JPH04335303A - Method for splicing optical fiber - Google Patents

Method for splicing optical fiber

Info

Publication number
JPH04335303A
JPH04335303A JP13555191A JP13555191A JPH04335303A JP H04335303 A JPH04335303 A JP H04335303A JP 13555191 A JP13555191 A JP 13555191A JP 13555191 A JP13555191 A JP 13555191A JP H04335303 A JPH04335303 A JP H04335303A
Authority
JP
Japan
Prior art keywords
optical fiber
connection
core
connection point
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13555191A
Other languages
Japanese (ja)
Inventor
Shigefumi Yamazaki
山崎 成史
Fumio Suzuki
文生 鈴木
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP13555191A priority Critical patent/JPH04335303A/en
Publication of JPH04335303A publication Critical patent/JPH04335303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To perform the operation in a short time, to improve the reliability, and to reduce the connection loss by fusing and drawing a fusion-spliced connection part formed by arc discharging while matching the outer peripheries of clads with each other. CONSTITUTION:One eccentric core optical fiber 1 and the other single-mode optical fiber 2 are positioned on the basis of the outer peripheries of their clads 1a and 2a as reference positions and they are fused and spliced by the arc discharging. The positioning operation is carried out by a normal image process and the fusion-splicing connection operation is performed similarly to a multi-mode optical fiber. In this state, both the cores 1b and 2b shift in position at the connection point 3, so the connection point 3 is heated and the optical fibers 1 and 2 are drawn in opposite directions in a half-fused state to draw the periphery of the connection point 3. Consequently, the core diameters decreases as well as the fiber external diameter of the periphery. The mold field diameter of propagated light, therefore, increases and the quantity of axis deviation between the cores 1b and 2b also decreases, so the connection loss is reduced as the fibers are drawn.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、シングルモード光フ
ァイバの接続方法に関し、特に偏心コア光ファイバの接
続においてその作業性、信頼性を向上せしめ、かつ接続
損失の低減化をもはかるようにしたものである。
[Industrial Application Field] The present invention relates to a method for splicing single-mode optical fibers, and in particular improves workability and reliability in splicing eccentric core optical fibers, and also aims to reduce splice loss. It is something.

【0002】0002

【従来の技術】シングルモード光ファイバの1種として
、コアを大きく偏心させた偏心コア光ファイバがある。 この偏心コア光ファイバは、ファイバセンサとして、例
えば油漏れの検知センサとして研究、開発されているも
のである。偏心コア光ファイバをセンサとして用いる場
合、光の入射または受光を効率よくかつ安定して行うた
めに通常のシングルモード光ファイバを両端または片端
に接続する場合が多い。
2. Description of the Related Art One type of single mode optical fiber is an eccentric core optical fiber whose core is largely eccentric. This eccentric core optical fiber is being researched and developed as a fiber sensor, for example, as an oil leak detection sensor. When an eccentric core optical fiber is used as a sensor, a normal single mode optical fiber is often connected to both ends or one end in order to efficiently and stably input or receive light.

【0003】従来、偏心コア光ファイバと通常のシング
ルモード光ファイバの接続には、融着接続機を使って手
動で調心してコアを位置合わせしてから融着接続を行っ
ている。融着接続機では画像解析を行い、コアの位置を
マイクロコンピュータにより自動で調心し、アーク放電
して接続部を溶融して融着接続を行うのが普通であり、
なんらかの理由で画像処理できない場合や非常に低損失
で接続を行いたい場合には、ファイバの一端から光を入
射し、他端から出射する光パワーをモニターしながら調
心をして融着接続を行う場合もある。
Conventionally, in order to connect an eccentric core optical fiber to a normal single mode optical fiber, a fusion splicer is used to manually align the cores and then perform fusion splicing. Normally, fusion splicing machines perform image analysis, automatically align the core position using a microcomputer, and perform fusion splicing by melting the joint using arc discharge.
If image processing is not possible for some reason, or if you want to make a splice with very low loss, you can enter the light from one end of the fiber, monitor the optical power output from the other end, and perform a fusion splice by aligning the fiber. Sometimes it is done.

【0004】0004

【発明が解決しようとする課題】しかし、コアがクラッ
ドの中心から極端に離れているような偏心コア光ファイ
バでは画像処理できない場合があり、その場合には手動
で接続すべき2本のファイバをずらして更にコア同士が
重なりあうようにしなければならず調心に非常に時間が
かかっていた。更に、融着時には、表面張力が働いて合
わせたコアがずれてしまうのを防ぐためにアーク放電を
弱くして接続面を完全に溶融させないようにしなければ
ならない。このため接続強度が低く、接続点が破断しや
すいなどの信頼性の問題があった。よって、この発明の
課題は、偏心コア光ファイバなどのコアが偏心している
シングルモード光ファイバを融着接続する際、作業性、
信頼性が高く、接続損失を低減化できる接続方法を得る
ことにある。
[Problems to be Solved by the Invention] However, image processing may not be possible with an eccentric core optical fiber whose core is extremely far from the center of the cladding, and in that case, it is necessary to manually connect the two fibers. It was necessary to shift the cores so that they overlapped each other, which took a very long time to align. Furthermore, during fusion bonding, the arc discharge must be weakened to prevent the joint surfaces from completely melting in order to prevent the combined cores from shifting due to surface tension. For this reason, there were reliability problems such as low connection strength and easy breakage of connection points. Therefore, an object of the present invention is to improve workability and improve workability when fusion splicing single mode optical fibers with eccentric cores, such as eccentric core optical fibers.
The object of the present invention is to obtain a connection method that is highly reliable and can reduce connection loss.

【0005】[0005]

【課題を解決するための手段】かかる課題は、接続しよ
うとする光ファイバのクラッドの外周を合致せしめてア
ーク放電による融着接続を行ったのち、この接続部を溶
融延伸することで解決される。
[Means for solving the problem] This problem can be solved by aligning the outer circumferences of the claddings of the optical fibers to be connected, performing fusion splicing by arc discharge, and then melting and drawing the joint. .

【0006】以下、この発明を詳しく説明する。図1は
、この発明の接続方法の一例として、一方の光ファイバ
が偏心コア光ファイバ1で、他方の光ファイバが通常の
シングルモード光ファイバ2であるものを示す。まず、
両方の光ファイバ1および2を図1(A)に示すように
、そのクラッド1a,1bの外周を基準位置として位置
合せを行ったのち、アーク放電により融着接続を行う。 ここでの位置合せは通常の画像処理によって行うことが
でき、また融着接続も常法によって行うことができ、そ
の作業はマルチモード光ファイバの融着接続と同様に行
える。
[0006] This invention will be explained in detail below. FIG. 1 shows an example of the connection method of the present invention in which one optical fiber is an eccentric core optical fiber 1 and the other optical fiber is an ordinary single mode optical fiber 2. first,
As shown in FIG. 1A, both optical fibers 1 and 2 are aligned using the outer circumferences of their claddings 1a and 1b as reference positions, and then fusion spliced by arc discharge. The alignment here can be performed by normal image processing, and the fusion splicing can also be performed by a conventional method, and this work can be performed in the same way as the fusion splicing of multimode optical fibers.

【0007】しかし、この状態では接続点3で、双方の
コア1b,1bの位置が図1(B)に示すようにずれて
いるため、接続損失はかなり大きいものとなる。そのた
め、接続点3を加熱して半溶融状態とし、この半溶融状
態で光ファイバ1,2を軽く反対方向に引張り、接続点
3周辺を延伸する。この延伸により、図1(C)にある
ように接続点3周辺のファイバ外径が減少し、コア径も
減少する。
However, in this state, since the positions of both cores 1b and 1b are shifted as shown in FIG. 1(B) at the connection point 3, the connection loss becomes quite large. Therefore, the connection point 3 is heated to a semi-molten state, and in this semi-molten state, the optical fibers 1 and 2 are slightly pulled in opposite directions to stretch the connection point 3 and its surroundings. As a result of this stretching, the outer diameter of the fiber around the connection point 3 decreases, as shown in FIG. 1(C), and the core diameter also decreases.

【0008】接続点3ではコア径の減少に伴い伝播する
光のモードフィールド径が増大し、またコア1b,2b
の軸ずれ量も小さくなるため延伸するに伴い接続損失は
減少する。図2は、コア径の減少に伴うモードフィール
ド径の増大をニュー・ピーターマンの定義に従い計算し
た結果である。このとき、コア径8.1ミクロンの時の
カットオフ値を1.1ミクロン、△を0.3%とし、伝
播光の波長を1.3ミクロンとした。次に、コアの軸ず
れ量と接続損失の関係式(1)を用いてコア径と接続損
失の関係を計算したのが図3である。但し、最初の軸ず
れ量を50ミクロンとし、各ファイバのモードフィール
ド径は等しいと仮定した。この結果から、例えばコア径
が2.8ミクロン以下になるように延伸した場合には接
続損失は1.0dB以下まで下がることが計算上予想さ
れる。
At the connection point 3, the mode field diameter of the propagating light increases as the core diameter decreases, and the cores 1b and 2b
The amount of axis misalignment also decreases, so the connection loss decreases as the wire is stretched. FIG. 2 shows the results of calculating the increase in the mode field diameter as the core diameter decreases according to the New Peterman definition. At this time, the cutoff value when the core diameter was 8.1 microns was set to 1.1 microns, Δ was set to 0.3%, and the wavelength of the propagated light was set to 1.3 microns. Next, FIG. 3 shows the relationship between the core diameter and the connection loss calculated using the relational expression (1) between the core axis misalignment amount and the connection loss. However, it was assumed that the initial axis deviation amount was 50 microns and that the mode field diameters of each fiber were equal. From this result, it is calculated that if the core diameter is stretched to 2.8 microns or less, the connection loss will decrease to 1.0 dB or less.

【0009】[0009]

【数1】[Math 1]

【0010】なお、式中αdは接続損失、dはコアずれ
量、W1 ,W2 はそれぞれのモードフィールド径で
ある。
In the formula, αd is the connection loss, d is the amount of core deviation, and W1 and W2 are the respective mode field diameters.

【0011】また、延伸量(延伸長さ)は、コア1bと
コア2bとの間のコアずれ量に比例し、コアずれ量が大
きくなれば延伸量を大きくすればよく、これは経験的に
求めることもでき、あるいは一方の光ファイバの開放端
から光を入射し、他方の開放端から出射する光パワーを
モニターしながら延伸する方法をとることもできる。こ
こで使われる溶融延伸は、光ファイバカプラの製造技術
として確立されており、精度良くしかも高い再現性をも
って行うことが出来る。溶融延伸後の接続点3の補強方
法も光ファイバカプラでの収縮チューブや樹脂コーティ
ングなどの補強方法を転用することが出来る。
[0011] Furthermore, the amount of stretching (stretching length) is proportional to the amount of core misalignment between core 1b and core 2b, and as the amount of core misalignment increases, the amount of stretching should be increased; this is based on experience. Alternatively, a method may be adopted in which light is input from one open end of an optical fiber and the optical fiber is stretched while monitoring the optical power emitted from the other open end. The melt drawing used here is an established technique for manufacturing optical fiber couplers, and can be performed with high precision and high reproducibility. The method of reinforcing the connection point 3 after melt-stretching can also be adapted from the method of reinforcing the fiber optic coupler by using a shrink tube or resin coating.

【0012】また、この発明の接続方法は、一般のシン
グルモード光ファイバ相互の接続にも当然適用でき、こ
の場合には、コアずれ量が微かであるので、微かな延伸
量で極低損失の接続が可能となる。以下、実施例を示し
、作用効果を明確にする。
Furthermore, the connection method of the present invention can naturally be applied to the connection of general single-mode optical fibers, and in this case, since the amount of core deviation is slight, extremely low loss can be achieved with a slight amount of stretching. Connection is now possible. Examples are shown below to clarify the effects.

【0013】(実施例1)一般の1.3ミクロン用シン
グルモード光ファイバ(コア径8.1ミクロン,クラッ
ド径125ミクロン,△0.3%,カットオフ値1.1
ミクロン)とコアがクラッドの中心から50ミクロン離
れている偏心コア光ファイバ(コア径8ミクロン,クラ
ッド径126ミクロン,△0.3%,カットオフ値1.
1ミクロン)を用いて本発明による接続方法を実施した
。この結果、延伸量10mmで接続損失2.5dBが得
られた。
(Example 1) General single mode optical fiber for 1.3 microns (core diameter 8.1 microns, cladding diameter 125 microns, △0.3%, cutoff value 1.1
micron) and an eccentric core optical fiber whose core is 50 microns away from the center of the cladding (core diameter 8 microns, cladding diameter 126 microns, △0.3%, cutoff value 1.
The connection method according to the invention was carried out using 1 micron). As a result, a connection loss of 2.5 dB was obtained with a stretching amount of 10 mm.

【0014】(実施例2)一般の1.55ミクロン用シ
ングルモード光ファイバ(コア径10ミクロン,クラッ
ド径125ミクロン,△0.3%,カットオフ値1.5
ミクロン)とエルビウムイオンを添加したシングルモー
ド光ファイバ(コア径3ミクロン,クラッド径126ミ
クロン,△0.9%,カットオフ値1.1ミクロン)を
用いて本発明による接続方法を実施した。この結果、接
続直後1.0dBあった接続損失が2mmの延伸を行っ
たところ、0.1dBまで減少した。
(Example 2) General single mode optical fiber for 1.55 microns (core diameter 10 microns, cladding diameter 125 microns, △0.3%, cutoff value 1.5
The connection method according to the present invention was carried out using a single-mode optical fiber (core diameter 3 microns, cladding diameter 126 microns, Δ0.9%, cutoff value 1.1 microns) doped with erbium ions. As a result, the connection loss, which was 1.0 dB immediately after connection, decreased to 0.1 dB after stretching 2 mm.

【0015】[0015]

【発明の効果】以上説明したように、この発明の光ファ
イバの接続方法は、接続しようとする光ファイバのクラ
ッドの外周を合致せしめてアーク放電による融着接続を
行ったのち、この接続部を溶融延伸するものであるので
、作業性が高く、信頼性にも優れた融着接続が行えると
ともに接続損失を低いものとすることができる。
[Effects of the Invention] As explained above, in the optical fiber splicing method of the present invention, the outer peripheries of the claddings of the optical fibers to be spliced are aligned, fusion splicing is performed by arc discharge, and then the spliced portion is Since it is melt-stretched, it is possible to perform fusion splicing with high workability and excellent reliability, and to reduce splicing loss.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の接続方法の一例を工程順に示した
説明図である。
FIG. 1 is an explanatory diagram showing an example of the connection method of the present invention in the order of steps.

【図2】  コア径とモードフィールド径との関係を示
すグラフである。
FIG. 2 is a graph showing the relationship between core diameter and mode field diameter.

【図3】  コア径と接続損失との関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between core diameter and connection loss.

【符号の説明】[Explanation of symbols]

1…偏心コア光ファイバ、2…シングルモード光ファイ
バ、1a,2a…クラッド、1b,2b…コア、3…接
続点
1... Eccentric core optical fiber, 2... Single mode optical fiber, 1a, 2a... Clad, 1b, 2b... Core, 3... Connection point

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  シングルモード光ファイバの融着接続
に際し、接続しようとする光ファイバのクラッドの外周
を合致せしめてアーク放電による融着接続を行ったのち
、この接続部を溶融延伸することを特徴とする光ファイ
バの接続方法。
[Claim 1] When fusion splicing single-mode optical fibers, the outer circumferences of the claddings of the optical fibers to be spliced are matched, fusion splicing is performed by arc discharge, and then the spliced portion is melt-stretched. Optical fiber connection method.
【請求項2】  シングルモード光ファイバの一方が偏
心コア光ファイバである請求項1記載の光ファイバの接
続方法。
2. The method for connecting optical fibers according to claim 1, wherein one of the single mode optical fibers is an eccentric core optical fiber.
JP13555191A 1991-05-10 1991-05-10 Method for splicing optical fiber Pending JPH04335303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13555191A JPH04335303A (en) 1991-05-10 1991-05-10 Method for splicing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13555191A JPH04335303A (en) 1991-05-10 1991-05-10 Method for splicing optical fiber

Publications (1)

Publication Number Publication Date
JPH04335303A true JPH04335303A (en) 1992-11-24

Family

ID=15154437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13555191A Pending JPH04335303A (en) 1991-05-10 1991-05-10 Method for splicing optical fiber

Country Status (1)

Country Link
JP (1) JPH04335303A (en)

Similar Documents

Publication Publication Date Title
US6652163B2 (en) Splice joint and process for joining a microstructured optical fiber and a conventional optical fiber
CA1311381C (en) Connector employing mode field modification
JPS5921530B2 (en) Plastic clad type, optical fiber connection method
JPH03100603A (en) Method of manufacturing fused optical fiber coupler
JPH0439044B2 (en)
JPH1090548A (en) Optical fiber coupler and its production
JPH04335303A (en) Method for splicing optical fiber
JPS61120106A (en) Connecting method of single-mode optical fiber
JPH08201642A (en) Method and device for connecting optical fibers and reinforcing structure
JPH01227108A (en) Optical branching circuit
JP3111649B2 (en) Optical fiber fusion splicing method and apparatus
JPH0359403B2 (en)
JP3095511B2 (en) Polarization-maintaining optical fiber coupler
JP2001343548A (en) Component for connecting different kind of optical fiber
JPH0659150A (en) Connection structure of optical fiber
JP3344061B2 (en) Optical fiber fusion splicing method
JP2584651B2 (en) Optical fiber fusion splicing method
JPH04219706A (en) Structure and method for fusingly connecting dissimilar optical fibers
JPH0233108A (en) Connecting method for optical fiber
JPS63168606A (en) Splicing method for optical fiber
JPS62249114A (en) Constant polarization fiber coupler and its manufacture
JPH08262229A (en) Optical fiber type non-reflection terminal
JPS61295512A (en) Exciter for dual core fiber
JPH0353205A (en) Optical fiber connecting part
JPH041605A (en) Optical fiber coupler

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000321