or more at a temperature of 0.00 poise or higher, both the viscosity of the raw material and the deformation of the sintered body were significantly improved compared to Comparative Example 3, which was produced using the same binder and the same formulation. In Comparative Example 3, the kneading time was longer than in Example 4, but the metal powder and all the components of the binder were kneaded from the beginning, and the viscosity of the manufactured raw material was also high and the uniformity was poor. .

【0035】実施例5、比較例4は低分子成分として2
種を用いたバインダでコンパウンドを製造したものであ
る。この場合も本発明による方法で混練を行った、実施
例5の原料は比較例4に比べ、粘度および均一性が優れ
たものとなっている。
In Example 5 and Comparative Example 4, 2 was used as the low molecular component.
The compound is manufactured using a binder using seeds. In this case as well, the raw material of Example 5, which was kneaded by the method according to the present invention, had better viscosity and uniformity than Comparative Example 4.

【0036】[0036]

【0037】[0037]

【発明の効果】本発明により、流動性および均一性に優
れた金属粉末射出成形用コンパウンドを、短時間に製造
できるようになった。また、原料の均一性の向上により
、成形体の密度分布も低減され、焼結体の寸法精度も向
上した。
[Effects of the Invention] According to the present invention, a metal powder injection molding compound with excellent fluidity and uniformity can be produced in a short time. Furthermore, due to the improved uniformity of the raw materials, the density distribution of the compact was also reduced, and the dimensional accuracy of the sintered compact was also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例において作製した試験片の評価方法を示
す図である。
FIG. 1 is a diagram showing a method for evaluating test pieces produced in Examples.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  金属粉末射出成形用の金属粉末と有機
物の混合物を製造する工程において、有機バインダとし
て高分子化合物の1種以上とそれよりも低分子量の成分
の1種以上を必須成分として用いるとき、まず金属粉末
と前記高分子化合物を先に混練した後、残りの低分子成
分を加えて混練することを特徴とする金属粉末射出成形
用コンパウンドの製造方法。
Claim 1: In the process of producing a mixture of metal powder and organic material for metal powder injection molding, one or more polymer compounds and one or more components with a lower molecular weight than the organic binder are used as essential components. A method for producing a metal powder injection molding compound, which comprises first kneading the metal powder and the polymer compound, and then adding and kneading the remaining low-molecular components.
【請求項2】  金属粉末と高分子化合物を先に混練す
る工程の時間が10分以上である請求項1に記載の金属
粉末射出成形用コンパウンドの製造方法。
2. The method for producing a metal powder injection molding compound according to claim 1, wherein the step of first kneading the metal powder and the polymer compound takes 10 minutes or more.
【請求項3】  金属粉末と高分子化合物を先に混練す
るときの、溶融した高分子化合物の粘度が1000po
ise (剪断速度1000s−1において)以上であ
る請求項1または2に記載の金属粉末射出成形用コンパ
ウンドの製造方法。
3. When the metal powder and the polymer compound are kneaded first, the viscosity of the molten polymer compound is 1000 po.
3. The method for producing a compound for metal powder injection molding according to claim 1, wherein the compound is at a shear rate of 1000 s-1 or higher.
JP3110289A 1991-05-15 1991-05-15 Method for producing raw material compound for metal powder injection molding Expired - Lifetime JP2793919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3110289A JP2793919B2 (en) 1991-05-15 1991-05-15 Method for producing raw material compound for metal powder injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3110289A JP2793919B2 (en) 1991-05-15 1991-05-15 Method for producing raw material compound for metal powder injection molding

Publications (2)

Publication Number Publication Date
JPH04337006A true JPH04337006A (en) 1992-11-25
JP2793919B2 JP2793919B2 (en) 1998-09-03

Family

ID=14531927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3110289A Expired - Lifetime JP2793919B2 (en) 1991-05-15 1991-05-15 Method for producing raw material compound for metal powder injection molding

Country Status (1)

Country Link
JP (1) JP2793919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843263B2 (en) 2015-10-02 2020-11-24 3D Controls Inc. Composition containing metal powder for three-dimensional printing, three-dimensional printing method using same as raw material, and three-dimensional printing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843263B2 (en) 2015-10-02 2020-11-24 3D Controls Inc. Composition containing metal powder for three-dimensional printing, three-dimensional printing method using same as raw material, and three-dimensional printing device

Also Published As

Publication number Publication date
JP2793919B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP2955754B1 (en) Composition for injection molding of metal powder and injection molding and sintering method using the composition
US5531958A (en) Process for improving the debinding rate of ceramic and metal injection molded products
CA2036389C (en) Method of forming shaped components from mixtures of thermosetting binders and powders having a desired chemistry
JPH03232937A (en) Manufacture of metallic body by injection molding
CN111606722A (en) Injection molding binder for preparing dielectric filter ceramic product and application thereof
JPH02302357A (en) Ceramic injection molding material and injection molding using the same material
CN110204334A (en) A kind of high-compactness Zirconium oxide powder injection moulding PP Pipe Compound and preparation method thereof
US5033939A (en) Method of forming shaped components from mixtures of thermosetting binders and powders having a desired chemistry
CN105251992A (en) Preparation method of alloy counterweight block injected and molded by powder
JPH03180402A (en) Binding composition for use in injection or extrusion molding of metal or ceramic powder
KR102275122B1 (en) Binder Composition for Metal Injection Molding
JPH04337006A (en) Production of raw material compound for injection molding of metallic powder
JPS6121960A (en) Ceramic injection moldings
CN116967441A (en) Material for powder metallurgy flow pressure swing injection of large component and application thereof
EP4036167A1 (en) Binder composition for metal powder injection molding
KR100240750B1 (en) Method for manufacturing mixed body of metal emission forming
JPH06287055A (en) Production of sintered article of ceramic
JPH0825178B2 (en) Method of manufacturing injection molded body
Islam et al. Preparation and characterization of tungsten heavy alloy feedstock for metal injection molding
JP2004216663A (en) Method for preparing injection molding composition
JPH04186803A (en) Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body
CN114507065A (en) Injection molding alumina ceramic material and injection molding method thereof
JPS6110050A (en) Ceramic composition for injection molding
JPS59195515A (en) Manufacture of precision-molded hard carbon body
CN116809923A (en) Preparation method of MIM (metal-insulator-metal) feed with low surface roughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980526

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110619

Year of fee payment: 13

EXPY Cancellation because of completion of term