JPH04335954A - Capacity control device for heat exchanger - Google Patents

Capacity control device for heat exchanger

Info

Publication number
JPH04335954A
JPH04335954A JP10709591A JP10709591A JPH04335954A JP H04335954 A JPH04335954 A JP H04335954A JP 10709591 A JP10709591 A JP 10709591A JP 10709591 A JP10709591 A JP 10709591A JP H04335954 A JPH04335954 A JP H04335954A
Authority
JP
Japan
Prior art keywords
heat exchanger
gas
refrigerant
liquid
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10709591A
Other languages
Japanese (ja)
Inventor
Kazumiki Urata
和幹 浦田
Susumu Nakayama
進 中山
Kensaku Kokuni
研作 小国
Hiroshi Yasuda
弘 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10709591A priority Critical patent/JPH04335954A/en
Publication of JPH04335954A publication Critical patent/JPH04335954A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a capacity control device for a heat exchanger capable of stabilizing a refrigeration cycle during capacity control and maintaining constant indoor comfort by controlling the capacity of the heat exchanger based on the type of a refrigerant flow during cooling and heating operation when indoor load of a middle term or the like is small. CONSTITUTION:An air separator 2 is installed between an upper stream side heat exchanger 1a and a down stream side heat exchanger 1b. A pressure reducing device is installed to the gas side and the liquid side of the air separator 2. When it works as a condenser, the outlet of the pressure reducing device installed to the gas side piping of the air separator 2 is connected with the inlet of the down stream side heat exchanger 1b whereas the outlet of the down stream side heat exchanger 1b is connected with the down stream side of the pressure reducing device installed to the other outlet piping of the air separator 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、熱交換器に係り、特に
、熱交換器の容量を室内の負荷に応じて自動的にか偏で
きる熱交換器の容量制御装置、及び熱交換器の容量制御
装置を冷凍サイクルに適用した場合の運転方法に関する
[Field of Industrial Application] The present invention relates to heat exchangers, and more particularly to a heat exchanger capacity control device that can automatically bias the capacity of a heat exchanger according to the indoor load, and The present invention relates to an operating method when a capacity control device is applied to a refrigeration cycle.

【0002】0002

【従来の技術】一般に、空気調和機の能力の制御は、圧
縮機の駆動周波数を変えたり、ユニットからの吹き出す
風量を制御することで行われている。暖房運転時に空調
場の負荷が小さい場合に、圧縮機の駆動周波数を下げて
能力を制御する方法は、吐出圧力の低下から凝縮温度が
低下し、このためユニットからの吹き出し温度が低下し
室内の温度分布が悪化する。また、ユニットから吹き出
す風量を制御する方法は、熱交換器内に液冷媒が貯留さ
れ吐出圧力が上昇し、ユニットの吹き出し付近は暖房感
があるものの、風速が低下しているため暖かい風は上昇
し床まで温風が届かず室内の温度分布を悪化させる問題
がある。また、冷房運転時においても同様の問題がある
2. Description of the Related Art Generally, the capacity of an air conditioner is controlled by changing the driving frequency of the compressor or controlling the amount of air blown out from the unit. When the load on the air conditioning field is small during heating operation, the method of controlling the capacity by lowering the drive frequency of the compressor is that the condensing temperature decreases due to the decrease in discharge pressure, which lowers the air blowing temperature from the unit and lowers the indoor temperature. Temperature distribution worsens. In addition, the method of controlling the amount of air blown out from the unit is that liquid refrigerant is stored in the heat exchanger and the discharge pressure increases, and although there is a feeling of heating near the outlet of the unit, the wind speed is decreasing, so the warm air rises. There is a problem in that warm air does not reach the floor, worsening the temperature distribution in the room. A similar problem also occurs during cooling operation.

【0003】このような空調場の負荷が小さい中間期に
おける冷暖房運転の方法として、特開昭59−1802
53号公報に示されているように多室形空気調和機にお
いて、室外ユニットの液側主管に複数の液側支管を設け
、かつ、冷房時低圧となり暖房時高圧となるガス側第一
主管に複数のガス側第一支管を、また暖房時低圧となり
冷房時高圧となるガス側第二主管に複数のガス側第二支
管をそれぞれ設け、各室内ユニットに室内側熱交換器と
補助熱交換器をそれぞれ設けて、これら各室内ユニット
における各熱交換器を液側支管に対し並列に接続する一
方、室内側熱交換器をガス側第一支管に、また補助熱交
換器をガス側第二支管にそれぞれ接続し、各熱交換器ご
とに冷媒の流通を阻止できる開閉弁を付設し、中間期の
冷房及び暖房運転は、補助熱交換器のみに冷媒を流通さ
せるように開閉弁を操作するようにしたものが提案され
ている。
[0003] As a method of heating and cooling operation during the intermediate period when the load on the air conditioning plant is small, Japanese Patent Application Laid-Open No. 59-1802
As shown in Publication No. 53, in a multi-room air conditioner, a plurality of liquid side branch pipes are provided in the liquid side main pipe of the outdoor unit, and the first gas side main pipe has a low pressure during cooling and a high pressure during heating. A plurality of gas-side first branch pipes are provided, and a plurality of gas-side second branch pipes are provided in the gas-side second main pipe, which has low pressure during heating and high pressure during cooling, and each indoor unit is equipped with an indoor heat exchanger and an auxiliary heat exchanger. Each heat exchanger in each indoor unit is connected in parallel to the liquid side branch pipe, while the indoor heat exchanger is connected to the first gas side branch pipe, and the auxiliary heat exchanger is connected to the gas side second branch pipe. Each heat exchanger is connected to an on-off valve that can block the flow of refrigerant, and during intermediate cooling and heating operations, the on-off valve is operated to allow refrigerant to flow only to the auxiliary heat exchanger. It has been proposed that

【0004】また能力制御のために熱交換器の容量を制
御する方法として、特開平2−254263号公報に示
されているように、室外ユニットケーシング内に配置さ
れるコンデンサを二つのコンデンサエレメントに分割し
、一方のコンデンサエレメントは上側コンデンサとして
通風路の風量の多い部分に配設し、他方のコンデンサエ
レメントは通風路の風量の少ない部分に下側コンデンサ
として配設し、上側コンデンサと下側コンデンサを直列
に配設し、上側コンデンサをバイパスするように冷媒バ
イパス回路を設け、冷媒バイパス回路の途中にバイパス
弁として二方弁を設け、凝縮圧力が低下する場合はバイ
パス回路に設けたバイパス弁を開いて下側コンデンサへ
積極的に冷媒を流通させて凝縮圧力を保持し、冷凍能力
の低下を防止する方法が提案されている。
[0004] Furthermore, as a method of controlling the capacity of a heat exchanger for capacity control, as shown in Japanese Unexamined Patent Publication No. 2-254263, a condenser disposed inside an outdoor unit casing is divided into two condenser elements. One capacitor element is placed as an upper capacitor in the part of the ventilation path with high air volume, and the other capacitor element is placed as a lower capacitor in the part of the ventilation path with low air volume. are arranged in series, a refrigerant bypass circuit is provided to bypass the upper condenser, a two-way valve is provided as a bypass valve in the middle of the refrigerant bypass circuit, and when the condensing pressure decreases, the bypass valve provided in the bypass circuit is installed. A method has been proposed in which the refrigerant is opened to actively flow refrigerant to the lower condenser to maintain condensation pressure and prevent a decrease in refrigerating capacity.

【0005】[0005]

【発明が解決しようとする課題】所が、このような熱交
換器の容量を制御する方法は、熱交換器の温度あるいは
圧力を温度センサや圧力センサなどにより検知し、マイ
コン等に予め設定されている値と比較して熱交換器の容
量制御が必要であると判断された場合に電磁弁を開閉す
るには次の問題がある。
[Problem to be Solved by the Invention] However, this method of controlling the capacity of a heat exchanger detects the temperature or pressure of the heat exchanger using a temperature sensor or a pressure sensor, and sets the temperature or pressure in a microcomputer or the like in advance. There are the following problems in opening and closing the solenoid valve when it is determined that capacity control of the heat exchanger is necessary.

【0006】即ち、熱交換器の容量を制御する手段とし
て電磁弁を用いているため、電磁弁の開閉動作時は冷媒
の流れが急激に阻害され冷凍サイクルが急激に変化し不
安定となり、これを設定値に近ずけようとして圧縮機の
駆動周波数や膨張弁が急激に制御されるため、さらに冷
凍サイクルが不安定となり室内の温度分布を悪化させる
問題が生じる。
That is, since a solenoid valve is used as a means to control the capacity of the heat exchanger, when the solenoid valve opens and closes, the flow of refrigerant is suddenly blocked, causing a sudden change in the refrigeration cycle and making it unstable. Since the compressor drive frequency and expansion valve are rapidly controlled in an attempt to bring the temperature closer to the set value, the refrigeration cycle becomes unstable and the temperature distribution within the room deteriorates.

【0007】本発明の目的は、中間期などの冷房及び暖
房運転時において、冷媒の流動様式により自動的に最適
な熱交換器容量に制御し、且つ容量制御時の冷凍サイク
ルの安定を図り、室内の快適性を常に維持できる熱交換
器の容量制御装置を提供することにある。
An object of the present invention is to automatically control the heat exchanger capacity to the optimum capacity depending on the refrigerant flow pattern during cooling and heating operations such as intermediate periods, and to stabilize the refrigeration cycle during capacity control. An object of the present invention is to provide a capacity control device for a heat exchanger that can always maintain indoor comfort.

【0008】[0008]

【課題を解決するための手段】本発明は、少なくとも圧
縮機,凝縮用熱交換器,減圧装置,蒸発用熱交換器を接
続して成る冷凍サイクルの凝縮用ないしは蒸発用熱交換
器を分割した熱交換器の容量制御装置において、前記分
割した熱交換器を冷却媒体に対して直列に配設し、前記
分割した上流側熱交換器と下流側熱交換器との間に気液
分離器を設け、前記気液分離器のガス側及び液側出口配
管に減圧装置を設け、凝縮器として作用するときは気液
分離器のガス側出口配管に設けた減圧装置の出口を下流
側熱交換器の入口に接続して下流側熱交換器へ積極的に
ガス冷媒を流し、蒸発器として作分するときは気液分離
器の液側出口配管に設けた減圧装置の出口を下流側熱交
換器の入口に接続して下流側熱交換器へ積極的に液冷媒
を流し、前記下流側熱交換器の出口は、気液分離器の他
方の出口配管に設けた減圧装置の下流側に接続したこと
を特徴とする。
[Means for Solving the Problems] The present invention provides a refrigeration cycle in which at least a compressor, a condensing heat exchanger, a pressure reducing device, and an evaporating heat exchanger are connected, and the condensing or evaporating heat exchanger is divided. In the heat exchanger capacity control device, the divided heat exchangers are arranged in series with respect to the cooling medium, and a gas-liquid separator is provided between the divided upstream heat exchanger and the downstream heat exchanger. A pressure reducing device is provided on the gas side and liquid side outlet piping of the gas-liquid separator, and when acting as a condenser, the outlet of the pressure reducing device provided on the gas side outlet piping of the gas-liquid separator is connected to the downstream heat exchanger. The gas refrigerant is actively flowed to the downstream heat exchanger by connecting it to the inlet of the gas-liquid separator to actively flow the gas refrigerant to the downstream heat exchanger. The liquid refrigerant is actively flowed to the downstream heat exchanger by connecting to the inlet of the downstream heat exchanger, and the outlet of the downstream heat exchanger is connected to the downstream side of a pressure reducing device provided on the other outlet piping of the gas-liquid separator. It is characterized by

【0009】[0009]

【作用】一般に中間期における空調は、空調場の負荷が
小さく熱交換器の能力制御を行うため圧縮機の駆動周波
数を下げて冷凍サイクル内を流れる冷媒量を低減させた
運転を行うが、熱交換器の容量が変化していないため、
熱交換器の圧力が変化し室内へ吹き出す温度が変化して
室内の温度分布が悪化する。空調場の快適度を保つには
、吹き出し温度を常に一定にする必要があり、そのため
には熱交換器の容量を冷凍サイクル内を流れる冷媒量に
応じて可変できるようにしなければならない。
[Function] In general, air conditioning during the intermediate period is operated by lowering the drive frequency of the compressor and reducing the amount of refrigerant flowing in the refrigeration cycle, since the load on the air conditioning field is small and the capacity of the heat exchanger is controlled. Since the capacity of the exchanger has not changed,
The pressure of the heat exchanger changes and the temperature blown into the room changes, worsening the temperature distribution in the room. In order to maintain the comfort level of an air-conditioned facility, it is necessary to keep the outlet temperature constant at all times, and to do so, the capacity of the heat exchanger must be made variable in accordance with the amount of refrigerant flowing within the refrigeration cycle.

【0010】上記のように構成された熱交換器の容量制
御装置は、空調場の負荷が小さい場合、凝縮器として作
用するときは、上流側熱交換器のみで冷媒が完全に液化
するため気液分離器内に流入する冷媒にはガスが存在せ
ず、気液分離器のガス側出口に設けた減圧装置を絞るこ
とにより下流側熱交換器には冷媒が流れず、下流側熱交
換器の飽和温度が空調場の温度よりも下がることで液冷
媒が下流側熱交換器に貯留されなくなるため、熱交換器
の容量が小さくすることができる。また、蒸発器として
作用するときも同様に、上流側熱交換器のみで完全に蒸
発しガス化するため気液分離器内に流入する冷媒には液
が存在せず、下流側熱交換器には冷媒が流れないため熱
交換器の容量を小さくすることができる。
[0010] When the load on the air conditioning plant is small, the heat exchanger capacity control device configured as described above completely liquefies the refrigerant only in the upstream heat exchanger, so that the air There is no gas in the refrigerant flowing into the liquid separator, and by throttling the pressure reducing device installed at the gas side outlet of the gas-liquid separator, the refrigerant does not flow to the downstream heat exchanger, and the downstream heat exchanger Since the saturation temperature of the refrigerant becomes lower than the temperature of the air conditioning field, the liquid refrigerant is no longer stored in the downstream heat exchanger, so the capacity of the heat exchanger can be reduced. Similarly, when acting as an evaporator, the refrigerant is completely evaporated and gasified only in the upstream heat exchanger, so there is no liquid in the refrigerant flowing into the gas-liquid separator, and the downstream heat exchanger Since no refrigerant flows, the capacity of the heat exchanger can be reduced.

【0011】このために、冷媒の流動様式を利用して熱
交換器の容量を制御するため、冷凍サイクルの急激な変
化がなく、空調場の負荷が小さいときも常にユニットか
らの吹き出す温度を一定に保つことができるため、室内
の温度分布を均一に保つことができる。
[0011] For this reason, since the capacity of the heat exchanger is controlled using the flow pattern of the refrigerant, there is no sudden change in the refrigeration cycle, and the temperature blown out from the unit is always constant even when the load on the air conditioning field is small. Since it can be maintained at a constant temperature, it is possible to maintain a uniform temperature distribution in the room.

【0012】0012

【実施例】以下、図に示す実施例に基づいて、本発明の
熱交換器の容量制御装置を具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The heat exchanger capacity control device of the present invention will be specifically explained below based on the embodiments shown in the drawings.

【0013】図1は本発明の一実施例の熱交換器の容量
制御装置を凝縮器として作用させた場合についての構成
を、図2は熱交換器の容量制御装置を蒸発器として作用
させた場合についての構成をそれぞれ、示す。
FIG. 1 shows a configuration in which a heat exchanger capacity control device according to an embodiment of the present invention is operated as a condenser, and FIG. 2 is a configuration in which a heat exchanger capacity control device according to an embodiment of the present invention is operated as an evaporator. The configuration for each case is shown below.

【0014】図において、1は凝縮器として作用する熱
交換器で、この凝縮用熱交換器1を少なくとも上流側凝
縮用熱交換器1aと下流側凝縮用熱交換器1bに分け、
上流側凝縮用熱交換器1aには、冷媒ガスを流入させる
ためのガス流入配管4を入口側に接続し、出口側には冷
媒ガスと冷媒液を分離するための気液分離器2を接続す
る。気液分離器2のガス側出口配管6及び液側出口配管
7には、冷媒の流出量を調整する減圧装置として流量調
整弁3a,3bを設ける。気液分離器2の液側出口配管
7に設けた流量調整弁3bの出口は、液流出配管5に接
続される。また、気液分離器2のガス側出口配管6に設
けた流量調整弁3aの出口は、分割した下流側凝縮用熱
交換器1bの入口側に接続し、下流側凝縮用熱交換器1
bの出口は、ガス側出口配管6に設けた流量調整弁3a
の下流側に冷媒液を流出する液流出配管5へ流れ込むよ
うに接続する。このようにして凝縮器として作用する熱
交換器の容量制御装置が構成される。
In the figure, 1 is a heat exchanger functioning as a condenser, and this condensing heat exchanger 1 is divided into at least an upstream condensing heat exchanger 1a and a downstream condensing heat exchanger 1b.
The upstream condensing heat exchanger 1a is connected to the inlet side of the gas inflow pipe 4 for allowing refrigerant gas to flow in, and the gas-liquid separator 2 for separating refrigerant gas and refrigerant liquid to the outlet side. do. The gas-side outlet pipe 6 and the liquid-side outlet pipe 7 of the gas-liquid separator 2 are provided with flow rate regulating valves 3a and 3b as pressure reducing devices for adjusting the amount of refrigerant flowing out. The outlet of the flow rate regulating valve 3b provided in the liquid-side outlet pipe 7 of the gas-liquid separator 2 is connected to the liquid outflow pipe 5. Further, the outlet of the flow rate regulating valve 3a provided in the gas side outlet pipe 6 of the gas-liquid separator 2 is connected to the inlet side of the divided downstream condensing heat exchanger 1b, and the downstream condensing heat exchanger 1
The outlet b is a flow rate adjustment valve 3a provided in the gas side outlet pipe 6.
The refrigerant liquid is connected to flow into the liquid outflow pipe 5 which flows out on the downstream side of the refrigerant. In this way, a capacity control device for a heat exchanger acting as a condenser is constructed.

【0015】また、8は蒸発器として作用する熱交換器
で、この蒸発用熱交換器8を少なくとも上流側蒸発用熱
交換器8aと下流側蒸発用熱交換器8bに分け、上流側
蒸発用熱交換器8aには、冷媒液と冷媒ガスが混在する
気液二相状態の冷媒を流入させるための冷媒配管9を入
口側に接続し、出口側には冷媒ガスと冷媒液を分離する
ための気液分離器2を接続する。気液分離器2のガス側
出口配管6及び液側出口配管7には、冷媒の流出量を調
整する減圧装置として流量調整弁3a,3bを設ける。 気液分離器2のガス側出口配管6に設けた流量調整弁3
aの出口は、ガス流出配管10に接続される。また、気
液分離器2の液側出口配管7に設けた流量調整弁3bの
出口は、分割した下流側蒸発用熱交換器8bの入口側に
接続し、下流側蒸発用熱交換器8bの出口は、ガス側出
口配管6に設けた流量調整弁3aの下流側に冷媒ガスを
流出するガス流出配管10へ流れ込むように接続する。 このようにして蒸発器として作用する熱交換器の容量制
御装置が構成される。
Further, 8 is a heat exchanger that functions as an evaporator, and the evaporation heat exchanger 8 is divided into at least an upstream evaporation heat exchanger 8a and a downstream evaporation heat exchanger 8b. A refrigerant pipe 9 is connected to the inlet side of the heat exchanger 8a for flowing a refrigerant in a gas-liquid two-phase state in which refrigerant liquid and refrigerant gas are mixed, and a refrigerant pipe 9 is connected to the outlet side for separating refrigerant gas and refrigerant liquid. Connect the gas-liquid separator 2. The gas-side outlet pipe 6 and the liquid-side outlet pipe 7 of the gas-liquid separator 2 are provided with flow rate regulating valves 3a and 3b as pressure reducing devices for adjusting the amount of refrigerant flowing out. Flow rate adjustment valve 3 provided in the gas side outlet pipe 6 of the gas-liquid separator 2
The outlet of a is connected to the gas outflow pipe 10. Further, the outlet of the flow rate adjustment valve 3b provided in the liquid-side outlet pipe 7 of the gas-liquid separator 2 is connected to the inlet side of the divided downstream evaporative heat exchanger 8b, and The outlet is connected so as to flow into a gas outflow pipe 10 through which the refrigerant gas flows out downstream of the flow rate adjustment valve 3a provided in the gas side outlet pipe 6. In this way, a capacity control device for a heat exchanger acting as an evaporator is constructed.

【0016】次に、熱交換器の容量制御装置の動作原理
について説明する。熱交換器の容量制御装置を凝縮器と
して用いる場合は、図1に示すように構成され、次にあ
げる二つの運転パターンがある。
Next, the principle of operation of the heat exchanger capacity control device will be explained. When a heat exchanger capacity control device is used as a condenser, it is configured as shown in FIG. 1, and there are the following two operation patterns.

【0017】(1)通常運転 このパターンは、凝縮器として作用する熱交換器の設置
されている空間の負荷が大きい場合であり、ガス流入配
管4を通るガス冷媒は、上流側凝縮用熱交換器1aに流
入し外気と熱交換して凝縮する。上流側凝縮用熱交換器
1aの容量は、通常の室内負荷に対して小さいため上流
側凝縮用熱交換器1aの出口では完全に凝縮しておらず
、気液二相状態として流出し気液分離器2内に流入する
。気液分離器2内に流入した冷媒は液とガスに分離され
、液冷媒は気液分離器2内を降下し、ガス冷媒は気液分
離器2内を上昇する。分離された液冷媒は、凝縮が完了
したものであるから液側出口配管7から流量調整弁3b
をある一定量開いて流出量を調整し液流出配管5に導く
。また分離したガス冷媒は、凝縮が完了していないので
ガス側出口配管6から流量調整弁3aをある一定量開い
て下流側凝縮用熱交換器1bに流入させ、外気と熱交換
して凝縮を完了し、液流出配管5に導く。
(1) Normal operation This pattern occurs when the load on the space in which the heat exchanger acting as a condenser is installed is large, and the gas refrigerant passing through the gas inlet pipe 4 is transferred to the upstream condensing heat exchanger. It flows into the vessel 1a, exchanges heat with the outside air, and condenses. Since the capacity of the upstream condensing heat exchanger 1a is small compared to the normal indoor load, it is not completely condensed at the outlet of the upstream condensing heat exchanger 1a, and flows out as a gas-liquid two-phase state. It flows into the separator 2. The refrigerant flowing into the gas-liquid separator 2 is separated into liquid and gas, the liquid refrigerant descending within the gas-liquid separator 2, and the gas refrigerant rising within the gas-liquid separator 2. Since the separated liquid refrigerant has completed condensation, it is transferred from the liquid side outlet pipe 7 to the flow rate adjustment valve 3b.
The liquid is opened by a certain amount to adjust the outflow amount and lead to the liquid outflow pipe 5. In addition, since the separated gas refrigerant has not completely condensed, the flow rate adjustment valve 3a is opened by a certain amount from the gas side outlet pipe 6 to flow into the downstream condensing heat exchanger 1b, where it exchanges heat with the outside air and is condensed. Completed, the liquid is led to the liquid outflow pipe 5.

【0018】このように室内負荷が大きい場合は、流量
調整弁3a,3bを開いて上流側凝縮用熱交換器1a及
び下流側凝縮用熱交換器1bに冷媒を流し、室内の負荷
に適した熱交換器の容量とする。
When the indoor load is large as described above, the flow rate adjustment valves 3a and 3b are opened to allow the refrigerant to flow through the upstream condensing heat exchanger 1a and the downstream condensing heat exchanger 1b, so that the amount of refrigerant is adjusted to suit the indoor load. Let it be the capacity of the heat exchanger.

【0019】(2)容量制御運転 このパターンは、凝縮器として作用する熱交換器の設置
されている空間の負荷が小さい場合であり、ガス流入配
管4を通るガス冷媒は、上流側凝縮用熱交換器1aに流
入し外気と熱交換して凝縮する。上流側凝縮用熱交換器
1aの容量は、室内負荷が小さい場合にマッチしている
ため上流側凝縮用熱交換器1aの出口で完全に凝縮し、
液冷媒として流出し気液分離器2内に流入する。気液分
離器2内に流入した液冷媒は、気液分離器2内を降下し
液側出口配管7から流量調整弁3bをある一定量開いて
流出量を調整し液流出配管5に導く。ここで、気液分離
器2のガス側出口に設けた流量調整弁3aを下流側凝縮
用熱交換器1bの飽和温度が室内温度以下となるように
絞ることにより、下流側凝縮用熱交換器1b内に液冷媒
が貯留せず、下流側凝縮用熱交換器1b内への冷媒の流
入を阻止するため、気液分離器2内に液冷媒が貯留され
、凝縮器として作用する熱交換器の容量が室内負荷に適
合した大きさに減少する。
(2) Capacity control operation This pattern is used when the load on the space in which the heat exchanger acting as a condenser is installed is small, and the gas refrigerant passing through the gas inlet pipe 4 is heated for condensation on the upstream side. It flows into the exchanger 1a, exchanges heat with the outside air, and condenses. The capacity of the upstream condensing heat exchanger 1a matches the case where the indoor load is small, so that it is completely condensed at the outlet of the upstream condensing heat exchanger 1a,
It flows out as a liquid refrigerant and flows into the gas-liquid separator 2. The liquid refrigerant that has flowed into the gas-liquid separator 2 descends within the gas-liquid separator 2 and is guided from the liquid side outlet pipe 7 to the liquid outflow pipe 5 after opening the flow rate regulating valve 3b by a certain amount to adjust the outflow amount. Here, by restricting the flow rate regulating valve 3a provided at the gas side outlet of the gas-liquid separator 2 so that the saturation temperature of the downstream condensing heat exchanger 1b is equal to or lower than the indoor temperature, the downstream condensing heat exchanger 1b is Liquid refrigerant is not stored in the gas-liquid separator 2 to prevent the refrigerant from flowing into the downstream condensing heat exchanger 1b, and the heat exchanger functions as a condenser. capacity is reduced to match the indoor load.

【0020】このように、熱交換器が設置されている空
間の熱負荷が大きいときは、上流側凝縮用熱交換器1a
と下流側凝縮用熱交換器1bの両方に冷媒が流通させ、
熱負荷が小さいときは、上流側凝縮用熱交換器1aのみ
に冷媒を流通させるため、熱負荷にマッチした熱交換器
の容量で運転でき、それだけ冷凍サイクルをある一定の
値に安定に保持でき、従って室温のばらつきを小さくで
きるのである。
As described above, when the heat load in the space where the heat exchanger is installed is large, the upstream condensing heat exchanger 1a
and the downstream condensing heat exchanger 1b,
When the heat load is small, the refrigerant flows only through the upstream condensing heat exchanger 1a, so the heat exchanger can be operated with a capacity that matches the heat load, and the refrigeration cycle can be stably maintained at a certain value. Therefore, variations in room temperature can be reduced.

【0021】次に、熱交換器の容量制御装置を蒸発器と
して用いる場合は、図2に示すような構成を成し、次に
あげる二つの運転パターンがある。
Next, when the heat exchanger capacity control device is used as an evaporator, it has a configuration as shown in FIG. 2, and there are the following two operation patterns.

【0022】(1)通常運転 このパターンは、蒸発器として作用する熱交換器の設置
されている空間の負荷が大きい場合であり、冷媒配管9
を通る気液二相状態の冷媒は、上流側蒸発用熱交換器8
aに流入し外気と熱交換して蒸発する。上流側蒸発用熱
交換器8aの容量は、通常の室内負荷に対して小さいた
め、上流側蒸発用熱交換器8aの出口では完全に蒸発し
ておらず、気液二相状態として流出し気液分離器2内に
流入する。気液分離器2内に流入した冷媒は液とガスに
分離され、液冷媒は気液分離器2内を降下し、ガス冷媒
は気液分離器2内を上昇する。分離されたガス冷媒は、
蒸発が完了したものであるからガス側出口配管6から流
量調整弁3aをある一定量開いて流出量を調整しガス流
出配管10に導く。また分離した液冷媒は、蒸発が完了
していないので液側出口配管7から流量調整弁3bをあ
る一定量開いて下流側蒸発用熱交換器8bに流入させ、
外気と熱交換して蒸発を完了し、ガス流出配管10に導
く。
(1) Normal operation This pattern occurs when the load on the space in which the heat exchanger acting as an evaporator is installed is large, and the refrigerant pipe 9
The gas-liquid two-phase refrigerant passing through the upstream evaporation heat exchanger 8
It flows into the air, exchanges heat with the outside air, and evaporates. Since the capacity of the upstream evaporative heat exchanger 8a is small compared to the normal indoor load, complete evaporation does not occur at the outlet of the upstream evaporative heat exchanger 8a, and gas flows out as a gas-liquid two-phase state. It flows into the liquid separator 2. The refrigerant flowing into the gas-liquid separator 2 is separated into liquid and gas, the liquid refrigerant descending within the gas-liquid separator 2, and the gas refrigerant rising within the gas-liquid separator 2. The separated gas refrigerant is
Since evaporation has been completed, the flow rate adjustment valve 3a is opened by a certain amount from the gas side outlet pipe 6 to adjust the outflow amount and guide the gas to the gas outflow pipe 10. Further, since the separated liquid refrigerant has not completed evaporation, the flow rate adjustment valve 3b is opened by a certain amount from the liquid side outlet pipe 7 to flow into the downstream side evaporation heat exchanger 8b.
Evaporation is completed by exchanging heat with outside air, and the gas is led to the gas outflow pipe 10.

【0023】このように室内負荷が大きい場合は、流量
調整弁3a,3bを開いて上流側蒸発用熱交換器8a及
び下流側蒸発用熱交換器8bに冷媒を流し、室内の負荷
に適した熱交換器の容量とする。
When the indoor load is large as described above, the flow rate adjustment valves 3a and 3b are opened to allow the refrigerant to flow through the upstream evaporative heat exchanger 8a and the downstream evaporative heat exchanger 8b, and the flow rate is adjusted to match the indoor load. Let it be the capacity of the heat exchanger.

【0024】(2)容量制御運転 このパターンは、蒸発器として作用する熱交換器の設置
されている空間の負荷が小さい場合であり、冷媒配管9
を通る気液二相状態の冷媒は、上流側蒸発用熱交換器8
aに流入し外気と熱交換して蒸発する。上流側蒸発用熱
交換器8aの容量は、室内負荷が小さい場合にマッチし
ているため、上流側蒸発用熱交換器8aの出口で完全に
蒸発し、ガス冷媒として流出し気液分離器2内に流入す
る。気液分離器2内に流入した冷媒は、気液分離器2内
を上昇しガス側出口配管6から流量調整弁3aをある一
定量開いて流出量を調整しガス流出配管10に導く。こ
こで、気液分離器2の液側出口に設けた流量調整弁3b
を絞ることにより、下流側蒸発用熱交換器8b内への冷
媒の流入を阻止し、蒸発器として作用する熱交換器の容
量が室内負荷に適合した大きさに減少する。
(2) Capacity control operation This pattern is used when the load on the space in which the heat exchanger acting as an evaporator is installed is small, and the refrigerant pipe 9
The gas-liquid two-phase refrigerant passing through the upstream evaporation heat exchanger 8
It flows into the air, exchanges heat with the outside air, and evaporates. Since the capacity of the upstream evaporative heat exchanger 8a matches the case where the indoor load is small, it is completely evaporated at the outlet of the upstream evaporative heat exchanger 8a and flows out as a gas refrigerant to the gas-liquid separator 2. flow inside. The refrigerant that has flowed into the gas-liquid separator 2 rises within the gas-liquid separator 2 and is guided from the gas side outlet pipe 6 to the gas outflow pipe 10 after opening the flow rate regulating valve 3a by a certain amount to adjust the outflow amount. Here, the flow rate adjustment valve 3b provided at the liquid side outlet of the gas-liquid separator 2
By throttling the refrigerant, the flow of refrigerant into the downstream evaporative heat exchanger 8b is prevented, and the capacity of the heat exchanger functioning as an evaporator is reduced to a size suitable for the indoor load.

【0025】このように、熱交換器の容量制御装置を蒸
発器として作用させた場合も凝縮器として作用させたと
きと同じ効果がある。
As described above, when the heat exchanger capacity control device is operated as an evaporator, it has the same effect as when it is operated as a condenser.

【0026】熱交換器の容量制御を行う判断手段は、吐
出圧力や容量制御を行う熱交換器の温度などを圧力セン
サや温度センサを用い、マイコン等により予め設定され
ている値と判断して容量制御が必要であると判断された
場合に流量調整弁3a,3bを調整するものである。
The determining means for controlling the capacity of the heat exchanger uses a pressure sensor and a temperature sensor to judge the discharge pressure and the temperature of the heat exchanger whose capacity is to be controlled to be a value set in advance by a microcomputer or the like. The flow regulating valves 3a and 3b are adjusted when it is determined that capacity control is necessary.

【0027】次に、熱交換器の容量制御を行う判断手段
として、他の実施例について説明する。
Next, another embodiment will be described as a determination means for controlling the capacity of a heat exchanger.

【0028】図3は、熱交換器の容量制御を行う判断手
段として、気液分離器2内に貯留される冷媒量を用いた
熱交換器の容量制御装置の判断装置の構成図を示す。図
において、11は気液分離器2内に貯留される液冷媒の
量を検知する液面センサであり、本実施例では静電容量
計を用いている。12は液面センサ11からの信号によ
り熱交換器の容量制御を判断する判断装置、13は判断
装置12からの制御信号により可動する減圧装置の駆動
装置であり、液面センサ11,判断装置12,駆動装置
13の間は制御信号線14により接続される。
FIG. 3 shows a configuration diagram of a determination device of a heat exchanger capacity control device that uses the amount of refrigerant stored in the gas-liquid separator 2 as determination means for controlling the capacity of the heat exchanger. In the figure, 11 is a liquid level sensor that detects the amount of liquid refrigerant stored in the gas-liquid separator 2, and in this embodiment, a capacitance meter is used. Reference numeral 12 denotes a determination device that determines the capacity control of the heat exchanger based on a signal from the liquid level sensor 11, and 13 represents a drive device for a pressure reducing device that operates in response to a control signal from the determination device 12. , drive device 13 are connected by a control signal line 14.

【0029】次に判断装置の動作について説明する。Next, the operation of the judgment device will be explained.

【0030】熱交換器の容量制御装置を凝縮器として作
用する場合、空調場の負荷が大きいときは、上流側凝縮
用熱交換器1a及び下流側凝縮用熱交換器1bの両方に
冷媒が流れるため気液分離器2内の液面は低い位置に存
在する。また、空調場の負荷が小さいときは、上流側凝
縮用熱交換器1aのみで完全に凝縮し、下流側凝縮用熱
交換器1bに存在していた液冷媒は気液分離器2内に貯
留され気液分離器2内の液面が上昇する。従って、気液
分離器2内の液面の高さを液面センサ11により検知し
、液面センサ11の信号を判断装置12に入力し、予め
設定されている値と比較して熱交換器の容量制御が必要
と判断された場合は、気液分離器2のガス側出口6に設
けた減圧装置3aをある一定量に絞るように駆動装置1
3に制御信号を出力する。また、熱交換器の容量制御が
不要と判断された場合は、減圧装置3aを開くように駆
動装置に制御信号を出力し、下流側凝縮用熱交換器1b
に冷媒を流すようにする。
When the heat exchanger capacity control device acts as a condenser, when the load of the air conditioning plant is large, the refrigerant flows through both the upstream condensing heat exchanger 1a and the downstream condensing heat exchanger 1b. Therefore, the liquid level in the gas-liquid separator 2 is at a low level. In addition, when the load on the air conditioning plant is small, the refrigerant is completely condensed only in the upstream condensing heat exchanger 1a, and the liquid refrigerant that was present in the downstream condensing heat exchanger 1b is stored in the gas-liquid separator 2. The liquid level in the gas-liquid separator 2 rises. Therefore, the height of the liquid level in the gas-liquid separator 2 is detected by the liquid level sensor 11, the signal from the liquid level sensor 11 is input to the judgment device 12, and compared with a preset value, the heat exchanger If it is determined that capacity control of
A control signal is output to 3. In addition, if it is determined that capacity control of the heat exchanger is not necessary, a control signal is output to the drive device to open the pressure reducing device 3a, and the downstream condensing heat exchanger 1b is
Allow the refrigerant to flow.

【0031】また、熱交換器の容量制御装置を蒸発器と
して作用する場合、空調場の負荷が大きいときは、上流
側蒸発用熱交換器8aのみでは完全に蒸発できないため
気液分離器2内には液冷媒が貯留され気液分離器2内の
液面は高い位置に存在する。また、空調場の負荷が小さ
いときは、上流側蒸発用熱交換器8aのみで完全に蒸発
するため気液分離器2内の液面はほとんど存在しない。 従って、気液分離器2内の液面の高さを液面センサ11
により検知し、液面センサ11の信号を判断装置12に
入力し、予め設定されている値と比較して熱交換器の容
量制御が必要と判断された場合は、気液分離器2の液側
出口7に設けた減圧装置3bをある一定量に絞るように
駆動装置13に制御信号を出力する。また、熱交換器の
容量制御が不要と判断された場合は、減圧装置3bを開
くように駆動装置に制御信号を出力し、下流側凝縮用熱
交換器8bに冷媒を流すようにする。
Furthermore, when the capacity control device of the heat exchanger acts as an evaporator, when the load of the air conditioning field is large, the upstream evaporation heat exchanger 8a alone cannot evaporate completely, so that the inside of the gas-liquid separator 2 A liquid refrigerant is stored in the gas-liquid separator 2, and the liquid level in the gas-liquid separator 2 is at a high position. Furthermore, when the load on the air conditioning field is small, the liquid level in the gas-liquid separator 2 is almost non-existent because the liquid is completely evaporated only in the upstream evaporation heat exchanger 8a. Therefore, the height of the liquid level in the gas-liquid separator 2 is measured by the liquid level sensor 11.
The signal from the liquid level sensor 11 is input to the judgment device 12, and compared with a preset value. If it is determined that capacity control of the heat exchanger is necessary, A control signal is output to the drive device 13 so that the pressure reducing device 3b provided at the side outlet 7 is reduced to a certain fixed amount. Further, if it is determined that capacity control of the heat exchanger is not necessary, a control signal is output to the drive device to open the pressure reducing device 3b, and the refrigerant is made to flow to the downstream condensing heat exchanger 8b.

【0032】この判断手段を用いて熱交換器の容量制御
を行う方法は、熱交換器の必要容量に応じて変化する気
液分離器内の液冷媒量を検知して行うため、温度センサ
や圧力センサにより制御を行う方法と比較してより精度
よく熱交換器の容量を制御できる。
The method of controlling the capacity of the heat exchanger using this judgment means detects the amount of liquid refrigerant in the gas-liquid separator, which changes depending on the required capacity of the heat exchanger, so it uses a temperature sensor or The capacity of the heat exchanger can be controlled more accurately than the method of controlling using a pressure sensor.

【0033】次に、本発明の他の実施例として冷媒の流
動様式のみを利用して熱交換器の容量制御を自動的に行
える熱交換器の自動容量制御装置について説明する。
Next, as another embodiment of the present invention, an automatic capacity control device for a heat exchanger that can automatically control the capacity of a heat exchanger using only the flow pattern of the refrigerant will be described.

【0034】図4は熱交換器の容量制御を自動的に行え
る熱交換器の自動容量制御装置を凝縮器として作用させ
た場合の構成図を、図5は前記熱交換器の自動容量制御
装置を蒸発器として作用させた場合のブロック図を示す
FIG. 4 is a block diagram of a case where an automatic capacity control device for a heat exchanger that can automatically control the capacity of a heat exchanger is used as a condenser, and FIG. 5 is a diagram showing the automatic capacity control device for a heat exchanger. The block diagram shows a case where the evaporator is operated as an evaporator.

【0035】図において、実施例で設けた気液分離器2
のガス側出口配管6に配設した流量調整弁3aの代わり
に図6に示すような気液分離器を設ける。
In the figure, the gas-liquid separator 2 provided in the embodiment
A gas-liquid separator as shown in FIG. 6 is provided in place of the flow rate regulating valve 3a disposed in the gas side outlet pipe 6.

【0036】図6は、熱交換器の自動容量制御装置に具
備する気液分離器の断面図の一実施例を示す。図におい
て、2aは熱交換器の自動容量制御装置に具備する気液
分離器で、気液分離器2a内には、上流側熱交換器より
流出する冷媒を気液分離器2a内に導くための入口配管
16より上方に下部遮蔽板19と下部遮蔽板19より上
方に上部遮蔽板18を設け、上部遮蔽板18及び下部遮
蔽板19には、ガス冷媒が流通できるように複数個の孔
を設ける。また、ガス側出口配管6の通路を塞ぐことの
できるニードル17のニードル17の高さを抑制するス
トッパ16と液冷媒中に浮かぶことができる浮き子15
が一対となったものを上部遮蔽板18と下部遮蔽板19
の間にストッパ16が位置するように配設する。
FIG. 6 shows an embodiment of a sectional view of a gas-liquid separator included in an automatic capacity control device for a heat exchanger. In the figure, 2a is a gas-liquid separator included in the automatic capacity control device of the heat exchanger, and inside the gas-liquid separator 2a is a gas-liquid separator for guiding the refrigerant flowing out from the upstream heat exchanger into the gas-liquid separator 2a. A lower shielding plate 19 is provided above the inlet pipe 16 and an upper shielding plate 18 is provided above the lower shielding plate 19, and a plurality of holes are provided in the upper shielding plate 18 and the lower shielding plate 19 so that the gas refrigerant can flow therethrough. establish. Additionally, a stopper 16 that suppresses the height of the needle 17 that can block the passage of the gas side outlet pipe 6 and a float 15 that can float in the liquid refrigerant are also provided.
The pair is an upper shielding plate 18 and a lower shielding plate 19.
A stopper 16 is disposed between the two.

【0037】次に、熱交換器の自動容量制御装置の動作
原理について説明する。冷媒の流動状態についてはこの
実施例と同様であり、ここでは気液分離器2aの動作に
ついて説明する。
Next, the operating principle of the automatic capacity control device for a heat exchanger will be explained. The flow state of the refrigerant is the same as in this embodiment, and the operation of the gas-liquid separator 2a will be described here.

【0038】(1)凝縮器として作用する場合通常運転
時は、上流側凝縮用熱交換器1aから流出する冷媒が気
液二相状態であるため、気液分離器2a内に貯留される
冷媒量は減少し、ガス側出口配管6を塞ぐニードル17
が下がり、気液分離器2aで分離されたガス冷媒は、ガ
ス側出口配管6を通り下流側凝縮用熱交換器1bに流入
し蒸発して液流出配管5に導かれ、気液分離器2a内で
分離された液冷媒は液側出口配管7を通り液流出配管5
に導かれる。
(1) When acting as a condenser During normal operation, the refrigerant flowing out from the upstream condensing heat exchanger 1a is in a gas-liquid two-phase state, so the refrigerant stored in the gas-liquid separator 2a The amount decreases and the needle 17 blocks the gas side outlet pipe 6.
The gas refrigerant separated by the gas-liquid separator 2a flows into the downstream condensing heat exchanger 1b through the gas-side outlet pipe 6, evaporates, and is led to the liquid outflow pipe 5, and is then separated by the gas-liquid separator 2a. The liquid refrigerant separated inside passes through the liquid side outlet pipe 7 to the liquid outflow pipe 5.
guided by.

【0039】一方、容量制御運転時は、室内の負荷と上
流側凝縮用熱交換器1aの容量がマッチしているため、
上流側凝縮用熱交換器1aから流出する冷媒は液冷媒の
みとなる。このため、気液分離器2a内に貯留される冷
媒量が増加し、気液分離器2a内に配設された浮き子1
5が上方に押し上げられ、浮き子15と一対を成すニー
ドル17も上方に押し上げられ、ガス側出口配管6を塞
ぐ。これにより、下流側凝縮用熱交換器内への冷媒の流
入を阻止し、凝縮器として作用する熱交換器の容量を室
内の負荷に適合した大きさに減少できる。
On the other hand, during capacity control operation, since the indoor load and the capacity of the upstream condensing heat exchanger 1a match,
The refrigerant flowing out from the upstream condensing heat exchanger 1a is only liquid refrigerant. Therefore, the amount of refrigerant stored in the gas-liquid separator 2a increases, and the float 1 disposed in the gas-liquid separator 2a increases.
5 is pushed upward, and the needle 17 forming a pair with the float 15 is also pushed upward, thereby blocking the gas side outlet pipe 6. This prevents the refrigerant from flowing into the downstream condensing heat exchanger, and reduces the capacity of the heat exchanger that acts as a condenser to a size suitable for the indoor load.

【0040】(2)蒸発器として作用する場合通常運転
時は、上流側蒸発用熱交換器8aから流出する冷媒が気
液二相状態であるため、気液分離器2a内に貯留される
冷媒量は少なく、ガス側出口配管6を塞ぐニードル17
は下方にあり、気液分離器内2aで分離されたガス冷媒
は、ガス側出口配管6を通りガス流出配管10に導かれ
、気液分離器2aで分離された液冷媒は、液側出口配管
7を通り下流側蒸発用熱交換器8bに流入し蒸発してガ
ス流出配管10に導かれる。
(2) When acting as an evaporator During normal operation, the refrigerant flowing out from the upstream evaporative heat exchanger 8a is in a gas-liquid two-phase state, so the refrigerant stored in the gas-liquid separator 2a The amount is small and the needle 17 blocks the gas side outlet pipe 6.
is located below, the gas refrigerant separated in the gas-liquid separator 2a is led to the gas outlet pipe 10 through the gas side outlet pipe 6, and the liquid refrigerant separated in the gas-liquid separator 2a is guided to the liquid side outlet. The gas flows through the pipe 7 into the downstream evaporation heat exchanger 8b, evaporates, and is guided to the gas outflow pipe 10.

【0041】一方、容量制御運転時は、室内の負荷と上
流側蒸発用熱交換器8aの容量がマッチしているため、
上流側蒸発用熱交換器8aから流出する冷媒はガス冷媒
のみとなる。このため、気液分離器2a内はガス冷媒と
なり、ガス側出口配管6を塞ぐニードル17が最下端に
位置する。そして、液側出口配管7に設けた流量調整弁
3を絞ることにより下流側蒸発用熱交換器への冷媒の流
入を阻止し、蒸発器として作用する熱交換器の容量の室
内の負荷に適合した大きさに減少できる。
On the other hand, during capacity control operation, since the indoor load matches the capacity of the upstream evaporation heat exchanger 8a,
The refrigerant flowing out from the upstream evaporative heat exchanger 8a is only gas refrigerant. Therefore, the inside of the gas-liquid separator 2a becomes a gas refrigerant, and the needle 17 that closes the gas side outlet pipe 6 is located at the lowest end. Then, by throttling the flow rate regulating valve 3 provided on the liquid side outlet pipe 7, the flow of refrigerant into the downstream side evaporative heat exchanger is blocked, and the capacity of the heat exchanger acting as an evaporator is adjusted to the indoor load. can be reduced to the same size.

【0042】本実施例は、熱交換器の容量制御を冷媒の
流動様式を利用し、センサやマイコン等の電子装置を用
いずに機械的行うため、確実に誤動作を起こさずに熱交
換器の容量を自動的に制御できるのである。また、容量
制御として用いる気液分離器2a内に配設されるニード
ル17の動作速度は、気液分離器内にたまる液冷媒の量
即ち冷凍サイクルの変化速度により抑制されるため、冷
凍サイクルを常に安定に保つことができ、それだけ室内
の温度分布を均一に安定して保つことができる。
In this embodiment, the capacity of the heat exchanger is controlled mechanically using the flow pattern of the refrigerant without using electronic devices such as sensors or microcomputers. Capacity can be controlled automatically. In addition, the operating speed of the needle 17 disposed in the gas-liquid separator 2a used for capacity control is suppressed by the amount of liquid refrigerant accumulated in the gas-liquid separator, that is, the rate of change of the refrigeration cycle. It can be kept stable at all times, and the temperature distribution in the room can be kept uniform and stable.

【0043】次に、熱交換器の容量制御装置を冷凍サイ
クルに組み込んだ場合の運転方法について説明する。
Next, a description will be given of an operating method when the heat exchanger capacity control device is incorporated into a refrigeration cycle.

【0044】図7は、本発明の熱交換器の容量制御装置
を凝縮器及び蒸発器として用いた冷凍サイクルの一実施
例を示した系統図である。
FIG. 7 is a system diagram showing an embodiment of a refrigeration cycle using the heat exchanger capacity control device of the present invention as a condenser and an evaporator.

【0045】図において、20は圧縮機、21は冷凍サ
イクルの主減圧装置である膨張弁であり、本発明の熱交
換器の容量制御装置を図に示すように環状に配管で連結
することで冷凍サイクルが構成される。
In the figure, 20 is a compressor, 21 is an expansion valve which is the main pressure reducing device of the refrigeration cycle, and by connecting the heat exchanger capacity control device of the present invention with piping in an annular manner as shown in the figure. A refrigeration cycle is configured.

【0046】次に各々の運転パターンにおける動作方法
について説明する。
Next, the operating method for each driving pattern will be explained.

【0047】(1)始動時 冷凍サイクルに対して運転指令の信号が入力されると、
圧縮機20が所定の周波数で運転され冷媒が実線矢印の
ように流れる。始動時は、凝縮器として作用する熱交換
器の容量制御装置に具備される流量調整弁3の開度を絞
り、凝縮器側の気液分離器2a内に液冷媒を貯留する。 貯留された液冷媒は、気液分離器2a内に配設された浮
き子15を上昇させ、これと一対を成すニードル17を
上方に押しガス側出口配管6を塞ぐ。これにより、凝縮
器として作用する熱交換器は、容量制御され上流側凝縮
用熱交換器1aのみとなり、熱交換器の容量が減少する
ため吐出圧力が短時間で上昇し、凝縮器としての能力を
短時間で引き出すことができ、立ち上がり時間の短縮を
図れる。
(1) When an operation command signal is input to the refrigeration cycle at startup,
The compressor 20 is operated at a predetermined frequency, and the refrigerant flows as indicated by the solid arrow. At the time of startup, the opening degree of the flow rate regulating valve 3 provided in the capacity control device of the heat exchanger that acts as a condenser is reduced, and liquid refrigerant is stored in the gas-liquid separator 2a on the condenser side. The stored liquid refrigerant raises the float 15 disposed in the gas-liquid separator 2a, pushes the needle 17 paired with the float 15 upward, and closes the gas side outlet pipe 6. As a result, the capacity of the heat exchanger that acts as a condenser is controlled and becomes only the upstream condensing heat exchanger 1a, and as the capacity of the heat exchanger decreases, the discharge pressure increases in a short time, and the capacity as a condenser increases. can be drawn out in a short time, shortening the start-up time.

【0048】(2)通常運転時 室内の負荷が大きい場合の熱交換器の使われ方は、前述
したように上流側凝縮用熱交換器1a及び下流側凝縮用
熱交換器1bと、上流側蒸発用熱交換器8a及び下流側
蒸発用熱交換器8bに冷媒が流れ所定の能力を発揮する
。このとき、それぞれの熱交換器の容量制御装置に具備
される気液分離器により冷媒が分離され、凝縮ないしは
蒸発が完了していない冷媒のみを下流側熱交換器に流す
構造になっているため、各々の下流側熱交換器に流れる
冷媒量は低減される。これにより、各々の下流側熱交換
器での圧力損失を低減できるため冷凍サイクルの効率が
向上し、省エネルギ化を図ることができる。また、凝縮
器として作用する熱交換器の容量制御装置に付設する流
量調整弁3により凝縮器を出た液冷媒は減圧され、流量
調整弁と主減圧装置である膨張弁とを連結する配管内は
気液二相状態となる。これにより、液側の接続配管内の
液量が減少するため、冷凍サイクル内に封入する総冷媒
量を低減できるのである。
(2) When the indoor load is large during normal operation, the heat exchangers are used as described above: the upstream condensing heat exchanger 1a, the downstream condensing heat exchanger 1b, and the upstream condensing heat exchanger 1b. The refrigerant flows through the evaporation heat exchanger 8a and the downstream evaporation heat exchanger 8b to exhibit a predetermined capacity. At this time, the refrigerant is separated by a gas-liquid separator provided in the capacity control device of each heat exchanger, and only the refrigerant that has not completed condensation or evaporation is allowed to flow to the downstream heat exchanger. , the amount of refrigerant flowing to each downstream heat exchanger is reduced. This makes it possible to reduce pressure loss in each downstream heat exchanger, thereby improving the efficiency of the refrigeration cycle and saving energy. In addition, the liquid refrigerant leaving the condenser is depressurized by the flow rate adjustment valve 3 attached to the capacity control device of the heat exchanger that acts as a condenser, and the liquid refrigerant is inside the pipe connecting the flow rate adjustment valve and the expansion valve which is the main pressure reduction device. becomes a gas-liquid two-phase state. This reduces the amount of liquid in the connection pipe on the liquid side, making it possible to reduce the total amount of refrigerant sealed in the refrigeration cycle.

【0049】[0049]

【発明の効果】本発明は、分割した熱交換器を冷却媒体
に対して直列に配設し、分割した上流側熱交換器と下流
側熱交換器との間に気液分離器を設け、気液分離器のガ
ス側及び液側出口配管に減圧装置を設け、凝縮器として
作用するときは気液分離器のガス側出口配管に設けた減
圧装置の出口を下流側熱交換器の入口に接続しガス冷媒
を積極的に流通させ、蒸発器として作用するときは気液
分離器の液側出口配管に設けた減圧装置の出口を下流側
熱交換器の入口に接続し液冷媒を積極的に流通させ、下
流側熱交換器の出口は、気液分離器の他方の出口配管に
設けた減圧装置の下流側に接続したものであるから、熱
交換器の設置されている室内の負荷に応じて熱交換器の
容量が変化し、室内の負荷が変化しても冷凍サイクルを
ある一定の値に保つことができ、室内の温度分布を均一
に保つことができる。
[Effects of the Invention] According to the present invention, divided heat exchangers are arranged in series with respect to the cooling medium, and a gas-liquid separator is provided between the divided upstream heat exchanger and downstream heat exchanger. A pressure reducing device is installed on the gas side and liquid side outlet piping of the gas-liquid separator, and when acting as a condenser, the outlet of the pressure reducing device installed on the gas side outlet piping of the gas-liquid separator is connected to the inlet of the downstream heat exchanger. When acting as an evaporator, connect the outlet of the pressure reducing device installed in the liquid side outlet piping of the gas-liquid separator to the inlet of the downstream heat exchanger to actively circulate the liquid refrigerant. Since the outlet of the downstream heat exchanger is connected to the downstream side of the pressure reducing device installed on the other outlet piping of the gas-liquid separator, the load in the room where the heat exchanger is installed is The capacity of the heat exchanger changes accordingly, and even if the indoor load changes, the refrigeration cycle can be maintained at a certain constant value, and the indoor temperature distribution can be kept uniform.

【0050】また、本発明の熱交換器の容量制御装置を
冷凍サイクルに適用した場合、空調場の負荷が大きい場
合に下流側熱交換器に流れる冷媒量は、従来の熱交換器
に比べ減少するため熱交換器の圧力損失を低減でき、冷
凍サイクルの効率が向上し省エネルギ化を図ることがで
きる。
Furthermore, when the heat exchanger capacity control device of the present invention is applied to a refrigeration cycle, the amount of refrigerant flowing to the downstream heat exchanger when the load of the air conditioning plant is large is reduced compared to the conventional heat exchanger. Therefore, the pressure loss of the heat exchanger can be reduced, the efficiency of the refrigeration cycle can be improved, and energy savings can be achieved.

【0051】さらに、冷凍サイクルの始動時に、凝縮器
として作用する熱交換器の容量制御装置の容量を減じる
ように制御することで、吐出圧力が短時間で上昇し立ち
上がり時間の短縮を図ることができる。
Furthermore, by controlling the capacity of the capacity control device of the heat exchanger that acts as a condenser to be reduced at the time of starting the refrigeration cycle, the discharge pressure can be increased in a short time and the start-up time can be shortened. can.

【0052】また、凝縮器として作用する熱交換器の容
量制御装置に付設する流量調整弁により凝縮器を出た液
冷媒が減圧され冷凍サイクルの液配管内は、気液二相状
態の冷媒が流れることになるため、総冷媒封入量を減少
させることができる。
In addition, the pressure of the liquid refrigerant exiting the condenser is reduced by the flow rate regulating valve attached to the capacity control device of the heat exchanger that acts as a condenser, and the refrigerant in a two-phase gas-liquid state is present in the liquid piping of the refrigeration cycle. Since the refrigerant flows, the total amount of refrigerant sealed can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例である凝縮器として作用する
熱交換器の容量制御装置のブロック図。
FIG. 1 is a block diagram of a capacity control device for a heat exchanger functioning as a condenser, which is an embodiment of the present invention.

【図2】本発明の一実施例である蒸発器として作用する
熱交換器の容量制御装置のブロック図。
FIG. 2 is a block diagram of a capacity control device for a heat exchanger functioning as an evaporator, which is an embodiment of the present invention.

【図3】本発明の熱交換器の容量制御装置における判断
装置の一実施例を示したブロック図。
FIG. 3 is a block diagram showing an embodiment of the determination device in the heat exchanger capacity control device of the present invention.

【図4】本発明の他の実施例である凝縮器として作用す
る熱交換器の自動容量制御装置のブロック図。
FIG. 4 is a block diagram of an automatic capacity control device for a heat exchanger functioning as a condenser, which is another embodiment of the present invention.

【図5】本発明の他の実施例である蒸発器として作用す
る熱交換器の自動容量制御装置のブロック図。
FIG. 5 is a block diagram of an automatic capacity control device for a heat exchanger functioning as an evaporator, which is another embodiment of the present invention.

【図6】本発明の熱交換器の自動容量制御装置に具備す
る気液分離器の一実施例を示した断面図。
FIG. 6 is a sectional view showing an embodiment of a gas-liquid separator included in the automatic capacity control device for a heat exchanger of the present invention.

【図7】本発明の熱交換器の容量制御装置を凝縮器及び
蒸発器として用いた冷凍サイクルの一実施例を示した系
統図。
FIG. 7 is a system diagram showing an embodiment of a refrigeration cycle using the heat exchanger capacity control device of the present invention as a condenser and an evaporator.

【符号の説明】[Explanation of symbols]

1a…上流側凝縮用熱交換器、1b…下流側凝縮用熱交
換器、2,2a…気液分離器、3,3a,3b…流量調
整弁。
1a... Upstream condensing heat exchanger, 1b... Downstream condensing heat exchanger, 2, 2a... Gas-liquid separator, 3, 3a, 3b... Flow rate adjustment valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,凝縮用熱交換器,減圧装置,蒸発
用熱交換器を含む冷凍サイクルの凝縮用ないしは蒸発用
熱交換器を分割した熱交換器の容量制御装置において、
前記分割した熱交換器を冷却媒体に対して直列に配設し
、前記分割した上流側熱交換器と下流側熱交換器との間
に気液分離器を設け、前記気液分離器のガス側及び液側
出口配管に減圧装置を設け、凝縮器として作用するとき
は前記気液分離器のガス側出口配管に設けた前記減圧装
置の出口を前記下流側熱交換器の入口に接続し、蒸発器
として作用するときは前記気液分離器の液側出口配管に
設けた前記減圧装置の出口を前記下流側熱交換器の入口
に接続し、前記下流側熱交換器の出口は、前記気液分離
器の他方の出口配管に設けた前記減圧装置の下流側に接
続したことを特徴とする熱交換器の容量制御装置。
Claim 1: A capacity control device for a heat exchanger in which a condensing or evaporating heat exchanger of a refrigeration cycle including a compressor, a condensing heat exchanger, a pressure reducing device, and an evaporating heat exchanger is divided,
The divided heat exchanger is arranged in series with respect to the cooling medium, a gas-liquid separator is provided between the divided upstream heat exchanger and the downstream heat exchanger, and the gas of the gas-liquid separator is A pressure reducing device is provided in the side and liquid side outlet piping, and when acting as a condenser, the outlet of the pressure reducing device provided in the gas side outlet piping of the gas-liquid separator is connected to the inlet of the downstream heat exchanger, When acting as an evaporator, the outlet of the pressure reducing device provided on the liquid side outlet pipe of the gas-liquid separator is connected to the inlet of the downstream heat exchanger, and the outlet of the downstream heat exchanger is connected to the gas-liquid separator. A capacity control device for a heat exchanger, characterized in that the device is connected to the downstream side of the pressure reducing device provided on the other outlet pipe of the liquid separator.
JP10709591A 1991-05-13 1991-05-13 Capacity control device for heat exchanger Pending JPH04335954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10709591A JPH04335954A (en) 1991-05-13 1991-05-13 Capacity control device for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10709591A JPH04335954A (en) 1991-05-13 1991-05-13 Capacity control device for heat exchanger

Publications (1)

Publication Number Publication Date
JPH04335954A true JPH04335954A (en) 1992-11-24

Family

ID=14450333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10709591A Pending JPH04335954A (en) 1991-05-13 1991-05-13 Capacity control device for heat exchanger

Country Status (1)

Country Link
JP (1) JPH04335954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030699A (en) * 2010-07-30 2012-02-16 Hitachi Ltd Heat cycle system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030699A (en) * 2010-07-30 2012-02-16 Hitachi Ltd Heat cycle system
CN102371885A (en) * 2010-07-30 2012-03-14 株式会社日立制作所 Heat cycle system

Similar Documents

Publication Publication Date Title
AU634111B2 (en) Air-conditioning system
EP2722616B1 (en) Air conditioner
US8020395B2 (en) Air conditioning apparatus
KR930007963B1 (en) Air conditioner
WO2010015123A1 (en) Constant temperature dehumidifying air-conditioner
JP2008051425A (en) Air conditioner
JPH0237253A (en) Sealed refrigeration circuit
JP2557577B2 (en) Air conditioner
JP3852553B2 (en) Air conditioner
JP3643162B2 (en) Air conditioner
JP4258117B2 (en) Air conditioner
JPH09138012A (en) Air conditioner
JP2651328B2 (en) Method and apparatus for controlling hot gas bypass circuit of refrigeration circuit
KR950012148B1 (en) Airconditioner
JP3626517B2 (en) Air conditioner
JPH04335954A (en) Capacity control device for heat exchanger
JPH109644A (en) Air conditioner
JP2000018766A (en) Air conditioner
JP2000055444A (en) Air conditioner
JPH0733095Y2 (en) Accumulator oil return device
JPH04214153A (en) Refrigerating cycle device
JP2649986B2 (en) Clean room using a direct expansion type heat exchanger
KR100812780B1 (en) Heat-pump having inverter-type compressor for preventing heating overload and control method of the same
JP2008151401A (en) Air conditioner
JP2005114247A (en) Air conditioner