JPH04335894A - Production of insecticidal protein - Google Patents

Production of insecticidal protein

Info

Publication number
JPH04335894A
JPH04335894A JP3135701A JP13570191A JPH04335894A JP H04335894 A JPH04335894 A JP H04335894A JP 3135701 A JP3135701 A JP 3135701A JP 13570191 A JP13570191 A JP 13570191A JP H04335894 A JPH04335894 A JP H04335894A
Authority
JP
Japan
Prior art keywords
insecticidal protein
insecticidal
bacillus thuringiensis
produced
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3135701A
Other languages
Japanese (ja)
Inventor
Makoto Abe
誠 安部
Iwao Omori
大森 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP3135701A priority Critical patent/JPH04335894A/en
Publication of JPH04335894A publication Critical patent/JPH04335894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To provide a process for stably producing a large amount of a specific insecticidal protein [CRY1A(b)] among insecticidal proteins having excellent insecticidal effect and produced by Bacillus thuringiensis. CONSTITUTION:An insecticidal protein is produced by culturing Bacillus thuringiensis containing essentially exclusively insecticidal protein gene cry1A(b) at <25 deg.C. An insecticidal protein having high insecticidal effect against larva of lepidoptera such as diamondback moth and low toxicity to silkworm can be stably produced in high purity in a mass.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鱗翅目昆虫(コナガ等
)の幼虫に対して、殺虫効果を示すバチルス・チューリ
ンゲンシスが産生する殺虫性蛋白の産生方法に関するも
のであり、特には特定の殺虫性蛋白遺伝子のみを殺虫性
蛋白遺伝子として有する菌体を用いて、その発現物であ
る殺虫性蛋白を安定に効率良く産生させる方法に関する
ものであり、農薬業界、農業分野で利用されるものであ
る。
[Field of Industrial Application] The present invention relates to a method for producing an insecticidal protein produced by Bacillus thuringiensis, which exhibits an insecticidal effect on the larvae of lepidopteran insects (such as the diamondback moth). This relates to a method for stably and efficiently producing insecticidal proteins, which are expression products, using bacterial cells that have only insecticidal protein genes as insecticidal protein genes, and is used in the agrochemical industry and agricultural field. be.

【0002】0002

【従来の技術】種々のバチルス・チューリンゲンシス(
BT)の胞子形成期に形成される細胞内封入体は、殺虫
性蛋白あるいは結晶毒素と称され、多くの昆虫の幼虫に
対して毒性を示すことが知られており殺虫剤として広く
利用されている。
[Prior Art] Various Bacillus thuringiensis (
The intracellular inclusion bodies formed during the sporulation stage of BT are called insecticidal proteins or crystal toxins, and are known to be toxic to the larvae of many insects and are widely used as insecticides. There is.

【0003】殺虫性蛋白の殺虫活性は、それを産生する
バチルス・チューリンゲンシスの亜種毎にそれぞれ異な
っており、殺虫剤とする際は、その特性に応じて利用さ
れている。
The insecticidal activity of insecticidal proteins differs depending on the subspecies of Bacillus thuringiensis that produces them, and when used as insecticides, they are used depending on their properties.

【0004】従来よりBT殺虫剤として商業的に広く採
用されている殺虫性蛋白を産生するバチルス・チューリ
ンゲンシス亜種クルスタキHD−1は、これまでの研究
により、遺伝子の異なる複数の殺虫性蛋白を産生するこ
とが判明しており、培養過程時にそれらを同時に産生す
ることが明らかにされている(Aronson  A.
I.etal.:Microbiological  
Review 50,1 ,1986)。またこれらの
殺虫スペクトルがそれぞれ異なることも知られている(
HofteH.et al.:Microbiolog
ical  Review 53,242 ,1989
)。
Bacillus thuringiensis subsp. kurstakii HD-1, which produces insecticidal proteins that have been widely used commercially as BT insecticides, has been shown to produce multiple insecticidal proteins with different genes through previous research. It has been shown that they are produced simultaneously during the culture process (Aronson A.
I. etal. :Microbiological
Review 50, 1, 1986). It is also known that these insecticidal spectra differ from each other (
HofteH. et al. :Microbiolog
ical Review 53, 242, 1989
).

【0005】バチルス・チューリンゲンシス亜種クルス
タキHD−1が産生する複数の殺虫性蛋白のうち、ホフ
テら(Hofte  H.et al.:Microb
iological  Review 53,242 
,1989)により cryIA(b)タイプと命名さ
れた約44Mdのプラスミド上にコードされる遺伝子よ
り発現する殺虫性蛋白は、近藤ら(Kondo,S.e
tal.:Agric.Biol.  Chem.,5
1, 455, 1987 )によりDNA塩基配列が
求められたcry−1−2 によって代表されるもので
あるが、コナガ等の鱗翅目幼虫に高い殺虫活性を有する
反面、蚕にたいしては低毒性であることが知られている
Among the multiple insecticidal proteins produced by Bacillus thuringiensis subsp. kurstaki HD-1, Hofte H. et al.: Microb
iological Review 53,242
An insecticidal protein expressed from a gene encoded on a plasmid of about 44Md, named cryIA(b) type by Kondo et al.
tal. : Agric. Biol. Chem. ,5
1, 455, 1987), whose DNA base sequence was determined by Cry-1-2, which has high insecticidal activity against lepidopteran larvae such as the diamondback moth, but has low toxicity against silkworms. It has been known.

【0006】従って、従来の様に、バチルス・チューリ
ンゲンシス菌体で複数の殺虫性蛋白を産生させるのでな
く、 cryIA(b)タイプの殺虫性蛋白のみを選択
的に産生させれば、特定の害虫に卓効性で、しかも農業
上有益である蚕にたいして影響の小さいBT殺虫剤が製
造できるため種々の試みがなされている。
[0006] Therefore, instead of producing multiple insecticidal proteins in Bacillus thuringiensis cells as in the past, if only the cryIA(b) type insecticidal protein is selectively produced, it is possible to kill specific insect pests. Various attempts have been made to produce BT insecticides that are highly effective against silkworms and have little effect on silkworms, which are agriculturally useful.

【0007】すなわち、 cryIA(b)タイプのみ
を産生する菌株を、野生型である親株よりプラスミドを
欠落させる処理(curing)、あるいはプラスミド
の欠落した変異株と親株との接合(Mating)によ
るプラスミドの移入処理を施すことにより取得し、さら
には無芽胞変異株を利用することにより、芽胞などの侠
雑物の少ない殺虫性蛋白を産生させることができる。
[0007] That is, a strain that produces only the cryIA(b) type is treated to delete the plasmid from the wild-type parent strain (curing), or by conjugating (mating) a mutant strain lacking the plasmid with the parent strain. By performing a transfer treatment and further utilizing a spore-free mutant strain, it is possible to produce an insecticidal protein with less foreign substances such as spores.

【0008】殺虫性蛋白を上記の様なバチルス・チュー
リンゲンシス菌株で産生させる方法には、ダルメイジ(
Dulmage  H.T.:J.Invertebr
.Pathol .22,273,1971)が開示し
た方法が適用され、一般的には、充分な炭素源、窒素源
、ミネラル、ビタミン等を含む培地で、25〜37℃の
条件下で2〜5日間培養するとされている。
[0008] A method for producing insecticidal proteins using Bacillus thuringiensis strains as described above includes Dalmage (
Dulmage H. T. :J. Invertebr
.. Pathol. 22, 273, 1971) is applied, and generally, when cultured for 2 to 5 days at 25 to 37°C in a medium containing sufficient carbon sources, nitrogen sources, minerals, vitamins, etc. has been done.

【0009】[0009]

【発明が解決しようとする課題】前記の培養条件の適合
範囲は、バチルス・チューリンゲンシスの菌体増殖能に
基づいた帰結であるが、本発明者等は、野生型株で c
ryIA(b)の他にホフテらが命名した cryIA
(a)、 cryIA(c)および cryIIAタイ
プの殺虫性蛋白を同時に産生するバチルス・チューリン
ゲンシス亜種クルスタキHD−1と、実質的にコナガ等
に卓効性で蚕に低毒性の cryIA(b)タイプの殺
虫性蛋白のみ産生するバチルス・チューリンゲンシス変
異株を、同条件で培養した場合、変異株の殺虫性蛋白産
生量がきわめて低いということを見出した。
[Problems to be Solved by the Invention] The above-mentioned range of suitability for culture conditions is a result of the bacterial growth ability of Bacillus thuringiensis, but the present inventors have determined that c
In addition to ryIA(b), cryIA named by Hofte et al.
(a), Bacillus thuringiensis subsp. kurstaki HD-1, which simultaneously produces cryIA (c) and cryIIA type insecticidal proteins, and cryIA (b), which is highly effective against diamondback moths and has low toxicity to silkworms. We found that when a Bacillus thuringiensis mutant strain that produces only the type of insecticidal protein was cultured under the same conditions, the amount of insecticidal protein produced by the mutant strain was extremely low.

【0010】本発明者等は、実質的にコナガ等に卓効性
で蚕に低毒性の cryIA(b)タイプの殺虫性蛋白
のみを産生するバチルス・チューリンゲンシス変異株を
用いて、より効率良くまた大量に殺虫性蛋白を産生させ
る方法を見出すべく種々検討したのである。
[0010] The present inventors used a Bacillus thuringiensis mutant strain that produces only the insecticidal protein of the cryIA(b) type, which is highly effective against diamondback moths and has low toxicity against silkworms, and more efficiently. They also conducted various studies to find a method for producing insecticidal proteins in large quantities.

【0011】[0011]

【課題を解決するための手段】本発明者等は、培養条件
について詳細に検討したところ、バチルス・チューリン
ゲンシス菌株で産生させる方法として広く行われている
温度25〜37℃の培養条件では、 cryIA(b)
タイプの殺虫性蛋白のみを産生するバチルス・チューリ
ンゲンシス変異株においては、殺虫性蛋白の産生量が少
なく、むしろ25℃未満の温度、好ましくは15〜23
℃の温度で培養を行なうことにより、複数の殺虫性蛋白
を同時に生産する野生型株の培養液当りの生産量に匹敵
する程度にまで、実質的に cryIA(b)タイプよ
りなる、純粋な殺虫性蛋白を生産できることを見出し本
発明を完成した。
[Means for Solving the Problems] The present inventors conducted a detailed study on culture conditions and found that under culture conditions at a temperature of 25 to 37°C, which is widely used as a method for producing cryIA with Bacillus thuringiensis strains, cryIA (b)
In Bacillus thuringiensis mutant strains that only produce insecticidal proteins of the type B. thuringiensis, the amount of insecticidal proteins produced is small, and rather at temperatures below 25°C, preferably between 15 and 23°C.
By culturing at a temperature of 10°C, a pure insecticidal protein consisting essentially of the cryIA(b) type can be produced to an extent comparable to the production per culture of the wild-type strain, which simultaneously produces multiple insecticidal proteins. The present invention was completed by discovering that it is possible to produce a synthetic protein.

【0012】すなわち、本発明は殺虫性蛋白遺伝子とし
て、 cryIA(b)タイプの遺伝子を保有するバチ
ルス・チューリンゲンシスを25℃未満の温度で培養す
ることを特徴とする殺虫性蛋白の産生方法に関するもの
、バチルス・チューリンゲンシス亜種クルスタキの分子
量約44Mdの内在性プラスミド上に保持された殺虫性
蛋白遺伝子を保有するバチルス・チューリンゲンシスを
25℃未満の温度で培養することを特徴とする殺虫性蛋
白の産生方法に関するもの、バチルス・チューリンゲン
シス無芽胞変異株BTK−MA312(FERM  P
−10739号)を、25℃未満の温度で培養すること
を特徴とする殺虫性蛋白の産生方法に関するものである
Specifically, the present invention relates to a method for producing an insecticidal protein, which comprises culturing Bacillus thuringiensis carrying a cryIA(b) type gene as an insecticidal protein gene at a temperature below 25°C. , Bacillus thuringiensis carrying an insecticidal protein gene carried on an endogenous plasmid with a molecular weight of about 44Md of Bacillus thuringiensis subsp. Regarding the production method, Bacillus thuringiensis non-spore mutant strain BTK-MA312 (FERM P
10739) at a temperature below 25°C.

【0013】実質的に cryIA(b)タイプの殺虫
性蛋白の遺伝子のみ保有するバチルス・チューリンゲン
シス変異株を、従来培養適温とされていた温度より低い
温度条件で培養するということで、当該殺虫性蛋白を安
定にかつ大量に有効成分を産生させることが可能となり
、特定の害虫に効果が高く、蚕に与える影響の少ないB
T殺虫剤を安価に提供することを可能にするのである。
[0013] By culturing a Bacillus thuringiensis mutant strain that essentially possesses only the gene for the insecticidal protein of the cryIA(b) type at a temperature lower than the temperature conventionally considered to be the appropriate culture temperature, the insecticidal protein can be improved. B makes it possible to stably produce active ingredients in large amounts of protein, is highly effective against specific pests, and has little impact on silkworms.
This makes it possible to provide T-insecticides at low cost.

【0014】[0014]

【作用】cryIA(b)タイプの殺虫性蛋白の遺伝子
のみ保有するバチルス・チューリンゲンシス変異株を、
従来より低い温度条件で培養することにより、当該殺虫
性蛋白を安定にかつ大量に有効成分を産生させることが
出来る理由の一つとして、当該殺虫性蛋白が構造上きわ
めて不安定で、通常の培養温度25〜37℃では内在性
のプロテアーゼ等により、産生された殺虫性蛋白が容易
に分解してしまうことが挙げられるが、その他の詳細に
ついては未解明である。
[Action] A Bacillus thuringiensis mutant strain carrying only the cryIA(b) type insecticidal protein gene is
One of the reasons why the insecticidal protein can be stably produced in large quantities to produce its active ingredients by culturing at lower temperature conditions than conventional methods is that the insecticidal protein is structurally extremely unstable and cannot be cultured using normal culture. At a temperature of 25 to 37°C, the produced insecticidal protein is easily degraded by endogenous proteases, etc., but other details are unknown.

【0015】[0015]

【実施例】以下は、本発明である培養方法の実施手順を
例示した一実施例であり、限定的に考えられるものでは
ない。すなわち、菌体内に殺虫性蛋白遺伝子として c
ryIA(b)タイプのものを保有するか、あるいは殺
虫性蛋白遺伝子を保持するプラスミドとして約44Md
の内在性プラスミドを保有するバチルス・チューリンゲ
ンシス亜種クルスタキ派生株であるならば、以下の実施
例に供試した菌株と同様の結果になることは自明の理で
ある。
[Example] The following is an example illustrating the procedure for carrying out the culture method of the present invention, and should not be considered as limiting. In other words, c
ryIA(b) type or as a plasmid carrying an insecticidal protein gene of about 44 Md.
It is obvious that if the strain is a Bacillus thuringiensis subsp. kurstaki derivative strain carrying an endogenous plasmid, the same results as the strain tested in the following Examples will be obtained.

【0016】〇BTK−MA312(FERM  P−
10739) BTK−MA312は、バチルス・チューリンゲンシス
亜種クルスタキHD−1の変異処理、プラスミドの脱落
処理および接合処理により得られた変異株で、芽胞形成
能力を喪失し、かつ殺虫性蛋白として約44Mdの内在
性プラスミド上にコードされる cryIA(b)タイ
プのもののみ産生するように改良されたものであり、こ
れら以外の生理的特徴は、親株であるバチルス・チュー
リンゲンシス亜種クルスタキHD−1と同一である。な
お、BTK−MA312は、茨城県つくば市に所在する
工業技術院微生物工業技術研究所に平成元年5月24日
に微工研菌寄第10739号として寄託されている。窒
素源、炭素源、ミネラル及びビタミンに富む天然培地で
あらかじめ前培養した当該株を接種、培養する。培養温
度は、20℃で行なった。また、殺虫性蛋白ならびに菌
体の生産量は、通気攪拌条件に大きく左右されることよ
り、十分な好気的条件で培養すべきである。培養日数は
、3日から5日間。培養終了後、培養液から殺虫性蛋白
含有部分を分離採集するため、通常の遠心分離法、濾過
法などを利用することができる。また、培養液を濃縮、
乾燥させて粉末にする場合も、通常の濃縮法や乾燥法(
例えば噴霧乾燥法)を用いればよい。これらの手順は、
当該技術の周知の手法により、大発酵装置にまで容易に
スケールアップできる。培養温度を20℃とすることを
最大の特徴とする上記の培養では、増殖曲線は異なるも
のの、最大菌体量は通常の温度での培養時と等しかった
。また、 cryIA(b)タイプの殺虫性蛋白の培養
液当りの収量は、培養日数が3日間、5日間のいずれに
おいても、安定に生産、蓄積された。しかし、対照とし
て培地条件は同一で培養温度を通常の30℃とした培養
では、2日目以降は逆に殺虫性蛋白の減少が生じた(第
1図を参照のこと)。この結果は、 cryIA(b)
タイプの殺虫性蛋白の安定生産培養方法において、培養
温度条件が著しく影響することを示すものである。
〇BTK-MA312 (FERM P-
10739) BTK-MA312 is a mutant strain obtained by mutation treatment, plasmid removal treatment, and conjugation treatment of Bacillus thuringiensis subsp. It has been improved to produce only the cryIA(b) type encoded on the endogenous plasmid of are the same. Incidentally, BTK-MA312 was deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology, located in Tsukuba City, Ibaraki Prefecture, on May 24, 1989, as Microbiological Research Institute No. 10739. The strain is inoculated and cultured, pre-cultured in a natural medium rich in nitrogen sources, carbon sources, minerals and vitamins. The culture temperature was 20°C. Furthermore, since the production amount of insecticidal proteins and bacterial cells largely depends on aeration and agitation conditions, cultivation should be carried out under sufficient aerobic conditions. The number of culture days is 3 to 5 days. After the cultivation is completed, a conventional centrifugation method, filtration method, etc. can be used to separate and collect the insecticidal protein-containing portion from the culture solution. In addition, the culture solution can be concentrated,
If you want to dry it into a powder, you can use the usual concentration method or drying method (
For example, a spray drying method may be used. These steps are
It can be easily scaled up to large fermentation equipment using techniques well known in the art. In the above-mentioned culture, whose main feature is that the culture temperature is 20° C., although the growth curve was different, the maximum amount of bacterial cells was the same as when cultured at a normal temperature. Furthermore, the yield of cryIA(b) type insecticidal protein per culture solution was stably produced and accumulated over both 3 and 5 days of culture. However, as a control, when culturing was carried out under the same medium conditions and at the usual culture temperature of 30°C, the insecticidal protein decreased from the second day onwards (see Figure 1). This result is based on cryIA(b)
This shows that the culture temperature conditions have a significant effect on the stable production culture method of this type of insecticidal protein.

【0017】[0017]

【発明の効果】本発明によれば、特定の害虫に効果が高
く、蚕に与える影響の少ないBT殺虫剤を、安定にかつ
大量に有効成分を生産することが可能となり、且つ比較
的安価に提供でき、農薬業界、農業分野に寄与するとこ
ろ大なるものである。
[Effects of the Invention] According to the present invention, it is possible to stably produce the active ingredients of a BT insecticide that is highly effective against specific pests and has little effect on silkworms, and at a relatively low cost. This will greatly contribute to the agrochemical industry and agricultural field.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1図は、殺虫性蛋白の産生量に及ぼす培養温
度の影響を調べた図であり、BTK−MA312の20
℃あるいは30℃での3日間、および5日間培養後の培
養液をドデシル硫酸ナトリウム存在下で10%ポリアク
リルアミドゲル電気泳動の結果を示すものである。
[Fig. 1] Fig. 1 is a diagram showing the influence of culture temperature on the production amount of insecticidal protein.
This shows the results of 10% polyacrylamide gel electrophoresis of the culture solution after culturing at 30° C. or 30° C. for 3 days and 5 days in the presence of sodium dodecyl sulfate.

【符号の説明】[Explanation of symbols]

図中矢印は cryIA(b)タイプの殺虫性蛋白の箇
所を示すものであり、aは30℃、3日間の培養液5μ
l、bは20℃、3日間の培養液5μl、cは30℃、
5日間の培養液5μl、およびdは20℃、5日間の培
養液5μlでの結果を示す。
The arrows in the figure indicate the location of cryIA(b) type insecticidal protein, and a indicates the location of 5μ of the culture solution at 30°C for 3 days.
l, b is 20°C, 5 μl of 3-day culture solution, c is 30°C,
5 μl of culture solution for 5 days, and d shows the results with 5 μl of culture solution for 5 days at 20°C.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】    殺虫性蛋白遺伝子として cry
IA(b)タイプの遺伝子を保有する、バチルス・チュ
ーリンゲンシスを25℃未満の温度で培養することを特
徴とする殺虫性蛋白の産生方法。
[Claim 1] Cry as an insecticidal protein gene
A method for producing an insecticidal protein, which comprises culturing Bacillus thuringiensis carrying an IA(b) type gene at a temperature below 25°C.
【請求項2】    殺虫性蛋白遺伝子がバチルス・チ
ューリンゲンシス亜種クルスタキの分子量約44Mdの
内在性プラスミド上に保持されたものである請求項1の
殺虫性蛋白の産生方法。
2. The method for producing an insecticidal protein according to claim 1, wherein the insecticidal protein gene is carried on an endogenous plasmid of Bacillus thuringiensis subspecies kurstakii having a molecular weight of about 44 Md.
【請求項3】    バチルス・チューリンゲンシス無
芽胞変異株BTK−MA312(FERM  P−10
739号)を、25℃未満の温度で培養することを特徴
とする殺虫性蛋白の産生方法。
Claim 3: Bacillus thuringiensis non-spore mutant strain BTK-MA312 (FERM P-10
739) at a temperature below 25°C.
JP3135701A 1991-05-10 1991-05-10 Production of insecticidal protein Pending JPH04335894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135701A JPH04335894A (en) 1991-05-10 1991-05-10 Production of insecticidal protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135701A JPH04335894A (en) 1991-05-10 1991-05-10 Production of insecticidal protein

Publications (1)

Publication Number Publication Date
JPH04335894A true JPH04335894A (en) 1992-11-24

Family

ID=15157877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135701A Pending JPH04335894A (en) 1991-05-10 1991-05-10 Production of insecticidal protein

Country Status (1)

Country Link
JP (1) JPH04335894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096306A (en) * 1995-10-27 2000-08-01 Institut Pasteur Strains of Bacillus thuringiensis and pesticide composition containing them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096306A (en) * 1995-10-27 2000-08-01 Institut Pasteur Strains of Bacillus thuringiensis and pesticide composition containing them

Similar Documents

Publication Publication Date Title
Downing et al. Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria
Rowe et al. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis
Andrews et al. The biotechnology of Bacillus thuringiensis
DE69025808T2 (en) Isolate from Bacillus thuringiensis, which is active against Lepidoptera pests, and genes which code for the new lepidoptera-active toxins
AU629349B2 (en) Bacterial genes
Milner History of Bacillus thuringiensis
JPH06192027A (en) Toxin acting on coleoptera obtained from new variant of bacillus thuringiensis, preparation thereof and insecticide
JPH074232B2 (en) Insertion of Bacillus thuringiensis crystal protein gene into a microorganism capable of forming a colony on a plant and its use
Theoduloz et al. Expression of a Bacillus thuringiensis δ‐endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills)
Nambiar et al. Limiting an insect infestation of nitrogen-fixing root nodules of the pigeon pea (Cajanus cajan) by engineering the expression of an entomocidal gene in its root nodules
Broadwell et al. Sporulation-associated activation of Bacillus sphaericus larvicide
Attathom et al. Morphological diversity and toxicity of delta-endotoxin produced by various strains of Bacillus thuringiensis
Espinasse et al. Occurrence and linkage between secreted insecticidal toxins in natural isolates of Bacillus thuringiensis
Gaertner et al. CellCap: an encapsulation system for insecticidal biotoxin proteins
JPH07501323A (en) Novel coleopteran-active Bacillus thuringiensis isolates and genes encoding coleopteran-active toxins
DE69219615T2 (en) AGAINST SCRAPS ACTIVE BACILLUS THURINGIENSIS ISOLATES AND GENES ENCODING RAPID-ACTIVE TOXINS
DE69524954T2 (en) AGAINST SCRAPS ACTIVE BACILLUS THURINGIENSIS ISOLATE
Qi et al. Endophytic Bacillus subtilis WH2 containing Pinellia ternata agglutinin showed insecticidal activity against whitebacked planthopper Sogatella furcifera
Yan et al. An engineered Bacillus thuringiensis strain with insecticidal activity against Scarabaeidae (Anomala corpulenta) and Chrysomelidae (Leptinotarsa decemlineata and Colaphellus bowringi)
Saitoh et al. Larvicidal toxicity of Japanese Bacillus thuringiensis against the mosquito Anopheles stephensi
Choi et al. Production of an insecticidal crystal protein from Bacillus thuringiensis by the methylotroph Methylobacterium extorquens
US5356623A (en) Bacillus thuringiensis cryET1 toxin gene and protein toxic to lepidopteran insects
JPH04335894A (en) Production of insecticidal protein
KR100280380B1 (en) Endotoxin Protein of Bacillus thuringiensis ENT0423 Strain and Microbial Insecticide Using the Same
Jamoussi et al. Heterologous expression of Bacillus thuringiensis vegetative insecticidal protein-encoding gene vip3LB in Photorhabdus temperata strain K122 and oral toxicity against the Lepidoptera Ephestia kuehniella and Spodoptera littoralis