JPH04336518A - Scanning optical device - Google Patents

Scanning optical device

Info

Publication number
JPH04336518A
JPH04336518A JP13827391A JP13827391A JPH04336518A JP H04336518 A JPH04336518 A JP H04336518A JP 13827391 A JP13827391 A JP 13827391A JP 13827391 A JP13827391 A JP 13827391A JP H04336518 A JPH04336518 A JP H04336518A
Authority
JP
Japan
Prior art keywords
lens
synthetic resin
optical axis
optical
glass lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13827391A
Other languages
Japanese (ja)
Inventor
Toru Kameyama
徹 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13827391A priority Critical patent/JPH04336518A/en
Publication of JPH04336518A publication Critical patent/JPH04336518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lens Barrels (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To prevent the deflection of the optical axis of a lens due to the thermal expansion rate by setting each height of the fixed surface of a toric lens made of synthetic resin and the fixed surface of a glass lens on the basis of the thermal expansion rate of the lens and the thermal expansion rate of an optlcal box and allowing each optical axis to coincide even if temperature variation exists. CONSTITUTION:A toric lens 11 which is made of synthetic resin and long in the main scan direction is adhesion-fixed through an installation arm 11a on an installation surface 12c in the upper part of an installation pillar 12b having a height n+n1 from the installation seat surface of an optical box 12. Further, a glass lens 13 which is long in the main scan direction is adhesion-fixed on the installation seat surface 12a behind the optical box 12. The installation position of either the synthetic resin lens 11 or the glass lens 13 is set through the calculation from the thermal expansion rate between the synthetic resin lens 11 and the installation member 12 of the glass lens 13, so that the deflection in the direction crossing at right angle with the optical axis direction of the synthetic resin lens 11 due to the temperature variation and the deflection of the optical axis of the glass lens 13 become nearly equal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、合成樹脂レンズとガラ
スレンズを組合わせた光学系を有する走査光学装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning optical device having an optical system combining a synthetic resin lens and a glass lens.

【0002】0002

【従来の技術】走査光学系はレーザービームプリンタ等
に使用される光学系であり、図5は斜視図、図6は図5
のA−A面の断面図である。レーザー発振器1から出射
したレーザー光はシリンドリカルレンズ2によって鉛直
方向に収斂しながらポリゴンミラー3に達する。ポリゴ
ンミラー3は回転しながらレーザー光を走査し、この走
査光はガラス製の球面レンズ4と合成樹脂製のトーリッ
クレンズ5を組み合わせたfθレンズを透過して等速光
となって、光学箱から外部に出射され図示しない感光体
上に結像する。また、シリンドリカルレンズ2とトーリ
ックレンズ5は組み合わされて倒れ補正光学系を構成し
ており、ポリゴンミラー3の鏡面の倒れ角度のばらつき
を補正している。
2. Description of the Related Art A scanning optical system is an optical system used in laser beam printers, etc. FIG. 5 is a perspective view, and FIG.
FIG. Laser light emitted from a laser oscillator 1 reaches a polygon mirror 3 while being converged in the vertical direction by a cylindrical lens 2. The polygon mirror 3 scans the laser beam while rotating, and this scanning light passes through an fθ lens that combines a spherical lens 4 made of glass and a toric lens 5 made of synthetic resin, becomes uniform velocity light, and is emitted from the optical box. The light is emitted to the outside and is imaged on a photoreceptor (not shown). Further, the cylindrical lens 2 and the toric lens 5 are combined to constitute a tilt correction optical system, which corrects variations in the tilt angle of the mirror surface of the polygon mirror 3.

【0003】0003

【発明が解決しようとする課題】しかしながら上述の従
来例では、合成樹脂レンズとガラスレンズの2種類のレ
ンズを使用しているため、材料の熱膨張係数の相違によ
るレンズの膨張量の差が、レンズ光軸の鉛直方向の相対
的なずれを生じさせるという問題がある。つまり、図7
に示すように高さの等しい取付面に2つのレンズ4、5
を固定した場合に、初期状態では2つのレンズ4、5の
光軸Lは一致しているが、周囲の温度上昇によって2つ
のレンズ4、5は膨張し4’、5’の状態になる。この
とき、2つのレンズ4、5の光軸は移動してL4、L5
となり、光軸L4とL5の間に差δを生じ、光学性能を
悪化させることになる。
However, in the conventional example described above, two types of lenses, a synthetic resin lens and a glass lens, are used, so the difference in the amount of expansion of the lenses due to the difference in the coefficient of thermal expansion of the materials is There is a problem in that a relative shift of the lens optical axis in the vertical direction occurs. In other words, Figure 7
As shown in the figure, two lenses 4 and 5 are installed on the mounting surface with the same height.
When fixed, the optical axes L of the two lenses 4 and 5 coincide in the initial state, but as the ambient temperature rises, the two lenses 4 and 5 expand and become in the states 4' and 5'. At this time, the optical axes of the two lenses 4 and 5 move to L4 and L5.
Therefore, a difference δ occurs between the optical axes L4 and L5, which deteriorates the optical performance.

【0004】本発明の目的は、合成樹脂レンズとガラス
レンズを用いて光学系を構成しても、レンズ群の温度変
化による光軸のずれを小さく押さえることができる走査
光学装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a scanning optical device that can suppress deviation of the optical axis due to temperature changes in the lens group even if the optical system is constructed using synthetic resin lenses and glass lenses. be.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る走査光学装置は、合成樹脂レンズとガ
ラスレンズを用いて構成した走査光学系において、温度
変化による前記合成樹脂レンズの光軸方向と直交する方
向のずれと、前記ガラスレンズの光軸のずれがほぼ等し
くなるように、前記合成樹脂レンズと前記ガラスレンズ
の少なくとも何れかの取付位置を、前記合成樹脂レンズ
と前記ガラスレンズと取付部材との熱膨張率から算出し
て選定したことを特徴とするものである。
[Means for Solving the Problems] A scanning optical device according to the present invention for achieving the above-mentioned object is provided with a scanning optical system configured using a synthetic resin lens and a glass lens, in which the synthetic resin lens changes due to temperature changes. The mounting position of at least one of the synthetic resin lens and the glass lens is adjusted so that the deviation in the direction perpendicular to the optical axis direction and the deviation of the optical axis of the glass lens are approximately equal. It is characterized by being selected by calculating the coefficient of thermal expansion of the lens and the mounting member.

【0006】[0006]

【作用】上述の構成を有する走査光学装置は、光学系の
温度が上昇しても、合成樹脂レンズとガラスレンズの光
軸の位置が等しく変化する。
[Operation] In the scanning optical device having the above structure, even if the temperature of the optical system rises, the positions of the optical axes of the synthetic resin lens and the glass lens change equally.

【0007】[0007]

【実施例】本発明を図1〜図4に図示の実施例に基づい
て詳細に説明する。図1は主要部の側方から見た断面図
、図2は合成樹脂レンズの正面図である。主走査方向の
光軸面よりもh1だけ上部の両側面に薄板状の取付腕1
1aを有し、主走査方向に長い形状の合成樹脂製トーリ
ックレンズ11は、光学箱12の取付座面12aよりも
h+h1の高さを持つ取付柱12bの上部の取付座面1
2cに、取付腕11aを介して接着固定されている。主
走査方向に長いガラスレンズ13は、光学箱12の後方
で取付座面12aに接着固定され、合成樹脂製のトーリ
ックレンズ11とガラスレンズ13によりfθレンズ群
が構成されている。このとき、トーリックレンズ11と
ガラスレンズ13の光軸の鉛直方向の高さは正確に一致
し、取付座面12aから高さhとなっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail based on the embodiments shown in FIGS. 1 to 4. FIG. 1 is a cross-sectional view of the main part as seen from the side, and FIG. 2 is a front view of the synthetic resin lens. Thin plate-like mounting arms 1 are installed on both sides above the optical axis plane in the main scanning direction by h1.
1a and is long in the main scanning direction, the synthetic resin toric lens 11 is attached to the mounting seat surface 1 on the upper part of the mounting column 12b, which has a height h+h1 higher than the mounting seat surface 12a of the optical box 12.
2c through the attachment arm 11a. A glass lens 13 that is long in the main scanning direction is adhesively fixed to the mounting seat surface 12a at the rear of the optical box 12, and the toric lens 11 made of synthetic resin and the glass lens 13 constitute an fθ lens group. At this time, the vertical heights of the optical axes of the toric lens 11 and the glass lens 13 are exactly the same, and are at a height h from the mounting seat surface 12a.

【0008】光学箱12、ガラスレンズ13、合成樹脂
トーリックレンズ11の熱膨張率をそれぞれβ0 、β
1 、β2 とすれば、取付座面12cを基準として、
温度がΔt上昇した時の取付柱12bによる取付座面1
2aの上方への移動量Δhは、 Δh=β0 ・(h+h1)・Δt
The thermal expansion coefficients of the optical box 12, glass lens 13, and synthetic resin toric lens 11 are β0 and β, respectively.
1, β2, with the mounting seat surface 12c as a reference,
Mounting seat surface 1 by mounting column 12b when temperature increases by Δt
The upward movement amount Δh of 2a is Δh=β0・(h+h1)・Δt

【0009】となり、またガラスレンズ13の上方への
移動量Δh1は、 Δh1=β1 ・h・Δt となる。更に、合成樹脂トーリックレンズ11は取付位
置が光軸からh1だけ上部にあるため、温度上昇に伴い
光軸は下方に移動し、このときの移動量Δh2は、Δh
2=β2 ・h1・Δtとなる。
The amount of upward movement Δh1 of the glass lens 13 is Δh1=β1·h·Δt. Furthermore, since the mounting position of the synthetic resin toric lens 11 is h1 above the optical axis, the optical axis moves downward as the temperature rises, and the amount of movement Δh2 at this time is Δh
2=β2・h1・Δt.

【0010】2つのレンズ11、13での光軸の相対変
化が零となる条件は、Δh−Δh2=Δh1であるから
、h1=h (β0 −β1 )/(β2 −β0 )
を得る。
The condition for the relative change in the optical axes of the two lenses 11 and 13 to be zero is Δh−Δh2=Δh1, so h1=h (β0 −β1 )/(β2 −β0 )
get.

【0011】光学箱12に熱可塑性樹脂、合成樹脂トー
リックレンズ11にポリカーボネイト系樹脂、ガラスレ
ンズ13にBK7を用い、ガラスレンズ13の光軸の高
さをh=5mmとすれば、 β0 =2.4×10−5/℃ β1 =0.74×10−5/℃ β2 =9.2×10−5/℃ であることから、
If the optical box 12 is made of thermoplastic resin, the synthetic resin toric lens 11 is made of polycarbonate resin, and the glass lens 13 is made of BK7, and the height of the optical axis of the glass lens 13 is h=5 mm, then β0 = 2. Since 4×10-5/℃ β1 = 0.74×10-5/℃ β2 = 9.2×10-5/℃,

【0012】h1=1.2mm となる。つまり、合成樹脂製トーリックレンズ11の取
付位置を光軸よりも1.2mm高い位置に設定すれば、
温度変化に対する2つのレンズ11、13の鉛直方向の
光軸の相対的なずれを抑制することができる。
[0012] h1=1.2 mm. In other words, if the mounting position of the synthetic resin toric lens 11 is set at a position 1.2 mm higher than the optical axis,
It is possible to suppress relative displacement of the vertical optical axes of the two lenses 11 and 13 due to temperature changes.

【0013】図3は第2の実施例の断面図、図4はガラ
スレンズの正面図である。この実施例において、合成樹
脂トーリックレンズ11は光学箱12の取付座面12d
に接着固定され、ガラスレンズ13は門型のレンズホル
ダ14の上部から吊り下げられていて、レンズホルダ1
4は光学箱12に接着固定されている。この実施例にお
いても、先の実施例と同様に寸法を適宜に選定すること
により、合成樹脂トーリックレンズ11とガラスレンズ
13の相対的な光軸のずれを抑えることができる。
FIG. 3 is a sectional view of the second embodiment, and FIG. 4 is a front view of the glass lens. In this embodiment, the synthetic resin toric lens 11 is attached to the mounting seat surface 12d of the optical box 12.
The glass lens 13 is suspended from the top of a gate-shaped lens holder 14, and the lens holder 1
4 is adhesively fixed to the optical box 12. In this embodiment as well, by appropriately selecting the dimensions as in the previous embodiment, it is possible to suppress the relative deviation of the optical axes between the synthetic resin toric lens 11 and the glass lens 13.

【0014】以上の実施例では、fθレンズ群を構成す
る2枚のレンズ11、13について説明したが、これは
他のレンズ群同志においても、異種類の材質の複数枚の
レンズが存在すれば、同様なレンズ保持手段により鉛直
方向の光軸の相対的なずれを抑えることができる。
In the above embodiment, the two lenses 11 and 13 constituting the fθ lens group have been described, but this also applies if there are multiple lenses made of different materials in other lens groups. , it is possible to suppress relative displacement of the optical axis in the vertical direction by using a similar lens holding means.

【0015】更に、光学性能の許容範囲が大きければ、
それぞれの光軸の相対的なずれは零である必要はなく、
この場合には高精度が要求されないため更にコストが低
下する。
Furthermore, if the tolerance range of optical performance is large,
The relative deviation of each optical axis does not have to be zero;
In this case, since high accuracy is not required, the cost is further reduced.

【0016】[0016]

【発明の効果】以上説明したように本発明に係る走査光
学装置は、合成樹脂レンズとガラスレンズを共に使用し
ているにも拘らず、レンズの取付位置を熱膨張率を勘案
して調整することによって、温度変化による熱膨張によ
って光軸ずれを低く抑えることができる。
[Effects of the Invention] As explained above, although the scanning optical device according to the present invention uses both a synthetic resin lens and a glass lens, the mounting position of the lens can be adjusted in consideration of the coefficient of thermal expansion. By doing so, optical axis misalignment due to thermal expansion caused by temperature changes can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment.

【図2】合成樹脂トーリックレンズの正面図である。FIG. 2 is a front view of a synthetic resin toric lens.

【図3】第2の実施例の断面図である。FIG. 3 is a sectional view of a second embodiment.

【図4】ガラスレンズの正面図である。FIG. 4 is a front view of a glass lens.

【図5】走査光学装置の斜視図である。FIG. 5 is a perspective view of the scanning optical device.

【図6】図5のA−A面の断面図である。FIG. 6 is a sectional view taken along line AA in FIG. 5;

【図7】従来例の問題点の説明図である。FIG. 7 is an explanatory diagram of problems in the conventional example.

【符号の説明】[Explanation of symbols]

11  合成樹脂製トーリックレンズ 11a  取付腕 12  光学箱 12a、12c  取付座面 12b  取付柱 13  ガラスレンズ 14  レンズホルダ 11 Synthetic resin toric lens 11a Mounting arm 12 Optical box 12a, 12c Mounting seat 12b Mounting pillar 13 Glass lens 14 Lens holder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  合成樹脂レンズとガラスレンズを用い
て構成した走査光学系において、温度変化による前記合
成樹脂レンズの光軸方向と直交する方向のずれと、前記
ガラスレンズの光軸のずれがほぼ等しくなるように、前
記合成樹脂レンズと前記ガラスレンズの少なくとも何れ
かの取付位置を、前記合成樹脂レンズと前記ガラスレン
ズと取付部材との熱膨張率から算出して選定したことを
特徴とする走査光学装置。
1. In a scanning optical system configured using a synthetic resin lens and a glass lens, the deviation in the direction perpendicular to the optical axis direction of the synthetic resin lens due to temperature change and the deviation of the optical axis of the glass lens are approximately equal to each other. Scanning characterized in that the mounting position of at least one of the synthetic resin lens and the glass lens is calculated and selected from the thermal expansion coefficients of the synthetic resin lens, the glass lens, and the mounting member so that they are equal to each other. optical equipment.
JP13827391A 1991-05-13 1991-05-13 Scanning optical device Pending JPH04336518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13827391A JPH04336518A (en) 1991-05-13 1991-05-13 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13827391A JPH04336518A (en) 1991-05-13 1991-05-13 Scanning optical device

Publications (1)

Publication Number Publication Date
JPH04336518A true JPH04336518A (en) 1992-11-24

Family

ID=15218066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13827391A Pending JPH04336518A (en) 1991-05-13 1991-05-13 Scanning optical device

Country Status (1)

Country Link
JP (1) JPH04336518A (en)

Similar Documents

Publication Publication Date Title
US5054866A (en) Scanning optical apparatus
JP5032158B2 (en) Optical scanning device and image forming device
US4962983A (en) Laser optical apparatus
US5410563A (en) Laser beam optical system capable of compensating focal length changes thereof
US5353167A (en) Mirror mount
US4628515A (en) Ring laser, especially for a ring laser type of gyro
JPH03168715A (en) Image forming lens holding device of optical scanning device
JPH10333070A (en) Scanning optical system and image forming device using the same
JPH0519202A (en) Light beam scanning optical device
JPH0572457A (en) Light beam scanning lens
JPH04336518A (en) Scanning optical device
JPH03179420A (en) Optical apparatus
JP2002062499A (en) Scanning optical device
US5959759A (en) Multiple beam scanning optical system
JP3327760B2 (en) Optical scanning device and lens assembling method of the device
US6922296B2 (en) Optical path adjusting device
JP3656383B2 (en) Scanning lens mounting structure of optical scanning device
JPH06160748A (en) Optical scanner
JP2907292B2 (en) Achromatic laser scanning optics
JPH10293261A (en) Optical scanning device
JPH09297275A (en) Optical device
JPH09105878A (en) Optical scanning device
JPH06337342A (en) Reflection mirror holding device
JP3511827B2 (en) Optical scanning device and mounting structure of optical scanning device
JP2557938B2 (en) Light beam scanning device with tilt correction function