JPH04335520A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPH04335520A
JPH04335520A JP10616391A JP10616391A JPH04335520A JP H04335520 A JPH04335520 A JP H04335520A JP 10616391 A JP10616391 A JP 10616391A JP 10616391 A JP10616391 A JP 10616391A JP H04335520 A JPH04335520 A JP H04335520A
Authority
JP
Japan
Prior art keywords
susceptor
resistance heater
heater
sheath heater
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10616391A
Other languages
Japanese (ja)
Inventor
Takeshi Ito
武志 伊藤
Akira Ishihara
石原 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10616391A priority Critical patent/JPH04335520A/en
Publication of JPH04335520A publication Critical patent/JPH04335520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To attain a temperature distribution where heat is uniformly distributed with uniform contact faces by fixing a sheath heater on a stainless case to contain it directly by molybdenum flame spray and by mechanically finishing its contact face with a susceptor flat after molybdenum flame spray. CONSTITUTION:A sheath heater 10 is bent double and wound spirally so that a lead may turn inside, and this is mounted on the bottom of a stainless case 9 and flame-sprayed with molybdenum to such a degree as to cover the sheath heater 10 sufficiently to fix it on the case 9, and its contact face with a susceptor 2 is mechanically finished flat. There is a small gradient in temperature between the sheath heater and the contact face of molybdenum with the susceptor, so that a Nichrome wire in the sheath heater can be used at a low temperature to heat the contact face with the susceptor up to a predetermined temperature. Heat transfer is attained by only heat conduction medium of which is molybdenum; therefore, temperature distribution in the contact face becomes uniform.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、主にGaAsなどの
化合物半導体膜を基板上に成長させる有機金属気相成長
 (MOCVD) 装置を対象としたものであり、特に
、成膜用基板が水平に取り付けられる構造のサセプタを
載置する抵抗加熱ヒータ (以下抵抗加熱ヒータと記す
) の構成に関する。
[Industrial Application Field] The present invention is primarily directed to metal organic chemical vapor deposition (MOCVD) equipment for growing compound semiconductor films such as GaAs on substrates. The present invention relates to the configuration of a resistance heater (hereinafter referred to as a resistance heater) on which a susceptor is mounted.

【0002】0002

【従来の技術】この種気相成長装置の従来の構成例とし
て、本願と同一出願人による出願:特願平2−3164
21号に開示された気相成長装置の構成を図5に示す。 水平な上面に成膜用基板が取り付けられた円板状または
角型板状のモリブデンまたは炭素製サセプタ2は抵抗加
熱ヒータ8に載置され、所定の温度に加熱される。反応
容器3の端部の反応ガス導入口6から導入された反応ガ
スは、流路断面が方形に形成された内容器3B内を層流
状態で流れ、基板1の上面を通過する際に基板1の面上
で熱分解し、熱分解によって生じたガス分子が基板1の
面上に堆積して膜形成が行われる。基板1を通過したガ
スは反応ガス導入口6と反対側に取り付けられた排気フ
ランジ5の排気口7から排出される。
[Prior Art] As an example of the conventional structure of this type of vapor phase growth apparatus, an application filed by the same applicant as the present application: Japanese Patent Application No. 2-3164
FIG. 5 shows the configuration of the vapor phase growth apparatus disclosed in No. 21. A molybdenum or carbon susceptor 2 in the form of a disc or square plate with a film-forming substrate attached to its horizontal upper surface is placed on a resistance heater 8 and heated to a predetermined temperature. The reaction gas introduced from the reaction gas inlet 6 at the end of the reaction container 3 flows in a laminar flow state in the inner container 3B, which has a rectangular flow path cross section, and as it passes over the upper surface of the substrate 1, it The gas molecules are thermally decomposed on the surface of the substrate 1, and gas molecules generated by the thermal decomposition are deposited on the surface of the substrate 1 to form a film. The gas that has passed through the substrate 1 is exhausted from the exhaust port 7 of the exhaust flange 5 attached to the side opposite to the reactive gas inlet 6.

【0003】図6に、上記構成の気相成長装置における
抵抗加熱ヒータ8の構成を示す。発熱体には、金属パイ
プに抵抗加熱線としてニクロム線を金属パイプと絶縁状
態に挿通してなるシースヒータ10が用いられ、このシ
ースヒータ10を折り曲げて引出線が内側になるように
渦巻き状に巻き、これをステンレス製ケース9内に収納
してステンレス製カバー11を溶接し、カバー11をサ
セプタ2の加熱面とするホットウォール方式のヒータ構
成としている。
FIG. 6 shows the configuration of the resistance heater 8 in the vapor phase growth apparatus having the above configuration. As the heating element, a sheath heater 10 is used, which is made by inserting a nichrome wire as a resistance heating wire into a metal pipe insulated from the metal pipe.The sheath heater 10 is bent and wound spirally so that the lead wire is on the inside. This is housed in a stainless steel case 9 and a stainless steel cover 11 is welded thereto, creating a hot wall type heater configuration in which the cover 11 serves as the heating surface of the susceptor 2.

【0004】0004

【発明が解決しようとする課題】前述のヒータ構成には
以下のような問題がある。
SUMMARY OF THE INVENTION The above heater configuration has the following problems.

【0005】(1) 前述のヒータ構成では、カバー1
1が、シースヒータ10からの熱放射と、ケース内気体
を熱伝導媒体とする熱伝導とにより加熱され、シースヒ
ータとカバーとの間の温度勾配が大きく、また、サセプ
タ表面の温度分布が不均一になるという問題がある。
(1) In the heater configuration described above, the cover 1
1 is heated by heat radiation from the sheath heater 10 and heat conduction using the gas inside the case as a heat transfer medium, resulting in a large temperature gradient between the sheath heater and the cover, and an uneven temperature distribution on the susceptor surface. There is a problem with becoming.

【0006】(2) シースヒータの抵抗加熱線にはニ
クロム線が用いられているが、前記第1項に述べたよう
に、シースヒータとカバーとの間の温度勾配が大きいこ
とから、カバーを所定の温度に加熱するのにシースヒー
タの温度を高くする必要があり、シースヒータを900
℃で使用しつづけると、ニクロム線が断線してしまうと
いう問題がある。
(2) Nichrome wire is used as the resistance heating wire of the sheath heater, but as mentioned in item 1 above, the temperature gradient between the sheath heater and the cover is large, so the cover must be placed at a specified temperature. It is necessary to raise the temperature of the sheath heater to heat the sheath heater to 900℃.
There is a problem that the nichrome wire will break if it continues to be used at ℃.

【0007】(3) ニクロム線断線の障害を避けるた
めに、融点が約4100℃と高い炭素を発熱体として使
用した場合、炭素内に吸蔵もしくは吸着された不純物が
通電時に放出され、この不純物が膜中に混入して膜の品
質を低下させるという問題が生じている。
(3) When carbon, which has a high melting point of approximately 4100°C, is used as a heating element in order to avoid the problem of nichrome wire breakage, impurities occluded or adsorbed in the carbon are released when electricity is applied, and these impurities are A problem has arisen in that it gets mixed into the film and deteriorates the quality of the film.

【0008】本発明の目的は、上記問題点が解決された
気相成長装置を提供することである。
[0008] An object of the present invention is to provide a vapor phase growth apparatus in which the above-mentioned problems are solved.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、この発明においては、前記各項の問題点に対応し、
それぞれ次の手段を講ずるものとする。
[Means for Solving the Problems] In order to solve the above problems, the present invention addresses the problems of each of the above items,
The following measures shall be taken respectively.

【0010】(1) 問題点第1項に対応して、従来の
抵抗加熱ヒータにおけるカバー(11)を除去し、シー
スヒータを、該シースヒータを収納するステンレス製ケ
ースに直接モリブデン溶射により固定する。モリブデン
の溶射量は、シースヒータを完全に覆って表面を平坦に
なしうる程度とし、モリブデンを溶射した後にサセプタ
との接触面を機械加工により平坦に仕上げる。
(1) In response to the first problem, the cover (11) of the conventional resistance heater is removed, and the sheath heater is directly fixed to the stainless steel case housing the sheath heater by molybdenum spraying. The amount of molybdenum sprayed is such that it can completely cover the sheath heater and make the surface flat, and after the molybdenum is sprayed, the contact surface with the susceptor is finished flat by machining.

【0011】(2) 問題点第1項に対応して、シース
ヒータを、該シースヒータを収納するステンレス製ケー
スの底面とモリブデン製プレートとの間にねじを用いて
挟み込み、シースヒータをモリブデン製プレートに強制
的に密着させる構造とする。
(2) Corresponding to the first problem, the sheath heater is inserted between the bottom of the stainless steel case housing the sheath heater and the molybdenum plate using screws, and the sheath heater is forced onto the molybdenum plate. The structure is designed to allow close contact.

【0012】(3) 問題点第2項に対応して、板状も
しくは帯状の炭素繊維複合材料を発熱体とする。
(3) Corresponding to the second problem, a plate-shaped or band-shaped carbon fiber composite material is used as a heating element.

【0013】(4) 問題点第3項に対応して、表面が
耐熱材によりコーティングされた板状もしくは帯状の炭
素を発熱体とする。
(4) Corresponding to problem No. 3, a plate-like or band-like carbon whose surface is coated with a heat-resistant material is used as a heating element.

【0014】[0014]

【作用】(1) シースヒータを、該シースヒータを収
納するステンレス製ケースに直接モリブデン溶射により
固定し、モリブデン溶射後にサセプタとの接触面を平坦
に機械加工仕上げすることにより、シースヒータの熱は
、熱伝導率の大きいモリブデンを熱伝導媒体として機械
加工された接触面へ向かう。従ってシースヒータと接触
面との間の温度勾配が小さくなり、接触面を所定の温度
に昇温するためのシースヒータの温度を接触面の温度よ
りさほど高くする必要がなく、抵抗加熱線であるニクロ
ム線の温度を従来と比べて低く保つことができる。また
、シースヒータから発する熱は、温度勾配に従って移動
するから、接触面へ向かう移動の途中、接触面と平行方
向に温度分布の不均一が存在すると、この方向へも熱の
移動成分が生じ、接触面に到達するまでに、モリブデン
内を接触面と平行方向に温度分布を均一化しながら接触
面へ向かう。これにより、熱が接触面に均一に分布して
到達し、接触面に均一な温度分布が得られる。
[Function] (1) The sheath heater is directly fixed to the stainless steel case that houses the sheath heater by molybdenum spraying, and the contact surface with the susceptor is machined to be flat after molybdenum spraying, so that the heat of the sheath heater is transferred by thermal conduction. Molybdenum with a high coefficient is used as a heat transfer medium to the machined contact surface. Therefore, the temperature gradient between the sheath heater and the contact surface becomes smaller, and the temperature of the sheath heater to raise the temperature of the contact surface to a predetermined temperature does not need to be much higher than the temperature of the contact surface. temperature can be kept lower than before. In addition, the heat emitted from the sheath heater moves according to the temperature gradient, so if there is an uneven temperature distribution in the direction parallel to the contact surface during the movement toward the contact surface, a component of heat moving in this direction will also occur, causing the contact Before reaching the contact surface, the molybdenum moves toward the contact surface while making the temperature distribution uniform in the direction parallel to the contact surface. This allows the heat to reach the contact surface in a uniform distribution, resulting in a uniform temperature distribution on the contact surface.

【0015】(2) シースヒータを、シースヒータを
収納するステンレス製ケースの底面とモリブデン製プレ
ートとの間にねじを用いて挟み込み、シースヒータをモ
リブデン製プレートに強制的に密着させる構造とすれば
、シースヒータの熱はモリブデン製プレートを介してサ
セプタに伝えられるため、シースヒータとプレート上面
との間の温度勾配が、上記第1項の手段の場合と比べ、
シースヒータとモリブデンとの接触面積のちがいから、
第1項の手段の場合ほど小さくはならないものの、従来
のものと比べると格段に小さくなり、シースヒータ内の
ニクロム線の温度を従来より低く保つことができる。ま
た、プレートの厚みを適宜に設定することにより、プレ
ート上面の温度分布を均一化することができる。
(2) If the sheath heater is sandwiched between the bottom of the stainless steel case housing the sheath heater and the molybdenum plate using screws, and the sheath heater is forcibly brought into close contact with the molybdenum plate, the sheath heater Since the heat is transferred to the susceptor via the molybdenum plate, the temperature gradient between the sheath heater and the top surface of the plate is lower than in the case of the means described in item 1 above.
Due to the difference in contact area between the sheath heater and molybdenum,
Although it is not as small as in the case of the first means, it is much smaller than the conventional one, and the temperature of the nichrome wire inside the sheath heater can be kept lower than the conventional one. Further, by appropriately setting the thickness of the plate, the temperature distribution on the upper surface of the plate can be made uniform.

【0016】(3) 抵抗加熱ヒータの発熱体を板状も
しくは帯状の炭素繊維複合材料とした場合には、以下に
説明するように、発熱体自体の耐熱性が向上し、かつ発
熱体が平面状の面熱源となるため、サセプタと発熱体と
の間に気体の層が介在していても、ニクロム線断線のよ
うな障害なくサセプタを均一に加熱することができる。
(3) When the heating element of the resistance heater is made of a plate-shaped or band-shaped carbon fiber composite material, the heat resistance of the heating element itself is improved, and the heating element is flat, as explained below. Since the susceptor becomes a planar heat source, even if a gas layer is present between the susceptor and the heating element, the susceptor can be uniformly heated without problems such as breakage of the nichrome wire.

【0017】板状もしくは帯状の炭素繊維複合材料は、
紡糸したピッチを熱処理することによって得られた炭素
繊維を布状に織り、これをピッチを用いて固化するか、
炭素繊維布をCVD炉に入れて高温に加熱しつつメタン
などの炭化水素ガスをH2 ガス共存のもとで炭素繊維
布に接触させ、炭素繊維布の表面に配向性の緻密な,い
わゆる熱分解炭素の層を形成させたものである。融点が
約4000℃でニクロム線の約2.5倍と高く、これを
発熱体として用いることにより、より高温での成膜が可
能なヒータとすることができる。
[0017] The plate-shaped or band-shaped carbon fiber composite material is
Carbon fibers obtained by heat-treating spun pitch are woven into a cloth, and this is solidified using pitch, or
The carbon fiber cloth is placed in a CVD furnace and heated to a high temperature, and a hydrocarbon gas such as methane is brought into contact with the carbon fiber cloth in the coexistence of H2 gas, resulting in so-called pyrolysis, which creates a densely oriented surface on the surface of the carbon fiber cloth. A layer of carbon is formed. Its melting point is about 4000° C., which is about 2.5 times higher than that of nichrome wire, and by using it as a heating element, it can be made into a heater that can form films at higher temperatures.

【0018】また、炭素繊維複合材料は一般の黒鉛ヒー
タに比べても固有抵抗が大きいので、ヒータをより小型
, 高温化することができる。
[0018] Furthermore, since the carbon fiber composite material has a higher specific resistance than a general graphite heater, the heater can be made smaller and higher in temperature.

【0019】(4) 抵抗加熱ヒータの発熱体を、表面
が耐熱材によりコーティングされた板状もしくは帯状の
炭素とすれば、通電時に発熱体から放出される不純物を
減らすことができる。コーティングに用いられる耐熱材
としては、例えば炭化ケイ素 (SiC, 融点:27
00℃),熱分解炭素(C, 融点:4000℃),熱
分解窒化ホウ素(PBN, 融点:約3000℃) な
どを用いる。コーティングはいずれも前記第3項で述べ
た熱分解炭素層形成の場合と同様の方法で可能であり、
いずれも炭素の表面に緻密なコーティング層を形成する
(4) If the heating element of the resistance heater is made of plate-shaped or band-shaped carbon whose surface is coated with a heat-resistant material, impurities emitted from the heating element when electricity is applied can be reduced. Examples of heat-resistant materials used for coating include silicon carbide (SiC, melting point: 27
00°C), pyrolytic carbon (C, melting point: 4000°C), pyrolytic boron nitride (PBN, melting point: approximately 3000°C), etc. Coating can be done by the same method as in the case of forming the pyrolytic carbon layer described in Section 3 above,
Both forms a dense coating layer on the carbon surface.

【0020】[0020]

【実施例】図1に本発明による抵抗加熱ヒータ構成の第
1の実施例を示す。シースヒータ10を2重に折り曲げ
て引出し線が内側になるように渦巻き状に巻き、これを
ステンレス製ケース9の底面に載せた後、モリブデンを
シースヒータ10を十分覆う程に溶射し、シースヒータ
10をケース9に固定するとともに、サセプタ2との接
触面を平坦に機械加工仕上げしたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first embodiment of a resistance heater configuration according to the present invention. The sheath heater 10 is folded twice and wound spirally so that the lead wire is on the inside. After placing it on the bottom of the stainless steel case 9, molybdenum is sprayed to a sufficient extent to cover the sheath heater 10, and the sheath heater 10 is attached to the case. 9, and the contact surface with the susceptor 2 is machined to be flat.

【0021】図2に本発明による抵抗加熱ヒータ構成の
第2の実施例を示す。図1と同様に渦巻き状に成形した
シースヒータ10を底の浅いステンレス製ケース9の底
面に載せた後、モリブデン製のプレート13をシースヒ
ータ10の上に載せ、ボルト14を締めあげることによ
り、シースヒータ10をプレート13に強制的に密着さ
せたものである。
FIG. 2 shows a second embodiment of the resistance heater configuration according to the present invention. After placing the sheath heater 10 formed into a spiral shape in the same way as in FIG. is forcibly brought into close contact with the plate 13.

【0022】図3に本発明による抵抗加熱ヒータ構成の
第3の実施例を示す。ステンレス製ケース9内には、発
熱体として、板状に形成された炭素繊維複合材料15が
、サセプタ2を載置するケース9の上端面と平行に支持
され、接続板18, 支持棒19を介して電流が供給さ
れる。炭素繊維複合材料15の下方には、炭素繊維複合
材料15と同様に、ピッチ系炭素繊維を用いたフェルト
状の分厚い断熱板17が配され、下方へ向かう熱を遮蔽
して炭素繊維複合材料15の熱を有効にサセプタ2の温
度上昇に消費させるようにしている。サセプタ2と炭素
繊維複合材料15との間には気体の層が存在し、両者の
間の温度勾配は大きいが、炭素繊維複合材料15の耐熱
性が高いため、従来の抵抗加熱ヒータで使用されたニク
ロム線と同等の温度を繰り返しても障害が生ぜず、また
、板状の炭素繊維複合材料15は平面状の面熱源を構成
するから、サセプタを均一に加熱することができる。
FIG. 3 shows a third embodiment of a resistance heater configuration according to the present invention. Inside the stainless steel case 9, a plate-shaped carbon fiber composite material 15 is supported as a heating element in parallel with the upper end surface of the case 9 on which the susceptor 2 is placed, and a connecting plate 18 and a support rod 19 are supported. Current is supplied through the Similar to the carbon fiber composite material 15, a felt-like thick heat insulating board 17 made of pitch-based carbon fiber is disposed below the carbon fiber composite material 15, and shields the heat directed downward. This heat is effectively consumed to raise the temperature of the susceptor 2. Although a gas layer exists between the susceptor 2 and the carbon fiber composite material 15, and there is a large temperature gradient between the two, the carbon fiber composite material 15 has high heat resistance, so it cannot be used in a conventional resistance heater. No damage occurs even if the same temperature as that of the Nichrome wire is repeated, and since the plate-shaped carbon fiber composite material 15 constitutes a planar surface heat source, the susceptor can be uniformly heated.

【0023】図4に本発明による抵抗加熱ヒータ構成の
第4の実施例を示す。この構成は、発熱体として、図3
に示す炭素繊維複合材料15の代わりに、炭化ケイ素,
 熱分解炭素, 熱分解窒化ホウ素などの耐熱材でコー
ティングされた板状の炭素を用いたものである。これら
の耐熱性コーティング材は炭素の表面に緻密な層を形成
し、炭素16内に吸蔵もしくは吸着されていた不純物の
放出を効果的に抑制する。
FIG. 4 shows a fourth embodiment of the resistance heater configuration according to the present invention. This configuration is used as a heating element in Figure 3.
Instead of the carbon fiber composite material 15 shown in FIG.
It uses a carbon plate coated with a heat-resistant material such as pyrolytic carbon or pyrolytic boron nitride. These heat-resistant coating materials form a dense layer on the surface of carbon and effectively suppress the release of impurities occluded or adsorbed in carbon-16.

【0024】[0024]

【発明の効果】本発明においては、抵抗加熱ヒータを上
述のように構成したので、以下に記載する効果が得られ
る。
Effects of the Invention In the present invention, since the resistance heater is constructed as described above, the following effects can be obtained.

【0025】請求項1の装置では、発熱体であるシース
ヒータとモリブデンのサセプタとの接触面との間の温度
勾配が小さく、サセプタとの接触面を所定の温度に昇温
させるのに、シースヒータ内のニクロム線を従来より低
い温度で使用することができ、ニクロム線の断線を防止
することができる。また、モリブデンの熱伝導率が大き
く、かつサセプタとの接触面への熱伝達は、モリブデン
を熱伝導媒体とする熱伝導のみにより行われるため、接
触面の温度分布が均一となる。これにより、気相成長装
置を、ニクロム線断線のような障害のない高信頼性の,
 かつ膜厚分布,膜質の良好な成膜が可能な装置とする
ことができる。
In the device of the first aspect, the temperature gradient between the sheath heater, which is a heating element, and the contact surface with the molybdenum susceptor is small, and in order to raise the temperature of the contact surface with the susceptor to a predetermined temperature, the temperature gradient within the sheath heater is small. Nichrome wire can be used at a lower temperature than before, and breakage of the Nichrome wire can be prevented. Further, since molybdenum has a high thermal conductivity and heat transfer to the contact surface with the susceptor is performed only by heat conduction using molybdenum as a heat transfer medium, the temperature distribution on the contact surface becomes uniform. This makes the vapor phase growth system highly reliable and free from failures such as nichrome wire breaks.
Moreover, the apparatus can form a film with good film thickness distribution and film quality.

【0026】また、制御温度であるシースヒータ温度と
接触面温度との差が小さく、正確な温度制御が容易とな
り、より精度の高い装置運転が可能になる。
Furthermore, the difference between the sheath heater temperature, which is the control temperature, and the contact surface temperature is small, making it easy to accurately control the temperature, and enabling more accurate device operation.

【0027】請求項2の装置では、請求項1の装置にお
ける効果のほか、製造工程中にモリブデン溶射のような
熱作業を含まないから、製造が容易になるメリットがあ
る。
The apparatus according to the second aspect has the advantage that, in addition to the effects of the apparatus according to the first aspect, the manufacturing process does not include any thermal work such as molybdenum thermal spraying, making it easier to manufacture.

【0028】請求項3の装置では、発熱体に耐熱性の高
い炭素繊維複合材料が用いられるため、サセプタとの間
に気体の層が介在していても、ニクロム線と同等の高温
で使用した場合、ニクロム線断線のような障害なく、安
定にサセプタを加熱することができ、気相成長装置を、
抵抗加熱ヒータに障害を生じない高信頼の,かつ膜厚分
布, 膜質の良好な成膜が可能な装置とすることができ
る。さらに、発熱体の耐熱性がニクロム線使用のシース
ヒータと比べて格段に高いので、気相成長装置を、より
高温での成膜が可能な装置とすることができる。
In the apparatus of claim 3, since a highly heat-resistant carbon fiber composite material is used for the heating element, even if a gas layer is interposed between the heating element and the susceptor, the heating element can be used at a high temperature equivalent to that of a nichrome wire. In this case, the susceptor can be heated stably without problems such as nichrome wire breakage, and the vapor phase growth apparatus is
It is possible to create a highly reliable device that does not cause problems with the resistance heater, and that can form films with good film thickness distribution and film quality. Furthermore, since the heat resistance of the heating element is much higher than that of a sheath heater using nichrome wire, the vapor phase growth apparatus can be used to form a film at a higher temperature.

【0029】請求項4の装置では、請求項3の装置にお
ける効果に加え、発熱体から放出される不純物が少なく
なり、気相成長装置を、膜質がさらに良好な膜を形成可
能な装置とすることができる。
In the apparatus of claim 4, in addition to the effects of the apparatus of claim 3, impurities emitted from the heating element are reduced, making the vapor phase growth apparatus capable of forming a film with even better film quality. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による抵抗加熱ヒータ構成の第1の実施
例を示す縦断面図
FIG. 1 is a longitudinal sectional view showing a first embodiment of a resistance heater configuration according to the present invention.

【図2】本発明による抵抗加熱ヒータ構成の第2の実施
例を示す縦断面図
FIG. 2 is a longitudinal sectional view showing a second embodiment of the resistance heater configuration according to the present invention.

【図3】本発明による抵抗加熱ヒータ構成の第3の実施
例を示す縦断面図
FIG. 3 is a vertical cross-sectional view showing a third embodiment of the resistance heater configuration according to the present invention.

【図4】本発明による抵抗加熱ヒータ構成の第4の実施
例を示す縦断面図
FIG. 4 is a longitudinal sectional view showing a fourth embodiment of the resistance heater configuration according to the present invention.

【図5】本発明が対象とする気相成長装置構成の一例を
示すものであって、同図(a) は平面断面図, 同図
(b) は側面断面図
FIG. 5 shows an example of the configuration of a vapor phase growth apparatus to which the present invention is applied, in which figure (a) is a plan cross-sectional view, and figure (b) is a side cross-sectional view.

【図6】従来の抵抗加熱ヒータの構成例を示す縦断面図
[Fig. 6] A vertical cross-sectional view showing an example of the configuration of a conventional resistance heater.

【符号の説明】[Explanation of symbols]

1    基板 2    サセプタ 3    反応容器 8    抵抗加熱ヒータ 9    ケース (ステンレス製ケース)10   
 シースヒータ 11    モリブデン 13    プレート(モリブデン製プレート)15 
   炭素繊維複合材料 16    炭素
1 Substrate 2 Susceptor 3 Reaction vessel 8 Resistance heater 9 Case (stainless steel case) 10
Sheath heater 11 Molybdenum 13 Plate (molybdenum plate) 15
Carbon fiber composite material 16 carbon

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】成膜用基板が水平に取り付けられる構造の
サセプタを、箱状または円筒状反応容器内の抵抗加熱ヒ
ータに載置して反応ガスを水平に流し、サセプタを抵抗
加熱ヒータとともに反応ガスの流れに垂直なサセプタ軸
を中心に回転しつつ加熱することにより成膜用基板に薄
膜を成長させる気相成長装置において、前記抵抗加熱ヒ
ータが、金属パイプにニクロム線を挿通してなるシース
ヒータを、該シースヒータを収納するステンレス製ケー
スに直接モリブデン溶射により固定してなることを特徴
とする気相成長装置。
[Claim 1] A susceptor having a structure in which a film-forming substrate can be mounted horizontally is placed on a resistance heater in a box-shaped or cylindrical reaction vessel, a reaction gas is flowed horizontally, and the susceptor is reacted together with the resistance heater. In a vapor phase growth apparatus that grows a thin film on a film-forming substrate by heating it while rotating around a susceptor axis perpendicular to the flow of gas, the resistance heater is a sheath heater formed by inserting a nichrome wire into a metal pipe. A vapor phase growth apparatus characterized in that the sheath heater is directly fixed to a stainless steel case housing the sheath heater by molybdenum spraying.
【請求項2】成膜用基板が水平に取り付けられる構造の
サセプタを、箱状または円筒状反応容器内の抵抗加熱ヒ
ータに載置して反応ガスを水平に流し、サセプタを抵抗
加熱ヒータとともに反応ガスの流れに垂直なサセプタ軸
を中心に回転しつつ加熱することにより成膜用基板に薄
膜を成長させる気相成長装置において、前記抵抗加熱ヒ
ータが、金属パイプにニクロム線を挿通してなるシース
ヒータを、該シースヒータを収納するステンレス製ケー
スの底面とモリブデン製プレートとの間にねじを用いて
挟み込んでなることを特徴とする気相成長装置。
[Claim 2] A susceptor having a structure in which a film-forming substrate is mounted horizontally is placed on a resistance heater in a box-shaped or cylindrical reaction vessel, a reaction gas is flowed horizontally, and the susceptor is reacted together with the resistance heater. In a vapor phase growth apparatus that grows a thin film on a film-forming substrate by heating it while rotating around a susceptor axis perpendicular to the flow of gas, the resistance heater is a sheath heater formed by inserting a nichrome wire into a metal pipe. is sandwiched between the bottom of a stainless steel case housing the sheath heater and a molybdenum plate using screws.
【請求項3】成膜用基板が水平に取り付けられる構造の
サセプタを、箱状または円筒状反応容器内の抵抗加熱ヒ
ータに載置して反応ガスを水平に流し、サセプタを抵抗
加熱ヒータとともに反応ガスの流れに垂直なサセプタ軸
を中心に回転しつつ加熱することにより成膜用基板に薄
膜を成長させる気相成長装置において、前記抵抗加熱ヒ
ータが、板状もしくは帯状の炭素繊維複合材料を発熱体
とすることを特徴とする気相成長装置。
3. A susceptor having a structure in which a film-forming substrate can be mounted horizontally is placed on a resistance heater in a box-shaped or cylindrical reaction vessel, a reaction gas is flowed horizontally, and the susceptor is reacted together with the resistance heater. In a vapor phase growth apparatus that grows a thin film on a film-forming substrate by heating it while rotating around a susceptor axis perpendicular to the gas flow, the resistance heater heats a plate-shaped or band-shaped carbon fiber composite material. A vapor phase growth apparatus characterized by a body.
【請求項4】成膜用基板が水平に取り付けられる構造の
サセプタを、箱状または円筒状反応容器内の抵抗加熱ヒ
ータに載置して反応ガスを水平に流し、サセプタを抵抗
加熱ヒータとともに反応ガスの流れに垂直なサセプタ軸
を中心に回転しつつ加熱することにより成膜用基板に薄
膜を成長させる気相成長装置において、前記抵抗加熱ヒ
ータが、表面が耐熱材によりコーティングされた板状も
しくは帯状の炭素を発熱体とすることを特徴とする気相
成長装置。
4. A susceptor having a structure in which a film-forming substrate can be mounted horizontally is placed on a resistance heater in a box-shaped or cylindrical reaction vessel, a reaction gas is flowed horizontally, and the susceptor is reacted together with the resistance heater. In a vapor phase growth apparatus that grows a thin film on a film-forming substrate by heating it while rotating around a susceptor axis perpendicular to the flow of gas, the resistance heater is a plate-shaped or A vapor phase growth apparatus characterized by using a band-shaped carbon as a heating element.
JP10616391A 1991-05-13 1991-05-13 Vapor growth apparatus Pending JPH04335520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10616391A JPH04335520A (en) 1991-05-13 1991-05-13 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10616391A JPH04335520A (en) 1991-05-13 1991-05-13 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPH04335520A true JPH04335520A (en) 1992-11-24

Family

ID=14426617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10616391A Pending JPH04335520A (en) 1991-05-13 1991-05-13 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPH04335520A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075815A (en) * 2011-09-12 2013-04-25 Hitachi Cable Ltd Method for producing nitride semiconductor crystal, nitride semiconductor epitaxial wafer, and nitride semiconductor freestanding substrate
JP2013089953A (en) * 2011-10-13 2013-05-13 Industrial Technology Research Institute Metal organic chemical vapor deposition method and apparatus
JP2013128086A (en) * 2011-03-24 2013-06-27 Nuflare Technology Inc Film formation apparatus and film formation method
WO2013175562A1 (en) * 2012-05-22 2013-11-28 株式会社島津製作所 Semiconductor manufacturing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128086A (en) * 2011-03-24 2013-06-27 Nuflare Technology Inc Film formation apparatus and film formation method
JP2013075815A (en) * 2011-09-12 2013-04-25 Hitachi Cable Ltd Method for producing nitride semiconductor crystal, nitride semiconductor epitaxial wafer, and nitride semiconductor freestanding substrate
US10060047B2 (en) 2011-09-12 2018-08-28 Sumitomo Chemical Company, Limited Nitride semiconductor crystal producing method including growing nitride semiconductor crystal over seed crystal substrate
JP2013089953A (en) * 2011-10-13 2013-05-13 Industrial Technology Research Institute Metal organic chemical vapor deposition method and apparatus
WO2013175562A1 (en) * 2012-05-22 2013-11-28 株式会社島津製作所 Semiconductor manufacturing apparatus
JPWO2013175562A1 (en) * 2012-05-22 2016-01-12 株式会社島津製作所 Semiconductor manufacturing equipment

Similar Documents

Publication Publication Date Title
US11795545B2 (en) Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
EP0964433B1 (en) Multiple-layered ceramic heater
US5344492A (en) Vapor growth apparatus for semiconductor devices
US20050000427A1 (en) Gas supplying apparatus for atomic layer deposition
KR100803445B1 (en) Process for controlling thin film uniformity and products produced thereby
JPH0620053B2 (en) Method and apparatus for heating semiconductor substrate
JPS6258639A (en) Chemical evaporating apparatus and method
TW201002848A (en) Gold-coated polysilicon reactor system and method
KR20120138636A (en) Ceramic heater
JPWO2005081298A1 (en) Vapor phase growth equipment
TWI825173B (en) A showerhead assembly and a method of introducing precursors through a segmented showerhead
WO2020033757A1 (en) Showerhead for providing multiple materials to a process chamber
JP2001023759A (en) Pyrolytic boron nitride radiation heater
JPH04335520A (en) Vapor growth apparatus
JP3061755B2 (en) CVD apparatus having susceptor for CVD apparatus and high frequency induction heating apparatus
JPH09245957A (en) High frequency induction heating furnace
JP2001122692A (en) Method of producing semiconductor crystal and production device utilizing the same
JPS5821025B2 (en) Vapor phase chemical vapor deposition equipment
CN111218672A (en) MOCVD heater
JPH0565586B2 (en)
JP2003086521A (en) Vapor phase growth unit and vapor phase growth method
KR100762809B1 (en) Heat treatment equipment
JPH05888A (en) Vapor phase epitaxy device
JP2001308014A (en) Chemical vapor deposition apparatus
JPH05299356A (en) Vapor deposition device