JPH04334929A - Analog simulator for power system - Google Patents

Analog simulator for power system

Info

Publication number
JPH04334929A
JPH04334929A JP3102900A JP10290091A JPH04334929A JP H04334929 A JPH04334929 A JP H04334929A JP 3102900 A JP3102900 A JP 3102900A JP 10290091 A JP10290091 A JP 10290091A JP H04334929 A JPH04334929 A JP H04334929A
Authority
JP
Japan
Prior art keywords
signal
frequency
voltage
setting
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3102900A
Other languages
Japanese (ja)
Inventor
Fumio Bito
尾藤 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3102900A priority Critical patent/JPH04334929A/en
Publication of JPH04334929A publication Critical patent/JPH04334929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To prepare an experiment in a short time by directly conducting a control for bringing a frequency and a phase of a voltage of an experiment preparation into coincidence for the voltage. CONSTITUTION:A signal converter 21 is set to a converting state for outputting a signal 28a as a signal 21a, and to a state in which a tide state set signal 27 cannot be input to a signal generator 29. A set signal VC represented by a signal 10a is set equally to a rated voltage of a power system 2 by inputting a voltage set signal 11 to a voltage setter 10 or a voltage setting operation 10b. A set frequency FC representing a signal 16a is set equally to a rated frequency of the system 2 by inputting a frequency set signal 17 to a frequency setter 16 or a frequency setting operation 16b. Thus, an experiment preparation can be completed in a short time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は複数個の発電設備を含む
電力系統における各種現象の解析実験に使用する電力系
統のアナログシミュレーション装置、特に、該装置を起
動した後模擬発電機の出力端子を模擬電力系統に接続す
る遮断器を投入するまでに要する上記実験のための第1
準備時間と前記遮断器を投入した後模擬電力系統におけ
る電力の初期潮流状態を所望の状態に設定するまでに要
する上記実験のための第2準備時間との両準備時間の短
縮を図ることができる装置に関する。
[Industrial Application Field] The present invention relates to an analog simulation device for a power system used for analytical experiments of various phenomena in a power system including a plurality of power generation facilities, and in particular, to connect the output terminal of a simulated generator after starting the device. The first test required for the above experiment to close the circuit breaker connected to the simulated power system.
It is possible to reduce both the preparation time and the second preparation time for the experiment required to set the initial power flow state of power in the simulated power system to the desired state after turning on the circuit breaker. Regarding equipment.

【0002】0002

【従来の技術】図3は複数個の発電設備シミュレータ1
とこれらのシミュレータ1が後述する電路開閉部8によ
って接続されることになる一つの模擬電力系統2とから
なる従来の電力系統のシミュレーション装置3の構成図
で、シミュレータ1は図4に示したように構成されてい
る。すなわち、図4において、4は機械トルクTm1を
表す機械トルク信号18aと電気トルクTeを表す電気
トルク信号6aとが入力されかつ(1)式で示す時間積
分演算を行って発電機回転子の角速度ωrを表す角速度
信号4aを(1)式に示した該回転子の慣性定数Mに等
しい積分時間で出力するようにした発電機回転子シミュ
レータで、(1)式におけるtは時間である。   ∫(1/M)・(Tm1−Te)dt=ωr………
………………………(1)
[Prior Art] Figure 3 shows a plurality of power generation equipment simulators 1.
This is a configuration diagram of a conventional power system simulation device 3 consisting of a simulated power system 2 to which these simulators 1 are connected by a circuit switching unit 8, which will be described later. It is composed of That is, in FIG. 4, a mechanical torque signal 18a representing the mechanical torque Tm1 and an electric torque signal 6a representing the electric torque Te are input, and the angular velocity of the generator rotor is calculated by performing the time integral calculation shown in equation (1). This is a generator rotor simulator that outputs an angular velocity signal 4a representing ωr with an integral time equal to the inertia constant M of the rotor shown in equation (1), where t in equation (1) is time. ∫(1/M)・(Tm1−Te)dt=ωr……
………………………(1)

【0003】そうして、5は
三相出力端子5aが設けられかつ角速度信号4aと界磁
電圧信号12aとが入力され、かつこの信号12aが表
す界磁電圧Efに対応した電圧値V1と信号4aが表す
角速度ωrを2πで除して得られる周波数F1とを有す
るEr,Es,Etの三相の電圧からなる三相交流電圧
5bを端子5aに出力すると共に端子5aに負荷が接続
されると該端子5aに三相交流電流5cを流すようにし
た電圧電流発生器、6は前記三相交流電流5cを検出し
かつこの電流5cを用いて前述の電気トルクTeを算出
する演算を行って前記信号6aを出力するようにした電
気トルク演算器、7は発生器5と演算器6とからなる発
電機能シミュレータで、この場合シミュレータ4と7と
で一台の発電機を模擬していることが明らかである。8
は入力される開閉指令信号9cに応じて端子5aの模擬
電力系統2への電気的接続を開閉する電路開閉部として
の遮断器、9は遮断器8における任意の一相としてのT
相の端子5aの側の電圧Vx1と電力系統2の側の電圧
Vx2とが入力され、かつVx1とVx2との差に応じ
た電圧加減信号9aとVx1の周波数F1とVx2の周
波数F2との差に応じた周波数加減信号9bとを出力す
ると共にVx1とVx2との間の電圧差、周波数差及び
位相差がそれぞれ許容値以下になると前述の開閉指令信
号9cを出力して以後信号9a,9bを共に消滅させる
自動同期投入装置、10は電圧設定操作10bが加えら
れたり目標電圧Vaを表す電圧設定信号11が入力され
たりすると前記操作10bと前記Vaとに応じた設定電
圧Vcを表す設定電圧信号10aを出力しかつ電圧加減
信号9aが入力されると信号10aの値を信号9aの値
に応じて加減する発電機出力電圧設定器で、12は設定
電圧信号10aと三相交流電圧5bとが入力されかつ界
磁電圧信号12aを電圧電流発生器5に入力することに
よって電圧5bの各相の電圧の算出平均値が信号10a
が表す設定電圧Vcに等しくなるようにする自動電圧調
整装置である。そうして、13は電圧設定器10と調整
装置12とからなる電圧制御部で、同期投入装置9は起
動信号9dが入力されることによって、また電圧調整装
置12は起動信号12bが入力されることによってそれ
ぞれ前述の動作を行うように構成されている。
[0003] 5 is provided with a three-phase output terminal 5a, into which an angular velocity signal 4a and a field voltage signal 12a are input, and a voltage value V1 and a signal corresponding to the field voltage Ef represented by this signal 12a. A three-phase AC voltage 5b consisting of three-phase voltages of Er, Es, and Et having a frequency F1 obtained by dividing the angular velocity ωr represented by 4a by 2π is output to the terminal 5a, and a load is connected to the terminal 5a. and a voltage/current generator configured to cause a three-phase alternating current 5c to flow through the terminal 5a, and 6 detects the three-phase alternating current 5c and performs an operation to calculate the electric torque Te described above using this current 5c. An electric torque calculator 7 outputting the signal 6a is a power generation function simulator consisting of a generator 5 and a calculator 6. In this case, the simulators 4 and 7 simulate one generator. is clear. 8
9 is a circuit breaker as an electrical circuit switching unit that opens and closes the electrical connection of the terminal 5a to the simulated power system 2 according to the input switching command signal 9c, and 9 is T as an arbitrary phase in the circuit breaker 8.
The voltage Vx1 on the phase terminal 5a side and the voltage Vx2 on the power system 2 side are input, and the voltage adjustment signal 9a corresponds to the difference between Vx1 and Vx2, and the difference between the frequency F1 of Vx1 and the frequency F2 of Vx2. It outputs a frequency adjustment signal 9b according to 10 is a set voltage signal representing a set voltage Vc corresponding to said operation 10b and said Va when a voltage setting operation 10b is applied or a voltage setting signal 11 representing a target voltage Va is input; A generator output voltage setting device outputs a signal 10a and adjusts the value of the signal 10a according to the value of the signal 9a when the voltage adjustment signal 9a is input. By inputting the input field voltage signal 12a to the voltage/current generator 5, the calculated average value of the voltage of each phase of the voltage 5b becomes the signal 10a.
This is an automatic voltage regulator that adjusts the voltage to be equal to the set voltage Vc represented by Vc. 13 is a voltage control unit consisting of a voltage setting device 10 and an adjustment device 12, and the synchronization device 9 is inputted with a startup signal 9d, and the voltage adjustment device 12 is inputted with a startup signal 12b. Each of them is configured to perform the operations described above.

【0004】14は電力設定操作14bが加えられたり
目標電力Paを表す電力設定信号15が入力されたりす
ると前記操作14bと前記Paとに応じた設定電力Pc
を表す設定電力信号14aを出力する発電機出力電力設
定器、16は周波数設定操作16bが加えられたり目標
周波数Faを表す周波数設定信号17が入力されたりす
ると前記操作16bと前記Faとに応じた設定周波数F
cを表す設定周波数信号16aを出力しかつ周波数加減
信号9bが入力されると信号16aの値を信号9bの値
に応じて加減する発電機出力周波数設定器、18は信号
14a及び16aと角速度信号4aとが入力されかつ信
号14aが表す電力Pcと信号16aが表す周波数Fc
と信号4aが表す角速度ωrとを用いて所定の第3演算
を行ってこの演算の結果に応じた信号としての前述した
機械トルク信号18aを出力するようにした模擬ガバナ
で、このガバナ18も起動信号18bが入力されること
によって上述の動作をするように構成されている。そう
して、この場合、前述した発電設備シミュレータ1は電
力系統2を除く図4に図示した各部で構成されており、
また上述した第3演算は、遮断器8が閉状態にある時ト
ルク信号18aと6aとがシミュレータ4に入力される
ことによって発電機能シミュレータ7から三相出力端子
5aに出力される三相電力Pが信号14aが表す設定電
力Pcに等しくなり、かつ角速度信号4aが表す角速度
ωrが信号16aが表す設定周波数Fcに2πを乗じて
得られる角周波数ωcに等しくなるようにする演算であ
る。
Reference numeral 14 indicates that when a power setting operation 14b is applied or a power setting signal 15 representing a target power Pa is input, a set power Pc corresponding to the operation 14b and the above Pa is input.
A generator output power setting device 16 outputs a setting power signal 14a representing the target frequency Fa, and when a frequency setting operation 16b is applied or a frequency setting signal 17 representing the target frequency Fa is input, the generator output power setting device 16 responds to the operation 16b and the Fa. Setting frequency F
18 is a generator output frequency setter that outputs a set frequency signal 16a representing the frequency change signal 16a and, when a frequency adjustment signal 9b is input, adjusts the value of the signal 16a according to the value of the signal 9b; 4a is input and the power Pc represented by the signal 14a and the frequency Fc represented by the signal 16a.
This is a simulated governor that performs a predetermined third calculation using the angular velocity ωr represented by the signal 4a and outputs the aforementioned mechanical torque signal 18a as a signal corresponding to the result of this calculation, and this governor 18 is also activated. It is configured to perform the above-described operation when the signal 18b is input. In this case, the power generation equipment simulator 1 described above is composed of the parts shown in FIG. 4 except for the power system 2.
Further, the third calculation described above is performed by inputting the torque signals 18a and 6a to the simulator 4 when the circuit breaker 8 is in the closed state, and thereby outputting the three-phase power P from the power generation function simulator 7 to the three-phase output terminal 5a. is equal to the set power Pc represented by the signal 14a, and the angular velocity ωr represented by the angular velocity signal 4a is made equal to the angular frequency ωc obtained by multiplying the set frequency Fc represented by the signal 16a by 2π.

【0005】電力系統のシミュレーション装置3は上述
のように構成されていて、従来、この装置3を用いて電
力系統における各種現象の解析実験を行う場合、以下に
説明する手順で実験準備が行われている。すなわち、シ
ミュレーション装置3を用いて実験を行おうとする際、
電力系統2に接続する必要のある発電設備シミュレータ
1としての特定シミュレータ1のすべてにおいて、まず
、電圧設定器10、周波数設定器16、電力設定器14
のそれぞれに電圧設定操作、周波数設定操作、電力設定
操作を加えるかまたは設定信号11,17,15を入力
するかして、信号10aが表す設定電圧Vcを電力系統
2の定格電圧のほぼ80%を電圧に設定し、信号16a
が表す設定周波数Fcを系統2の定格周波数に設定し、
信号14aが表す設定電力Pcを零に設定する。そうし
て、次に前記の特定シミュレータ1ごとにガバナ18、
電圧調整装置12に順次起動信号18b,12bを入力
すると交流電圧5bの電圧V1及び周波数F1が電圧設
定値Vc、周波数設定値Fcのそれぞれに向かって変化
する。そこで、適当な時期を見計らって同期投入装置9
に起動信号9dを入力するとこの装置9が前述の動作を
開始して、両電圧Vx1,Vx2間の電圧差,周波数差
,位相差がそれぞれ許容値以内になった時点で装置9か
ら信号9cが出力されて遮断器8が投入され、特定シミ
ュレータ1の電力系統2への並入が完了する。そうして
、上記のようにしてシミュレーション装置3における特
定シミュレータ1の系統2への並入が完了した後、系統
2へ並入されたシミュレータ1における電力設定器14
及び電圧設定器10に上述の設定操作を加えるかまたは
上述の設定信号を入力することによって信号14a,1
0aが表す設定電力Pc、設定電圧Vcを変化させて、
電力系統2における少なくとも一個所の所定点における
電圧と電力及びその方向とで定義される潮流状態の初期
の状態が設定されて実験準備が終了する。
[0005] The power system simulation device 3 is configured as described above, and conventionally, when this device 3 is used to perform analytical experiments on various phenomena in the power system, preparations for the experiment are performed according to the procedure described below. ing. That is, when trying to conduct an experiment using the simulation device 3,
In all of the specific simulators 1 as power generation equipment simulators 1 that need to be connected to the power system 2, first, the voltage setting device 10, the frequency setting device 16, the power setting device 14
By applying a voltage setting operation, a frequency setting operation, and a power setting operation to each of , or by inputting setting signals 11, 17, and 15, the set voltage Vc represented by the signal 10a is set to approximately 80% of the rated voltage of the power system 2. is set to the voltage, and the signal 16a
Set the set frequency Fc represented by the rated frequency of system 2,
The set power Pc represented by the signal 14a is set to zero. Then, for each specific simulator 1, the governor 18,
When the activation signals 18b and 12b are sequentially input to the voltage regulator 12, the voltage V1 and frequency F1 of the AC voltage 5b change toward the voltage setting value Vc and the frequency setting value Fc, respectively. Therefore, at an appropriate time, the synchronization device 9
When the start signal 9d is input to the device 9, the device 9 starts the above-mentioned operation, and when the voltage difference, frequency difference, and phase difference between the two voltages Vx1 and Vx2 are within the allowable values, the device 9 outputs the signal 9c. The signal is output, the circuit breaker 8 is closed, and the connection of the specific simulator 1 to the power system 2 is completed. Then, after the connection of the specific simulator 1 in the simulation device 3 to the system 2 is completed as described above, the power setting device 14 of the simulator 1 connected to the system 2 is completed.
and the signals 14a, 1 by applying the above-mentioned setting operation to the voltage setting device 10 or inputting the above-mentioned setting signal.
By changing the set power Pc and set voltage Vc represented by 0a,
The initial state of the power flow state defined by the voltage, power, and its direction at at least one predetermined point in the power system 2 is set, and the experiment preparation is completed.

【0006】[0006]

【発明が解決しようとする課題】シミュレーション装置
3においては上述のようにして実験準備が行われるが、
この場合、ガバナ18,シミュレータ4と7とからなる
模擬発電機19,電圧調整装置12,同期投入装置9の
それぞれが実際の発電設備におけるものと同じ応答速度
で動作するように形成されていて、特にガバナ18の時
定数、シミュレータ4の積分時間としての慣性定数M,
装置9の時定数がそれぞれ大きいことと両電圧Vx1,
Vx2の各周波数を一致させかつ各位相を一致させる制
御がガバナ18及びシミュレータ4の各動作を介して行
われてこの制御の時間遅れが大きいということとのため
に、ガバナに起動信号18bを入力してから遮断器8が
投入動作をするまでの実験準備の第1段階に通常5分程
度の時間が必要で、したがってシミュレーション装置3
には該第1段階に時間がかかるという問題点がある。そ
うして、また、シミュレーション装置3の場合、各発電
機19の系統2への並入が完了した後初期潮流状態の設
定を行うためにひとつの発電機19の出力電力P及び出
力電圧V1を電力Pc及び電圧Vcの設定変更によって
変化させると、発電機間の相互作用のために各発電機1
9間に電力の授受が行われてP及びV1に過渡的動揺が
生じるため潮流状態が整定するまでに長時間を要し、ま
たPc及びVcの設定変更は発電機19が脱調しないよ
うにするために急激に行うわけにいかないので、したが
って、シミュレーション装置3には初期潮流状態の設定
という実験準備の第2段階にも時間がかかるという問題
点がある。
[Problem to be Solved by the Invention] In the simulation device 3, experiment preparation is performed as described above.
In this case, each of the governor 18, the simulated generator 19 consisting of the simulators 4 and 7, the voltage regulator 12, and the synchronization device 9 is configured to operate at the same response speed as that in the actual power generation equipment, In particular, the time constant of the governor 18, the inertia constant M as the integration time of the simulator 4,
The time constant of the device 9 is large, and both voltages Vx1,
Since the control to match each frequency and each phase of Vx2 is performed through each operation of the governor 18 and the simulator 4, and the time delay of this control is large, a start signal 18b is input to the governor. The first stage of experiment preparation, from when the circuit breaker 8 closes, usually takes about 5 minutes.
However, there is a problem in that the first step takes time. Then, in the case of the simulation device 3, after the parallel connection of each generator 19 to the system 2 is completed, the output power P and output voltage V1 of one generator 19 are set in order to set the initial power flow state. When varied by changing the settings of power Pc and voltage Vc, each generator 1 due to interaction between the generators
Because power is exchanged between 9 and 9, transient oscillations occur in P and V1, it takes a long time for the power flow to stabilize, and the setting of Pc and Vc must be changed to prevent the generator 19 from stepping out. Therefore, the simulation device 3 has the problem that it takes time to set the initial power flow state, which is the second stage of experiment preparation.

【0007】本発明の目的は、上述した実験準備の第1
段階で行う両電圧Vx1,Vx2の周波数並びに位相を
一致させる制御がガバナ18及びシミュレータ4を介す
ることなく直接電圧Vx1に対して行われるようにし、
また上述した実験準備の第2段階で行う初期潮流状態の
設定が各発電機19間の電力の授受を介することなく行
われるようにして、実験準備が短時間で行えるようにす
ることにある。
[0007] The purpose of the present invention is to
Control to match the frequency and phase of both voltages Vx1 and Vx2 performed in stages is performed directly on voltage Vx1 without going through the governor 18 and simulator 4,
Another object is to set the initial power flow state in the second stage of the experiment preparation described above without transmitting or receiving power between the generators 19, so that the experiment preparation can be carried out in a short time.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、
[Means for Solving the Problems] In order to achieve the above object, according to the present invention,

【0009】1)機械トルクTmを表す機械トルク信号
と電気トルクTeを表す電気トルク信号とが入力されか
つ前記Tmと前記Teとの差を経時的に積分して発電機
回転子の角速度ωrを表す角速度信号を出力する発電機
回転子シミュレータと、三相出力端子が設けられかつ角
周波数設定信号と界磁電圧信号とが入力されかつ前記界
磁電圧信号が表す界磁電圧に対応した電圧値V1と前記
角周波数設定信号が表す角周波数に対応した周波数F1
とを有する三相交流電圧を前記三相出力端子に出力する
と共にこの三相出力端子に流れる三相交流電流にもとづ
く前記Teを表す前記電気トルク信号を出力する発電機
能シミュレータと、入力される開閉指令信号に応じて前
記三相出力端子の模擬電力系統への電気的接続を開閉す
る電路開閉部と、前記電路開閉部における任意の一相の
前記三相出力端子の側の電圧Vx1と前記模擬電力系統
の側の電圧Vx2とが入力されかつ前記Vx1と前記V
x2との差に応じた電圧加減信号と前記Vx1の前記周
波数F1と前記Vx2の周波数F2との差に応じた周波
数加減信号とを出力すると共に前記Vx1と前記Vx2
との間の電圧差、周波数差及び位相差がそれぞれ許容値
以下になると前記開閉指令信号を出力して以後前記電圧
加減信号及び周波数加減信号を共に消滅させる自動同期
投入装置と、目標電圧Vaを表す電圧設定信号と前記電
圧加減信号と前記三相交流電圧とが入力されかつ電圧設
定操作が加えられかつ前記界磁電圧信号を前記発電機能
シミュレータに入力することによって前記三相交流電圧
の各相の電圧の算術平均値が前記Vaと前記電圧加減信
号の値と前記電圧設定操作とに応じた設定電圧Vcに等
しくなるようにする電圧制御部と、目標電力Paを表す
電力設定信号と目標周波数Faを表す周波数設定信号と
前記周波数加減信号と前記角速度信号とが入力されかつ
電力設定操作と周波数設定操作とが加えられかつ前記F
aと前記周波数加減信号の値と前記周波数設定操作とに
応じた設定周波数Fcを表す設定周波数信号を出力する
と共に前記Paと前記電力設定操作とに応じた設定電力
Pcと前記Fcと前記角速度信号が表す前記ωrとを用
いて所定の第1演算を行ってこの第1演算の結果に応じ
た原機械トルク信号を出力する原機械トルク信号発生部
と、前記電圧Vx1と前記模擬電力系統における前記V
x1と同じ相の所望の点としての基準点Zの電圧Vxz
と前記両電圧Vx1及びVxz間の位相差の目標値であ
る目標位相差δzを表す位相差設定信号と前記設定周波
数信号とが入力されかつ潮流状態設定信号が入力されて
いない状態では前記設定周波数信号が表す前記Fcに対
応した角周波数を表す角周波数信号を出力しかつ前記潮
流状態設定信号が入力されている状態では前記Vx1と
前記Vxzと前記δzと前記Fcとを用いて所定条件の
もとに第2演算を行ってこの演算結果の角周波数を表す
前記角周波数信号を出力する角周波数信号発生部と、前
記角速度信号と前記角周波数信号とを切り換えて前記角
周波数設定信号として出力する信号切換部と、前記角速
度信号と前記角周波数信号と前記原機械トルク信号とが
入力されかつ前記角速度信号が表す前記ωrと前記角周
波数信号が表す角周波数ωbとの差について所定の制御
演算を行って得た値と前記原機械トルク信号の値との和
の値を有する前記機械トルク信号を出力することによっ
て前記信号切換部が前記角周波数信号を前記角周波数設
定信号として出力する信号切換状態において前記ωrが
前記ωbを追従するようにする機械トルク信号発生部と
を備えた発電設備シミュレータの複数個と、前記模擬電
力系統と、この模擬電力系統に接続する必要のある前記
発電設備シミュレータとしての特定発電設備シミュレー
タのすべてに入力される前記電力設定信号と前記電圧設
定信号とが入力されかつ前記基準点Zの前記模擬電力系
統における位置のデータが入力されることによって前記
特定発電設備シミュレータのそれぞれに向けて前記位相
差設定信号を出力する位相差演算部とが設けられ、前記
所定条件をすべての前記特定発電設備シミュレータにお
いて前記信号切換部が前記角周波数信号を前記角周波数
設定信号として出力する信号切換状態となっておりかつ
前記電路開閉部が閉状態となっている状態とし、前記第
2演算を前記特定発電設備シミュレータのそれぞれにお
いて前記三相交流電圧の前記周波数F1が前記設定周波
数Fcに等しくなるようにしかつ前記角周波数信号発生
部に入力される前記電圧Vx1及びVxzの両電圧間の
位相差が同じ前記角周波数信号発生部に入力される前記
位相差設定信号が表す前記δzに等しくなるようにする
演算とし、また前記第1演算を、前記信号切換部が前記
角速度信号を前記角周波数設定信号として出力する信号
切換状態にありかつ前記電路開閉部が閉状態にある時、
前記機械トルク信号と前記電気トルク信号とが前記発電
機回転子シミュレータに入力されることによって前記発
電機機能シミュレータから前記三相出力端子に出力され
る三相電力が前記設定電力Pcに等しくなりかつ前記角
速度信号が表す前記ωrが前記設定周波数Fcに対応し
た角周波数ωcに等しくなるようにする演算として電力
系統のアナログシミュレーション装置を構成し、また、
1) A mechanical torque signal representing the mechanical torque Tm and an electric torque signal representing the electric torque Te are input, and the angular velocity ωr of the generator rotor is determined by integrating the difference between the Tm and the Te over time. a generator rotor simulator that outputs an angular velocity signal representing the angular velocity, a three-phase output terminal, an angular frequency setting signal and a field voltage signal, and a voltage value corresponding to the field voltage represented by the field voltage signal; V1 and a frequency F1 corresponding to the angular frequency represented by the angular frequency setting signal.
a power generation function simulator that outputs a three-phase AC voltage having a three-phase AC voltage to the three-phase output terminal and outputs the electric torque signal representing the Te based on the three-phase AC current flowing to the three-phase output terminal; an electric circuit switching section that opens and closes the electrical connection of the three-phase output terminal to the simulated power system according to a command signal; and a voltage Vx1 on the side of the three-phase output terminal of any one phase in the electric circuit switching section and the The voltage Vx2 on the power system side is input, and the voltage Vx1 and the Vx2 are input.
x2 and a frequency adjustment signal corresponding to the difference between the frequency F1 of the Vx1 and the frequency F2 of the Vx2;
an automatic synchronization device that outputs the opening/closing command signal when the voltage difference, frequency difference, and phase difference between the Each phase of the three-phase AC voltage is input by inputting the voltage setting signal representing the voltage, the voltage adjustment signal, and the three-phase AC voltage, applying a voltage setting operation, and inputting the field voltage signal to the power generation function simulator. a voltage control unit that makes an arithmetic mean value of the voltages equal to a set voltage Vc according to the Va, the value of the voltage adjustment signal, and the voltage setting operation, and a power setting signal representing the target power Pa and a target frequency. A frequency setting signal representing Fa, the frequency adjustment signal, and the angular velocity signal are input, and a power setting operation and a frequency setting operation are applied, and the F
a, a value of the frequency adjustment signal, and the frequency setting operation, outputting a setting frequency signal representing a setting frequency Fc, and a setting power Pc corresponding to the Pa, the power setting operation, the Fc, and the angular velocity signal. an original machine torque signal generation unit that performs a predetermined first calculation using the ωr expressed by the voltage Vx1 and outputs an original machine torque signal according to the result of the first calculation; V
Voltage Vxz at reference point Z as the desired point of the same phase as x1
When the phase difference setting signal representing the target phase difference δz, which is the target value of the phase difference between the voltages Vx1 and Vxz, and the setting frequency signal are input, and the power flow state setting signal is not input, the setting frequency is In a state where an angular frequency signal representing an angular frequency corresponding to the Fc represented by the signal is output and the power flow state setting signal is input, the Vx1, the Vxz, the δz, and the Fc are used to set a predetermined condition. an angular frequency signal generating section that performs a second calculation and outputs the angular frequency signal representing the angular frequency of the calculation result; and switches between the angular velocity signal and the angular frequency signal and outputs the angular frequency setting signal as the angular frequency setting signal. a signal switching unit, into which the angular velocity signal, the angular frequency signal, and the original machine torque signal are input, and performs a predetermined control calculation on the difference between the ωr represented by the angular velocity signal and the angular frequency ωb represented by the angular frequency signal; a signal switching state in which the signal switching unit outputs the angular frequency signal as the angular frequency setting signal by outputting the mechanical torque signal having a value that is the sum of the value obtained by the operation and the value of the original machine torque signal; , a plurality of power generation equipment simulators each including a mechanical torque signal generating unit that causes the ωr to follow the ωb, the simulated power system, and the power generation equipment simulator that needs to be connected to the simulated power system. The power setting signal and the voltage setting signal that are input to all of the specific power generation facility simulators are input, and the data of the position of the reference point Z in the simulated power system is input. and a phase difference calculation unit that outputs the phase difference setting signal for each of the specific power generation equipment simulators, and the signal switching unit outputs the angular frequency signal as the angular frequency setting signal in all the specific power generation equipment simulators based on the predetermined conditions. The second calculation is performed in each of the specific power generation equipment simulators so that the frequency F1 of the three-phase AC voltage is the set frequency Fc. and the phase difference between the voltages Vx1 and Vxz input to the angular frequency signal generation section is the same as δz represented by the phase difference setting signal input to the angular frequency signal generation section. The first calculation is performed when the signal switching section is in a signal switching state in which the angular velocity signal is output as the angular frequency setting signal and the electric circuit opening/closing section is in a closed state;
By inputting the mechanical torque signal and the electric torque signal to the generator rotor simulator, the three-phase power output from the generator function simulator to the three-phase output terminal becomes equal to the set power Pc, and An analog simulation device for a power system is configured as a calculation for making the ωr represented by the angular velocity signal equal to an angular frequency ωc corresponding to the set frequency Fc, and

【0010】2)上記1)項に記載のシミュレーション
装置において、角周波数信号発生部が、両電圧Vx1及
びVxz間の位相差δを検出して前記δを表す位相差信
号を出力する位相差検出器と、前記位相差信号と位相差
設定信号とが入力されてこの位相差設定信号が表す目標
位相差δzと前記δとの差(δz−δ)を表す偏差信号
を出力する第1減算器と、潮流状態設定信号が入力され
ていないと角周波数値が零になり、前記偏差信号が入力
されていてかつ前記潮流状態設定信号が入力されると前
記偏差信号について比例制御演算または比例積分制御演
算を行って前記角周波数値がこれらの演算結果に等しく
なる角周波数ωaを表す第1信号を出力する第1信号生
成部と、前記第1信号と設定周波数信号とが入力されか
つ前記ωaと前記設定周波数信号が表す設定周波数Fc
に対応した角周波数ωcとの和の角周波数ωbを表す角
周波数信号を出力する第1加算器とからなるように電力
系統のアナログシミュレーション装置を構成し、また、
2) In the simulation apparatus described in item 1) above, the angular frequency signal generation section detects a phase difference δ between the voltages Vx1 and Vxz and outputs a phase difference signal representing the δ. and a first subtractor that receives the phase difference signal and the phase difference setting signal and outputs a deviation signal representing the difference (δz−δ) between the target phase difference δz represented by the phase difference setting signal and the δ. If the power flow state setting signal is not input, the angular frequency value becomes zero, and if the deviation signal is input and the power flow state setting signal is input, proportional control calculation or proportional integral control is performed for the deviation signal. a first signal generation unit that performs calculations and outputs a first signal representing an angular frequency ωa at which the angular frequency value is equal to the calculation results; Setting frequency Fc represented by the setting frequency signal
A power system analog simulation device is configured to include a first adder that outputs an angular frequency signal representing the sum of the angular frequency ωb and the angular frequency ωc corresponding to the angular frequency ωc, and

【0011】3)上記1)項に記載のシミュレーション
装置において、機械トルク信号発生部が、角速度信号と
角周波数信号とが入力されかつ前記角周波数信号が表す
角周波数ωbと前記角速度信号が表す角速度ωrとの差
を表す第2信号を出力する第2減算器と、前記第2信号
について比例積分制御演算を行ってこの演算結果を表す
第3信号を出力する第3信号生成部と、前記第3信号と
原機械トルク信号とが入力されかつ前記第3信号の値と
前記原機械トルク信号の値との和の値を有する機械トル
ク信号を出力する第2加算器とからなるように電力系統
のアナログシミュレーション装置を構成した。
3) In the simulation apparatus described in item 1) above, the mechanical torque signal generating section receives an angular velocity signal and an angular frequency signal, and generates an angular frequency ωb represented by the angular frequency signal and an angular velocity represented by the angular velocity signal. a second subtracter that outputs a second signal representing a difference from ωr; a third signal generation unit that performs a proportional-integral control calculation on the second signal and outputs a third signal representing the calculation result; a second adder into which the third signal and the original machine torque signal are input, and outputs a machine torque signal having a value that is the sum of the value of the third signal and the value of the original machine torque signal. An analog simulation device was constructed.

【0012】0012

【作  用】上記のように構成すると、いずれの電力系
統のアナログシミュレーション装置においても、すべて
の特定発電設備シミュレータにおいて、信号切換部を角
周波数信号が角周波数設定信号として出力される状態に
し、かつ角周波数信号発生部を潮流状態設定信号が入力
されていない状態にし、かつ原機械トルク信号発生部に
入力される周波数設定信号が表す目標周波数Faと該信
号発生部に加えられる周波数設定操作とに応じた設定周
波数Fcならびに電圧制御部に入力される電圧設定信号
が表す目標電圧Vaと該電圧制御部に加えられる電圧設
定操作とに応じた設定電圧Vcを、それぞれ電路開閉部
の模擬電力系統の側の定格周波数Fn、定格電圧Vnに
等しく設定して、原機械トルク信号発生部、電圧制御部
及び自動同期投入装置をそれぞれ起動すると、両電圧V
x1,Vx2の周波数並びに位相を一致させる制御が、
前述した発電設備シミュレータ1におけるガバナ18と
シミュレータ4とからなる部分に対応した本発明の発電
設備シミュレータにおける原機械トルク信号発生部と機
械トルク信号発生部と発電機回転子シミュレータとから
なる部分を介することなく直接Vx1に対して行われて
電路開閉部によって発電設備シミュレータが模擬電力系
統に並入されることになる。そうして、また、このよう
にして特定発電設備シミュレータの該電力系統への並入
が完了した後、該系統に並入済みの発電設備シミュレー
タのそれぞれに特有の目標電力Paを表す電力設定信号
と前記電圧Vnと同じかまたは異なる特有の目標電圧V
aを表す電圧設定信号とを入力すると共に同じ前記両設
定信号と基準点Zの模擬電力系統における位置データと
を位相差演算部にも入力して、しかる後系統並入済み発
電設備シミュレータごとに角周波数信号発生部に潮流状
態設定信号を入力すると、この角周波数信号発生部の位
相差制御作用によって両電圧Vxz,Vx1間の位相差
δが位相差演算部から当該角周波数信号発生部に入力さ
れる目標位相差δzに等しくなるように角周波数信号の
値が制御されて、この結果複数個の系統並入済み発電設
備シミュレータにおける各発電機相互間の電力の授受を
介することなく初期潮流状態の設定が行われることにな
るので、短時間で実験準備が完了する電力系統のアナロ
グシミュレーション装置が得られることになる。
[Operation] With the above configuration, in any electric power system analog simulation device, in all specific power generation equipment simulators, the signal switching section is set to a state in which the angular frequency signal is output as the angular frequency setting signal, and Set the angular frequency signal generation section to a state where no power flow state setting signal is input, and set the target frequency Fa represented by the frequency setting signal input to the original machine torque signal generation section and the frequency setting operation applied to the signal generation section. The corresponding set frequency Fc, the target voltage Va represented by the voltage setting signal input to the voltage control section, and the set voltage Vc according to the voltage setting operation applied to the voltage control section are set in the simulated power system of the circuit switching section, respectively. When the rated frequency Fn and rated voltage Vn are set equal to the side rated frequency Fn and the rated voltage Vn are started, respectively, and the original machine torque signal generator, voltage control unit, and automatic synchronization device are started, both voltages V
Control to match the frequencies and phases of x1 and Vx2 is
The power generating equipment simulator 1 of the present invention corresponds to the part comprising the governor 18 and the simulator 4 in the power generating equipment simulator 1 described above, and the generator rotor simulator is connected to the original machine torque signal generating unit, the mechanical torque signal generating unit, and the generator rotor simulator. The power generation equipment simulator is directly connected to the simulated power system by the electric circuit switching section without being directly applied to Vx1. Then, after the connection of the specific power generation equipment simulator to the power system is completed in this way, a power setting signal representing the target power Pa specific to each of the power generation equipment simulators that have been connected to the power system is transmitted. and a specific target voltage V that is the same as or different from said voltage Vn.
At the same time, the same two setting signals and the position data of the reference point Z in the simulated power system are inputted to the phase difference calculation unit, and then for each power generation equipment simulator that has been connected to the grid. When a power flow state setting signal is input to the angular frequency signal generation section, the phase difference δ between both voltages Vxz and Vx1 is input from the phase difference calculation section to the angular frequency signal generation section due to the phase difference control action of this angular frequency signal generation section. The value of the angular frequency signal is controlled so that it is equal to the target phase difference δz, and as a result, the initial power flow state can be adjusted without transferring power between the generators in the power generation equipment simulator that has been connected to multiple grids. Since the following settings are made, an analog simulation device for power systems can be obtained in which experiment preparation can be completed in a short period of time.

【0013】[0013]

【実施例】図2は本発明の一実施例の全体構成図、図1
は図2における要部の詳細構成図で、図1及び図2にお
いては図3及び図4におけるものと同じもの及び事柄に
図3及び図4の場合と同じ符号がつけてある。図1及び
図2において、20は機械トルクTmを表す機械トルク
信号32aと電気トルク信号6aとが入力されかつ(1
)式でTm1のかわりにTmとした時間積分演算を行っ
て角速度ωrを表す角速度信号20aを出力するように
した発電機回転子シミュレータ、21は入力される角速
度信号20aと角周波数信号28aとを切り換えて角周
波数設定信号21aとして出力する信号切換部で、この
場合電圧電流発生器5には図4に示した信号4aのかわ
りに信号21aが入力されていて、三相交流電圧5bの
周波数F1は信号21aが表す角周波数ω1を2πで除
して得られる周波数となっている。22は角速度信号2
0aと設定電力信号14aと設定周波数信号16aとが
入力されかつこれらの各入力信号が表す角速度ωrと電
力Pcと周波数Fcと用いて所定の第1演算を行ってこ
の演算結果に応じた原機械トルク信号22aを出力する
ようにした模擬ガバナ、23はこのガバナ22と発電機
出力電力設定器14と発電機出力周波数設定器16とか
らなる原機械トルク信号発生部で、ガバナ22も図4に
示した起動信号18bが入力されると上述の動作をする
ように構成されている。そうして、ここに、上述した第
1演算は、信号切換部21が角速度信号20aを角周波
数設定信号21aとして出力する信号切換状態にありか
つ遮断器8が閉状態にある時、後述する機械トルク信号
32aと電気トルク信号6aとが回転子シミュレータ2
0に入力されることによって発電機能シミュレータ7か
ら端子5aに出力される三相電力Pが信号14aが表す
設定電力Pcに等しくなり、かつ信号20aが表すωr
が信号16aが表す設定周波数Fcに2πを乗じて得ら
れる角周波数ωcに等しくなるようにする演算である。
[Embodiment] Fig. 2 is an overall configuration diagram of an embodiment of the present invention, Fig. 1
2 is a detailed configuration diagram of the main parts in FIG. 2. In FIGS. 1 and 2, the same parts and matters as in FIGS. 3 and 4 are given the same reference numerals as in FIGS. 3 and 4. In FIGS. 1 and 2, 20 is input with a mechanical torque signal 32a representing mechanical torque Tm and an electric torque signal 6a, and (1
21 is a generator rotor simulator that performs a time integral calculation using Tm instead of Tm1 in the equation ( ) and outputs an angular velocity signal 20a representing the angular velocity ωr. This is a signal switching section that switches and outputs the angular frequency setting signal 21a. In this case, the voltage/current generator 5 receives the signal 21a instead of the signal 4a shown in FIG. 4, and the frequency F1 of the three-phase AC voltage 5b. is the frequency obtained by dividing the angular frequency ω1 represented by the signal 21a by 2π. 22 is the angular velocity signal 2
0a, the set power signal 14a, and the set frequency signal 16a are input, and a predetermined first calculation is performed using the angular velocity ωr, power Pc, and frequency Fc represented by these input signals, and the original machine is operated according to the result of this calculation. A simulated governor 23 is designed to output a torque signal 22a. Reference numeral 23 is an original machine torque signal generation unit consisting of this governor 22, a generator output power setting device 14, and a generator output frequency setting device 16. The governor 22 is also shown in FIG. It is configured to perform the above-described operation when the activation signal 18b shown is input. Then, here, when the signal switching unit 21 is in a signal switching state in which the angular velocity signal 20a is output as the angular frequency setting signal 21a and the circuit breaker 8 is in the closed state, the first calculation described above is performed when the The torque signal 32a and the electric torque signal 6a are transmitted to the rotor simulator 2.
0, the three-phase power P output from the power generation function simulator 7 to the terminal 5a becomes equal to the set power Pc represented by the signal 14a, and ωr represented by the signal 20a.
This calculation is performed so that ωc becomes equal to the angular frequency ωc obtained by multiplying the set frequency Fc represented by the signal 16a by 2π.

【0014】24は電圧Vx1と電力系統2におけるV
x1と同じ相の所望の点としての基準点Zの電圧Vxz
との位相差δを検出してこのδを表す位相差信号24a
を出力する位相差検出器、25は信号24aと後述する
位相差設定信号35aとが入力されて信号24aが表す
位相差δと信号35aが表す目標位相差δzとの差(δ
z−δ)を表す偏差信号25aを出力する第1減算器、
26は潮流状態設定信号27が入力されていないと角周
波数値が零になり、偏差信号25aが入力されていてか
つ設定信号27が入力されると偏差信号25aについて
比例制御演算または比例積分制御演算を行って前記の角
周波数値がこれらの演算結果に等しくなる角周波数ωa
を表す第1信号26aを出力する第1信号生成部で、2
8は信号26aと設定周波数信号16aとが入力されか
つ信号26aが表す角周波数ωaと信号16aが表す設
定周波数Fcに2πを乗じて得られる角周波数ωcとの
和の角周波数ωbを表す前述の角周波数信号28aを出
力するようにした第1加算器である。そうして、29は
検出器24と減算器25と信号生成部26と加算器28
とからなる角周波数信号発生部、30は角速度信号20
aと角周波数信号28aとが入力されかつ信号28aが
表す角周波数ωbと信号20aが表す角速度ωrとの差
を表す第2信号30aを出力する第2減算器、31は第
2信号30aについて比例積分制御演算を行ってこの演
算結果を表す第3信号31aを出力する第3信号生成部
で、32は第3信号31aと原機械トルク信号22aと
が入力されかつ信号31aの値と信号22aの値との和
の値を有する前述の機械トルク信号32aを出力する第
2加算器である。33は減算器30と信号生成部31と
加算器32とからなり、加算器32が出力する機械トル
ク信号32aを回転子シミュレータ20に入力すること
によって、信号切換部21が信号28aを信号21aと
して出力する信号切換状態において角速度ωrが信号2
8aが表す角周波数ωbを追従するようにした機械トル
ク信号発生部である。
24 is the voltage Vx1 and V in the power system 2
Voltage Vxz at reference point Z as the desired point of the same phase as x1
A phase difference signal 24a representing this δ by detecting a phase difference δ with
A phase difference detector 25 receives the signal 24a and a phase difference setting signal 35a (described later), and detects the difference (δ) between the phase difference δ represented by the signal 24a and the target phase difference δz represented by the signal 35a.
a first subtractor that outputs a deviation signal 25a representing z−δ);
26, if the power flow state setting signal 27 is not input, the angular frequency value becomes zero, and if the deviation signal 25a is input and the setting signal 27 is input, proportional control calculation or proportional integral control calculation is performed for the deviation signal 25a. The angular frequency ωa at which the above-mentioned angular frequency value is equal to the result of these calculations is determined by
A first signal generating section outputs a first signal 26a representing 2
8 represents the angular frequency ωb, which is the sum of the angular frequency ωa represented by the signal 26a and the angular frequency ωc obtained by multiplying the set frequency Fc represented by the signal 16a by 2π, when the signal 26a and the setting frequency signal 16a are input. This is a first adder configured to output an angular frequency signal 28a. Then, 29 is a detector 24, a subtracter 25, a signal generator 26, and an adder 28.
30 is an angular velocity signal 20
a and the angular frequency signal 28a, and outputs a second signal 30a representing the difference between the angular frequency ωb represented by the signal 28a and the angular velocity ωr represented by the signal 20a; 31 is proportional to the second signal 30a; A third signal generating section 32 performs an integral control calculation and outputs a third signal 31a representing the calculation result, and 32 is input with the third signal 31a and the original machine torque signal 22a, and the value of the signal 31a and the signal 22a are input. This is a second adder that outputs the aforementioned mechanical torque signal 32a having a value that is the sum of the above-mentioned mechanical torque signal 32a. 33 consists of a subtracter 30, a signal generation section 31, and an adder 32. By inputting the mechanical torque signal 32a outputted by the adder 32 to the rotor simulator 20, the signal switching section 21 changes the signal 28a as the signal 21a. In the output signal switching state, the angular velocity ωr is the signal 2.
This is a mechanical torque signal generating section that tracks the angular frequency ωb represented by 8a.

【0015】34は回転子シミュレータ20と信号切換
部21と発電機能シミュレータ7と遮断器8と自動同期
投入装置9と電圧制御部13と原機械トルク信号発生部
23と角周波数信号発生部29と機械トルク信号発生部
33とを備えた図4の発電設備シミュレータ1に対応し
た発電設備シミュレータ、36は模擬電力系統2とそれ
ぞれ遮断器8が設けられた複数個のシミュレータ34と
一個の位相差演算部35とが設けられた電力系統のシミ
ュレーション装置で、ここに、位相差演算部35は、電
力系統2に接続する必要のある発電設備シミュレータ3
4としての特定発電設備シミュレータ37のすべてに入
力される電力設定信号15と電圧設定信号11とが入力
されかつ前述の基準点Zの系統2における位置のデータ
Dzが入力されることによって、シミュレータ37のそ
れぞれに向けて前述の位相差設定信号35aを出力する
ように構成されている。そうして、この場合、信号35
aが表す前述の目標位相差δzは、すべてのシミュレー
タ37が遮断器8によって系統2に接続されておりかつ
各シミュレータ37において端子5aから出力される電
力P及び電圧V1がそれぞれ目標値Pa,Vaに等しい
時、点Zの電圧Vxzと各シミュレータ37における電
圧Vx1との間に生じることをデータDzとすべてのP
a及びVaとを用いて演算部35で計算して得た位相差
である。
Reference numeral 34 includes a rotor simulator 20, a signal switching section 21, a power generation function simulator 7, a circuit breaker 8, an automatic synchronization closing device 9, a voltage control section 13, an original machine torque signal generation section 23, and an angular frequency signal generation section 29. A power generation equipment simulator corresponding to the power generation equipment simulator 1 shown in FIG. 4, which is equipped with a mechanical torque signal generation unit 33, and a power generation equipment simulator 36 that includes a simulated power system 2, a plurality of simulators 34 each provided with a circuit breaker 8, and one phase difference calculation. The power system simulator 35 is equipped with a power generation equipment simulator 3 that needs to be connected to the power system 2.
By inputting the power setting signal 15 and the voltage setting signal 11 that are input to all of the specific power generation equipment simulator 37 as 4, and inputting the data Dz of the position of the reference point Z in the system 2, the simulator 37 The above-mentioned phase difference setting signal 35a is output to each of the two. Then, in this case, signal 35
The above-mentioned target phase difference δz represented by a is such that all the simulators 37 are connected to the system 2 by the circuit breaker 8, and the power P and voltage V1 output from the terminal 5a in each simulator 37 are set to target values Pa and Va, respectively. The data Dz and all P
This is the phase difference calculated by the calculation unit 35 using a and Va.

【0016】そうして、発電設備シミュレータ34にお
いては角周波数信号発生部29が、その上述した各部の
動作によって、すべてのシミュレータ37において信号
切換部21が信号28aを信号21aとして出力する信
号切換状態になっておりかつ遮断器8が閉状態になって
おりかつ信号発生部29に潮流状態設定信号27が入力
されている状態で、シミュレータ37のそれぞれにおい
て交流電圧5bの周波数F1を信号16aが表す設定周
波数Fcに等しくしかつ信号発生部29に入力される両
電圧Vx1とVxzとの間の位相差δを同じ信号発生部
29に入力される位相差設定信号35aが表す目標位相
差δzに等しくするように構成されている。
Then, in the power generation equipment simulator 34, the angular frequency signal generating section 29, through the operations of the above-mentioned sections, sets a signal switching state in which the signal switching section 21 in all the simulators 37 outputs the signal 28a as the signal 21a. , the circuit breaker 8 is in the closed state, and the power flow state setting signal 27 is input to the signal generator 29, and the signal 16a represents the frequency F1 of the AC voltage 5b in each of the simulators 37. The phase difference δ between both voltages Vx1 and Vxz, which is equal to the set frequency Fc and input to the signal generating unit 29, is equal to the target phase difference δz represented by the phase difference setting signal 35a input to the same signal generating unit 29. is configured to do so.

【0017】電力系統のシミュレーション装置36は上
述のように構成されているので、特定発電設備シミュレ
ータ37に対して以下に説明する操作を行うと実験準備
が完了する。すなわち、まず信号切換部21が信号28
aを信号21aとして出力する切換状態にし、かつ潮流
状態設定信号27が信号発生部29に入力されない状態
にし、かつ電圧設定器10に対する電圧設定信号11の
入力かまたは電圧設定操作10bによって信号10aが
表す設定電圧Vcを電力系統2の定格電圧Vnに等しく
設定し、かつ周波数設定器16に対する周波数設定信号
17の入力かまたは周波数設定操作16bによって信号
16aが表す設定周波数Fcを系統2の定格周波数Fn
に等しく設定する。そうして、次に起動信号18b,1
2b,9dの入力によってガバナ22、電圧調整装置1
2、同期投入装置9を順次起動すると電圧V1がVnに
向かって変化し、周波数F1がFnに向かって変化して
、やがて投入装置9によって遮断器8が投入動作をする
ので、以上の操作をすべてのシミュレータ37について
行うことによって、前述のシミュレーション装置3にお
ける実験準備の第1段階に対応した第1準備段階が終了
する。そこで、次に位相差演算部35に位置データDz
を入力しかつ演算部35及び各シミュレータ37に入力
される設定信号11,15が表す電圧Va、電力Paを
それぞれ所望の値に等しく設定してシミュレータ37ご
とに潮流状態設定信号27を信号発生部29に入力する
と、各シミュレータ37において電圧V1、周波数F1
が変化してやがて両電圧Vx1,Vxz間の位相差δが
信号35aが表す位相差δzに等しくなって電力系統2
が所望の初期潮流状態になり、この時信号20aが表す
ωrが信号28aが表すωbを追従している。したがっ
て、次に信号切換部21が信号20aを信号21aとす
る切換状態にしかつ設定信号27の信号発生部29への
入力を遮断するとシミュレーション装置3における実験
準備の第2段階に対応した第2準備段階が終了する。
Since the electric power system simulation device 36 is configured as described above, the preparation for the experiment is completed by performing the following operations on the specific power generation equipment simulator 37. That is, first, the signal switching section 21 selects the signal 28.
a is set to a switching state in which it is output as a signal 21a, and the power flow state setting signal 27 is not input to the signal generator 29, and the signal 10a is set by inputting the voltage setting signal 11 to the voltage setting device 10 or by the voltage setting operation 10b. The set voltage Vc represented by the signal 16a is set equal to the rated voltage Vn of the power system 2, and the set frequency Fc represented by the signal 16a is set to the rated frequency Fn of the power system 2 by inputting the frequency setting signal 17 to the frequency setter 16 or by the frequency setting operation 16b.
set equal to . Then, the activation signal 18b, 1
The governor 22 and voltage regulator 1 are controlled by the inputs 2b and 9d.
2. When the synchronization closing device 9 is activated in sequence, the voltage V1 changes toward Vn, the frequency F1 changes toward Fn, and the circuit breaker 8 is eventually closed by the closing device 9, so perform the above operations. By performing this for all simulators 37, the first preparation stage corresponding to the first stage of experiment preparation in the simulation apparatus 3 described above is completed. Therefore, next, the position data Dz is input to the phase difference calculation unit 35.
is input, and the voltage Va and power Pa represented by the setting signals 11 and 15 input to the calculation unit 35 and each simulator 37 are set equal to desired values, respectively, and the power flow state setting signal 27 is generated for each simulator 37 by the signal generation unit. 29, voltage V1 and frequency F1 are input in each simulator 37.
changes, and eventually the phase difference δ between the two voltages Vx1 and Vxz becomes equal to the phase difference δz represented by the signal 35a, and the power system 2
reaches the desired initial power flow state, and at this time, ωr represented by the signal 20a is tracking ωb represented by the signal 28a. Therefore, when the signal switching section 21 next switches the signal 20a to the signal 21a and cuts off the input of the setting signal 27 to the signal generating section 29, the simulation device 3 starts a second preparation corresponding to the second stage of experimental preparation. The stage ends.

【0018】シミュレーション装置36においては上述
のようにして実験準備が行われるが、この場合、上記第
1準備段階で行われる両電圧Vx1,Vx2の周波数及
び位相を一致させる制御が機械トルク信号発生部33と
ガバナ22と回転子シミュレータ20とからなる部分を
介することなく直接Vx1に対して行われて、上記制御
に従来の発電設備シミュレータ1における回転子シミュ
レータ4及びガバナ8の応答遅れに対応した応答遅れが
入りこまないので、実験の第1準備段階が従来のシミュ
レーション装置3におけるよりも短時間に終了する。そ
うして、またシミュレーション装置36では、初期潮流
状態の設定が角速度ωrを介することなく、換言すれば
電力系統2に接続された発電設備シミュレータ37にお
ける各発電機相互間の電力の授受を介することなく行わ
れるので初期潮流状態が短い時間で整定状態になり、か
つこの時ωrがωbを追従しているので、実験の第2準
備段階も従来装置3におけるより短い時間で終了する。 したがって、シミュレーション装置36が従来装置3の
場合より実験準備時間の短い装置になっていることが明
らかである。
In the simulation device 36, preparation for the experiment is performed as described above, but in this case, the control performed in the first preparation stage to match the frequency and phase of both voltages Vx1 and Vx2 is performed by the mechanical torque signal generating section. 33, the governor 22, and the rotor simulator 20, and the response corresponding to the response delay of the rotor simulator 4 and the governor 8 in the conventional power generation equipment simulator 1 is applied to the above control. Since no delay is introduced, the first preparatory stage of the experiment is completed in a shorter time than in the conventional simulation device 3. In addition, in the simulation device 36, the initial power flow state can be set without using the angular velocity ωr, in other words, through the exchange of power between the generators in the power generation equipment simulator 37 connected to the power system 2. Since the initial power flow state becomes stable in a short time, and since ωr follows ωb at this time, the second preparation stage of the experiment is also completed in a shorter time than in the conventional device 3. Therefore, it is clear that the simulation apparatus 36 requires a shorter experiment preparation time than the conventional apparatus 3.

【0019】[0019]

【発明の効果】上述したように、本発明においては、[Effects of the Invention] As mentioned above, in the present invention,


0020】1)機械トルクTmを表す機械トルク信号と
電気トルクTeを表す電気トルク信号とが入力されかつ
TmとTeとの差を経時的に積分して発電機回転子の角
速度ωrを表す角速度信号を出力する発電機回転子シミ
ュレータと、三相出力端子が設けられかつ角周波数設定
信号と界磁電圧信号とが入力されかつ界磁電圧信号が表
す界磁電圧に対応した電圧値V1と角周波数設定信号が
表す角周波数に対応した周波数F1とを有する三相交流
電圧を三相出力端子に出力すると共にこの三相出力端子
に流れる三相交流電流にもとづく前記Teを表す電気ト
ルク信号を出力する発電機能シミュレータと、入力され
る開閉指令信号に応じて三相出力端子の模擬電力系統へ
の電気的接続を開閉する電路開閉部と、この電路開閉部
における任意の一相の三相出力端子の側の電圧Vx1と
模擬電力系統の側の電圧Vx2とが入力されかつVx1
とVx2との差に応じた電圧加減信号とVx1の周波数
F1とVx2の周波数F2との差に応じた周波数加減信
号とを出力すると共にVx1とVx2との間の電圧差、
周波数差及び位相差がそれぞれ許容値以下になると前記
開閉指令信号を出力して以後電圧加減信号及び周波数加
減信号を共に消滅させる自動同期投入装置と、目標電圧
Vaを表す電圧設定信号と電圧加減信号と前記三相交流
電圧とが入力されかつ電圧設定操作が加えられかつ界磁
電圧信号を発電機能シミュレータに入力することによっ
て三相交流電圧の各相の電圧の算術平均値が前記Vaと
電圧加減信号の値と電圧設定操作とに応じた設定電圧V
cに等しくなるようにする電圧制御部と、目標電力Pa
を表す電力設定信号と目標周波数Faを表す周波数設定
信号と周波数加減信号と角速度信号とが入力されかつ電
力設定操作と周波数設定操作とが加えられかつ前記Fa
と周波数加減信号の値と周波数設定操作とに応じた設定
周波数Fcを表す設定周波数信号を出力すると共に前記
Paと電力設定操作とに応じた設定電力Pcと前記Fc
と角速度信号が表す前記ωrとを用いて所定の第1演算
を行ってこの第1演算の結果に応じた原機械トルク信号
を出力する原機械トルク信号発生部と、電圧Vx1と模
擬電力系統におけるVx1と同じ相の所望の点としての
基準点Zの電圧Vxzと両電圧Vx1及びVxz間の位
相差の目標値である目標位相差δzを表す位相差設定信
号と設定周波数信号とが入力されかつ潮流状態設定信号
が入力されていない状態では設定周波数信号が表す前記
Fcに対応した角周波数を表す角周波数信号を出力しか
つ潮流状態設定信号が入力されている状態ではVx1と
VxzとδzとFcとを用いて所定条件のもとに第2演
算を行ってこの演算結果の角周波数を表す前記角周波数
信号を出力する角周波数信号発生部と、角速度信号と角
周波数信号とを切り換えて角周波数設定信号として出力
する信号切換部と、角速度信号と角周波数信号と原機械
トルク信号とが入力されかつ角速度信号が表すωrと角
周波数信号が表す角周波数ωbとの差について所定の制
御演算を行って得た値と原機械トルク信号の値との和の
値を有する機械トルク信号を出力することによって信号
切換部が角周波数信号を角周波数設定信号として出力す
る信号切換状態においてωrがωbを追従するようにす
る機械トルク信号発生部とを備えた発電設備シミュレー
タの複数個と、前記模擬電力系統と、この模擬電力系統
に接続する必要のある発電設備シミュレータとしての特
定発電設備シミュレータのすべてに入力される前記電力
設定信号と前記電圧設定信号とが入力されかつ前記基準
点Zの模擬電力系統における位置のデータが入力される
ことによって特定発電設備シミュレータのそれぞれに向
けて位相差設定信号を出力する位相差演算部とが設けら
れ、前記所定条件をすべての特定発電設備シミュレータ
において信号切換部が角周波数信号を角周波数設定信号
として出力する信号切換状態となっておりかつ電路開閉
部が閉状態となっている状態とし、前記第2演算を特定
発電設備シミュレータのそれぞれにおいて前記三相交流
電圧の周波数F1が設定周波数Fcに等しくなるように
しかつ角周波数信号発生部に入力される電圧Vx1及び
Vxzの両電圧間の位相差が同じ角周波数信号発生部に
入力される位相差設定信号が表すδzに等しくなるよう
にする演算とし、また前記第1演算を、信号切換部が角
速度信号を角周波数設定信号として出力する信号切換状
態にありかつ電路開閉部が閉状態にある時、機械トルク
信号と電気トルク信号とが発電機回転子シミュレータに
入力されることによって発電機機能シミュレータから前
記三相出力端子に出力される三相電力が設定電力Pcに
等しくなりかつ角速度信号が表すωrが設定周波数Fc
に対応した角周波数ωcに等しくなるようにする演算と
して電力系統のアナログシミュレーション装置を構成し
、また、
[
1) A mechanical torque signal representing the mechanical torque Tm and an electric torque signal representing the electric torque Te are input, and the difference between Tm and Te is integrated over time to generate an angular velocity signal representing the angular velocity ωr of the generator rotor. A generator rotor simulator that outputs a voltage value V1 and an angular frequency corresponding to the field voltage represented by the field voltage signal, which is provided with a three-phase output terminal and inputted with an angular frequency setting signal and a field voltage signal. Outputs a three-phase AC voltage having a frequency F1 corresponding to the angular frequency represented by the setting signal to the three-phase output terminal, and outputs an electric torque signal representing the Te based on the three-phase AC current flowing to the three-phase output terminal. A power generation function simulator, an electrical circuit switching section that opens and closes the electrical connection of the three-phase output terminal to the simulated power system according to the input switching command signal, and a circuit switching section that opens and closes the electrical connection of the three-phase output terminal to the simulated power system according to the input switching command signal, and a circuit switching section that connects the three-phase output terminal of any one phase in this electrical circuit switching section. side voltage Vx1 and simulated power system side voltage Vx2 are input and Vx1
outputting a voltage adjustment signal according to the difference between Vx1 and Vx2 and a frequency adjustment signal according to the difference between the frequency F1 of Vx1 and the frequency F2 of Vx2, and the voltage difference between Vx1 and Vx2;
an automatic synchronization device that outputs the opening/closing command signal when the frequency difference and the phase difference each become below the allowable value and thereafter eliminates both the voltage adjustment signal and the frequency adjustment signal; and a voltage setting signal and voltage adjustment signal representing the target voltage Va. and the three-phase AC voltage are input, a voltage setting operation is applied, and a field voltage signal is input to the power generation function simulator, so that the arithmetic mean value of the voltage of each phase of the three-phase AC voltage is calculated from the voltage adjustment value Va. Set voltage V according to signal value and voltage setting operation
a voltage control unit that makes the target power Pa equal to c;
A power setting signal representing the target frequency Fa, a frequency setting signal representing the target frequency Fa, a frequency adjustment signal, and an angular velocity signal are input, and a power setting operation and a frequency setting operation are applied, and the frequency setting signal representing the target frequency Fa is input.
outputs a set frequency signal representing a set frequency Fc according to the value of the frequency adjustment signal and the frequency setting operation, and sets a set power Pc and the Fc according to the Pa and the power setting operation.
and an original machine torque signal generation unit that performs a predetermined first calculation using the ωr represented by the angular velocity signal and outputs an original machine torque signal according to the result of the first calculation, and A voltage Vxz at a reference point Z as a desired point of the same phase as Vx1 and a phase difference setting signal and a setting frequency signal representing a target phase difference δz which is a target value of the phase difference between both voltages Vx1 and Vxz are input, and When the power flow state setting signal is not input, an angular frequency signal representing the angular frequency corresponding to the Fc represented by the set frequency signal is output, and when the power flow state setting signal is input, Vx1, Vxz, δz, and Fc are output. an angular frequency signal generating section that performs a second calculation under predetermined conditions using the angular frequency signal and outputs the angular frequency signal representing the angular frequency of the calculation result; A signal switching section that outputs a setting signal, an angular velocity signal, an angular frequency signal, and an original machine torque signal are input, and performs a predetermined control calculation on the difference between ωr represented by the angular velocity signal and angular frequency ωb represented by the angular frequency signal. ωr tracks ωb in the signal switching state in which the signal switching unit outputs the angular frequency signal as the angular frequency setting signal by outputting a mechanical torque signal having the sum of the value obtained by A plurality of power generation equipment simulators each having a mechanical torque signal generation unit configured to generate a mechanical torque signal, the above-mentioned simulated power system, and a specific power generation equipment simulator as a power generation equipment simulator that needs to be connected to this simulated power system are all inputted. A phase difference setting signal is output to each of the specific power generation equipment simulators by inputting the power setting signal and the voltage setting signal, and inputting data on the position of the reference point Z in the simulated power system. A phase difference calculation unit is provided, and the predetermined conditions are set such that in all specific power generation equipment simulators, the signal switching unit is in a signal switching state in which the angular frequency signal is output as the angular frequency setting signal, and the electric circuit opening/closing unit is in the closed state. The second calculation is performed in each of the specific power generation equipment simulators so that the frequency F1 of the three-phase AC voltage becomes equal to the set frequency Fc, and the voltages Vx1 and Vxz input to the angular frequency signal generator are The first calculation is performed so that the phase difference between both voltages becomes equal to δz expressed by the phase difference setting signal input to the same angular frequency signal generating section, and the signal switching section converts the angular velocity signal into the angular frequency setting signal. When the signal output as a signal is in the switching state and the electric circuit opening/closing part is in the closed state, the mechanical torque signal and the electric torque signal are input to the generator rotor simulator, so that the three-phase output terminal is output from the generator function simulator. The three-phase power output to is equal to the set power Pc, and ωr represented by the angular velocity signal is the set frequency Fc.
An analog simulation device for a power system is configured as a calculation for making the angular frequency ωc equal to the corresponding angular frequency ωc, and

【0021】2)上記1)項に記載のシミュレーション
装置において、角周波数信号発生部が、両電圧Vx1及
びVxz間の位相差δを検出してこのδを表す位相差信
号を出力する位相差検出器と、位相差信号と位相差設定
信号とが入力されてこの位相差設定信号が表す目標位相
差δzとδとの差(δz−δ)を表す偏差信号を出力す
る第1減算器と、潮流状態設定信号が入力されていない
と角周波数値が零になり、偏差信号が入力されていてか
つ潮流状態設定信号が入力されると偏差信号について比
例制御演算または比例積分制御演算を行って角周波数値
がこれらの演算結果に等しくなる角周波数ωaを表す第
1信号を出力する第1信号生成部と、第1信号と設定周
波数信号とが入力されかつ前記ωaと設定周波数信号が
表す設定周波数Fcに対応した角周波数ωcとの和の角
周波数ωbを表す角周波数信号を出力する第1加算器と
からなるように電力系統のアナログシミュレーション装
置を構成し、また、
2) In the simulation apparatus described in item 1) above, the angular frequency signal generation section detects a phase difference δ between the voltages Vx1 and Vxz and outputs a phase difference signal representing this δ. a first subtractor that receives the phase difference signal and the phase difference setting signal and outputs a deviation signal representing the difference (δz−δ) between the target phase difference δz and δ represented by the phase difference setting signal; If the power flow state setting signal is not input, the angular frequency value becomes zero; if the deviation signal is input and the power flow state setting signal is input, the angle is calculated by performing proportional control calculation or proportional integral control calculation on the deviation signal. a first signal generation unit that outputs a first signal representing an angular frequency ωa whose frequency value is equal to the results of these calculations; and a set frequency to which the first signal and a set frequency signal are input and which are represented by the ωa and the set frequency signal. A power system analog simulation device is configured to include a first adder that outputs an angular frequency signal representing the sum of the angular frequency ωb and the angular frequency ωc corresponding to Fc, and

【0022】3)上記1)項に記載のシミュレーション
装置において、機械トルク信号発生部が、角速度信号と
角周波数信号とが入力されかつ角周波数信号が表す角周
波数ωbと角速度信号が表す角速度ωrとの差を表す第
2信号を出力する第2減算器と、第2信号について比例
積分制御演算を行ってこの演算結果を表す第3信号を出
力する第3信号生成部と、第3信号と原機械トルク信号
とが入力されかつ第3信号の値と原機械トルク信号の値
との和の値を有する機械トルク信号を出力する第2加算
器とからなるように電力系統のアナログシミュレーショ
ン装置を構成した。
3) In the simulation apparatus described in item 1) above, the mechanical torque signal generation section receives the angular velocity signal and the angular frequency signal, and generates an angular frequency ωb represented by the angular frequency signal and an angular velocity ωr represented by the angular velocity signal. a second subtracter that outputs a second signal representing the difference between and a second adder that receives a mechanical torque signal and outputs a mechanical torque signal having a value that is the sum of the value of the third signal and the value of the original mechanical torque signal. did.

【0023】このため、上記のように構成すると、いず
れの電力系統のアナログシミュレーション装置において
も、すべての特定発電設備シミュレータにおいて、信号
切換部を角周波数信号が角周波数設定信号として出力さ
れる状態にし、かつ角周波数信号発生部を潮流状態設定
信号が入力されていない状態にし、かつ原機械トルク信
号発生部に入力される周波数設定信号が表す目標周波数
Faと該信号発生部に加えられる周波数設定操作とに応
じた設定周波数Fcならびに電圧制御部に入力される電
圧設定信号が表す目標電圧Vaと該電圧制御部に加えら
れる電圧設定操作とに応じた設定電圧Vcを、それぞれ
電路開閉部の模擬電力系統の側の定格周波数Fn、定格
電圧Vnに等しく設定して、原機械トルク信号発生部、
電圧制御部及び自動同期投入装置をそれぞれ起動すると
、両電圧Vx1,Vx2の周波数並びに位相を一致させ
る制御が、前述した発電設備シミュレータ1におけるガ
バナ18とシミュレータ4とからなる部分に対応した本
発明の発電設備シミュレータにおける原機械トルク信号
発生部と機械トルク信号発生部と発電機回転子シミュレ
ータとからなる部分を介することなく直接Vx1に対し
て行われて電路開閉部によって発電設備シミュレータが
模擬電力系統に並入されることになる。そうして、また
、このようにして特定発電設備シミュレータの該電力系
統への並入が完了した後、該系統に並入済みの発電設備
シミュレータのそれぞれに特有の目標電力Paを表す電
力設定信号と前記電圧Vnと同じかまたは異なる特有の
目標電圧Vaを表す電圧設定信号とを入力すると共に同
じ前記両設定信号と基準点Zの模擬電力系統における位
置データとを位相差演算部にも入力して、しかる後系統
並入済み発電設備シミュレータごとに角周波数信号発生
部に潮流状態設定信号を入力すると、この角周波数信号
発生部の位相差制御作用によって両電圧Vxz,Vx1
間の位相差δが位相差演算部から当該角周波数信号発生
部に入力される目標位相差δzに等しくなるように角周
波数信号の値が制御されて、この結果複数個の系統並入
済み発電設備シミュレータにおける各発電機相互間の電
力の授受を介することなく初期潮流状態の設定が行われ
ることになるので、本発明には短時間で実験準備が完了
する結果電力系統の現象解析実験研究の作業能率が向上
する効果がある。
[0023] Therefore, with the above configuration, in any electric power system analog simulation device, in all specific power generation equipment simulators, the signal switching section is set to a state in which the angular frequency signal is output as the angular frequency setting signal. , and set the angular frequency signal generation section to a state where no power flow state setting signal is input, and set the target frequency Fa represented by the frequency setting signal input to the original machine torque signal generation section and the frequency setting operation applied to the signal generation section. The set frequency Fc corresponding to the set frequency Fc and the set voltage Vc corresponding to the target voltage Va represented by the voltage setting signal input to the voltage control unit and the voltage setting operation applied to the voltage control unit are respectively set as the simulated power of the circuit switching unit. Set equal to the rated frequency Fn and rated voltage Vn on the grid side, the original machine torque signal generator,
When the voltage control unit and the automatic synchronization device are started, the control to match the frequency and phase of both voltages Vx1 and Vx2 is carried out by the control of the present invention corresponding to the portion consisting of the governor 18 and the simulator 4 in the power generation equipment simulator 1 described above. This is performed directly on Vx1 without going through the parts consisting of the original machine torque signal generation section, the machine torque signal generation section, and the generator rotor simulator in the power generation facility simulator, and the power generation facility simulator is converted into a simulated power system by the electric circuit switching section. They will be entered in parallel. Then, after the connection of the specific power generation equipment simulator to the power system is completed in this way, a power setting signal representing the target power Pa specific to each of the power generation equipment simulators that have been connected to the power system is transmitted. and a voltage setting signal representing a specific target voltage Va that is the same as or different from the voltage Vn, and also inputs both the same setting signals and the position data of the reference point Z in the simulated power system to the phase difference calculation section. After that, when a power flow state setting signal is input to the angular frequency signal generation section for each power generation equipment simulator that has been connected to the grid, both voltages Vxz and Vx1 are adjusted by the phase difference control action of this angular frequency signal generation section.
The value of the angular frequency signal is controlled so that the phase difference δ between them is equal to the target phase difference δz input from the phase difference calculation unit to the angular frequency signal generation unit, and as a result, multiple power generation units connected to the grid Since the initial power flow state is set without transmitting and receiving power between the generators in the equipment simulator, the present invention can complete experiment preparation in a short period of time. It has the effect of improving work efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図2における要部の詳細構成図[Figure 1] Detailed configuration diagram of main parts in Figure 2

【図2】本発明
の一実施例の構成図
[Figure 2] Configuration diagram of one embodiment of the present invention

【図3】従来の電力系統のシミュレーション装置の構成
[Figure 3] Configuration diagram of a conventional power system simulation device

【図4】図3における要部の詳細構成図[Figure 4] Detailed configuration diagram of main parts in Figure 3

【符号の説明】[Explanation of symbols]

2    模擬電力系統 5a  三相出力端子 5b  三相交流電圧 5c  三相交流電流 6a  電気トルク信号 7    発電機能シミュレータ 8    遮断器(電路開閉部) 9    自動同期投入装置 9a  電圧加減信号 9b  周波数加減信号 9c  開閉指令信号 10    電圧設定操作 11    電圧設定信号 12a  界磁電圧信号 13    電圧制御部 14b  電力設定操作 15    電力設定信号 16a  設定周波数信号 16b  周波数設定操作 17    周波数設定信号 20    発電機回転子シミュレータ20a  角速
度信号 21    信号切換部 21a  角周波数設定信号 22a  原機械トルク信号 23    原機械トルク信号発生部 24    位相差検出器 24a  位相差信号 25    第1減算器 25a  偏差信号 26    第1信号生成部 26a  第1信号 27    潮流状態設定信号 28    第1加算器 28a  角周波数信号 29    角周波数信号発生部 30    第2減算器 30a  第2信号 31    第3信号生成部 31a  第3信号 32    第2加算器 32a  機械トルク信号 33    機械トルク信号発生部 34    発電設備シミュレータ 35    位相差演算部 35a  位相差設定信号
2 Simulated power system 5a Three-phase output terminal 5b Three-phase AC voltage 5c Three-phase AC current 6a Electric torque signal 7 Power generation function simulator 8 Circuit breaker (circuit switching section) 9 Automatic synchronization device 9a Voltage adjustment signal 9b Frequency adjustment signal 9c Opening/closing Command signal 10 Voltage setting operation 11 Voltage setting signal 12a Field voltage signal 13 Voltage control section 14b Power setting operation 15 Power setting signal 16a Setting frequency signal 16b Frequency setting operation 17 Frequency setting signal 20 Generator rotor simulator 20a Angular velocity signal 21 Signal Switching section 21a Angular frequency setting signal 22a Original machine torque signal 23 Original machine torque signal generation section 24 Phase difference detector 24a Phase difference signal 25 First subtractor 25a Deviation signal 26 First signal generation section 26a First signal 27 Power flow state setting Signal 28 First adder 28a Angular frequency signal 29 Angular frequency signal generator 30 Second subtracter 30a Second signal 31 Third signal generator 31a Third signal 32 Second adder 32a Mechanical torque signal 33 Mechanical torque signal generator 34 Power generation equipment simulator 35 Phase difference calculation unit 35a Phase difference setting signal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】機械トルクTmを表す機械トルク信号と電
気トルクTeを表す電気トルク信号とが入力されかつ前
記機械トルク信号と前記電気トルク信号との差を経時的
に積分して発電機回転子の角速度ωrを表す角速度信号
を出力する発電機回転子シミュレータと、三相出力端子
が設けられかつ角周波数設定信号と界磁電圧信号とが入
力されかつ前記界磁電圧信号が表す界磁電圧に対応した
電圧値V1と前記角周波数設定信号が表す角周波数に対
応した周波数F1とを有する三相交流電圧を前記三相出
力端子に出力すると共にこの三相出力端子に流れる三相
交流電流にもとづく前記電気トルク信号を出力する発電
機能シミュレータと、入力される開閉指令信号に応じて
前記三相出力端子の模擬電力系統への電気的接続を開閉
する電路開閉部と、前記電路開閉部の任意の一相におけ
る前記三相出力端子側電圧Vx1と前記模擬電力系統側
電圧Vx2とが入力されかつ前記三相出力端子側電圧V
x1と前記模擬電力系統側電圧Vx2との差に応じた電
圧加減信号と前記三相出力端子側電圧Vx1の周波数F
1と前記模擬電力系統側電圧Vx2の周波数F2との差
に応じた周波数加減信号とを出力すると共に前記三相出
力端子側電圧Vx1と前記模擬電力系統側電圧Vx2と
の間の電圧差、周波数差及び位相差がそれぞれ許容値以
下になると前記開閉指令信号を出力して以後前記電圧加
減信号及び周波数加減信号を共に消滅させる自動同期投
入装置と、目標電圧Vaを表す電圧設定信号と前記電圧
加減信号と前記三相交流電圧とが入力されかつ電圧設定
操作が加えられかつ前記界磁電圧信号を前記発電機能シ
ミュレータに入力することによって前記三相交流電圧の
各相の電圧の算術平均値が前記目標値Vaと前記電圧加
減信号の値と前記電圧設定操作とに応じた設定電圧Vc
に等しくなるようにする電圧制御部と、目標電力Paを
表す電力設定信号と目標周波数Faを表す周波数設定信
号と前記周波数加減信号と前記角速度信号とが入力され
かつ電力設定操作と周波数設定操作とが加えられかつ前
記目標周波数Faと前記周波数加減信号の値と前記周波
数設定操作とに応じた設定周波数Fcを表す設定周波数
信号を出力すると共に前記目標電力Paと前記電力設定
操作とに応じた設定電力Pcと前記設定周波数Fcと前
記角速度信号が表す前記角速度ωrとを用いて所定の第
1演算を行ってこの第1演算の結果に応じた原機械トル
ク信号を出力する原機械トルク信号発生部と、前記三相
出力端子側電圧Vx1と前記模擬電力系統における前記
電圧Vx1と同じ相の所望の点としての基準点Zの基準
点電圧Vxzと前記電圧Vx1及び基準点電圧Vxz間
の位相差の目標値である目標位相差δzを表す位相差設
定信号と前記設定周波数信号とが入力されかつ潮流状態
設定信号が入力されていない状態では前記設定周波数信
号が表す前記設定周波数Fcに対応した角周波数を表す
角周波数信号を出力しかつ前記潮流状態設定信号が入力
されている状態では前記電圧Vx1と前記基準点電圧V
xzと前記目標位相差δzと前記設定周波数Fcとを用
いて所定条件のもとに第2演算を行ってこの演算結果の
角周波数を表す前記角周波数信号を出力する角周波数信
号発生部と、前記角速度信号と前記角周波数信号とを切
り換えて前記角周波数設定信号として出力する信号切換
部と、前記角速度信号と前記角周波数信号と前記原機械
トルク信号とが入力されかつ前記角速度信号が表す角速
度ωrと前記角周波数信号が表す角周波数ωbとの差に
ついて所定の制御演算を行って得た値と前記原機械トル
ク信号の値との和の値を有する前記機械トルク信号を出
力することによって前記信号切換部が前記角周波数信号
を前記角周波数設定信号として出力する信号切換状態に
おいて前記角速度ωrが前記角周波数ωbを追従するよ
うにする機械トルク信号発生部とを備えた発電設備シミ
ュレータの複数個と、前記模擬電力系統と、この模擬電
力系統に接続する必要のある前記発電設備シミュレータ
としての特定発電設備シミュレータのすべてに入力され
る前記電力設定信号と前記電圧設定信号とが入力されか
つ前記基準点Zの前記模擬電力系統における位置のデー
タが入力されることによって前記特定発電設備シミュレ
ータのそれぞれに向けて前記位相差設定信号を出力する
位相差演算部とが設けられ、前記所定条件をすべての前
記特定発電設備シミュレータにおいて前記信号切換部が
前記角周波数信号を前記角周波数設定信号として出力す
る信号切換状態となっておりかつ前記電路開閉部が閉状
態となっている状態とし、前記第2演算を、前記特定発
電設備シミュレータのそれぞれにおいて前記三相交流電
圧の周波数F1が前記設定周波数Fcに等しくなるよう
にしかつ前記角周波数信号発生部に入力される前記三相
出力端子側電圧Vx1及び基準点Vxzの両電圧間の位
相差が同じ前記角周波数信号発生部に入力される前記位
相差設定信号が表す前記目標位相差δzに等しくなるよ
うにする演算とし、また前記第1演算を、前記信号切換
部が前記角速度信号を前記角周波数設定信号として出力
する信号切換状態にありかつ前記電路開閉部が閉状態に
ある時、前記機械トルク信号と前記電気トルク信号とが
前記発電機回転子シミュレータに入力されることによっ
て前記発電機機能シミュレータから前記三相出力端子に
出力される三相電力が前記設定電力Pcに等しくなりか
つ前記角速度信号が表す前記角速度ωrが前記設定周波
数Fcに対応した角周波数ωcに等しくなるようにする
演算としたことを特徴とする電力系統のアナログシミュ
レーション装置。
1. A mechanical torque signal representing a mechanical torque Tm and an electric torque signal representing an electric torque Te are input, and the difference between the mechanical torque signal and the electric torque signal is integrated over time to generate a generator rotor. a generator rotor simulator that outputs an angular velocity signal representing an angular velocity ωr of A three-phase AC voltage having a corresponding voltage value V1 and a frequency F1 corresponding to the angular frequency represented by the angular frequency setting signal is output to the three-phase output terminal, and based on the three-phase AC current flowing to the three-phase output terminal. a power generation function simulator that outputs the electric torque signal, an electric circuit switching section that opens and closes the electrical connection of the three-phase output terminal to the simulated power system according to the input switching command signal, and an arbitrary one of the electric circuit switching section. The three-phase output terminal side voltage Vx1 and the simulated power system side voltage Vx2 in one phase are input, and the three-phase output terminal side voltage V
A voltage adjustment signal corresponding to the difference between x1 and the simulated power system side voltage Vx2 and the frequency F of the three-phase output terminal side voltage Vx1
1 and a frequency F2 of the simulated power system side voltage Vx2, and a voltage difference and frequency between the three-phase output terminal side voltage Vx1 and the simulated power system side voltage Vx2. an automatic synchronization device that outputs the opening/closing command signal when the difference and phase difference each become below the allowable value, and thereafter eliminates both the voltage adjustment signal and the frequency adjustment signal; and a voltage setting signal representing the target voltage Va and the voltage adjustment signal. By inputting the signal and the three-phase AC voltage, applying a voltage setting operation, and inputting the field voltage signal to the power generation function simulator, the arithmetic mean value of the voltage of each phase of the three-phase AC voltage is calculated as described above. A set voltage Vc according to the target value Va, the value of the voltage adjustment signal, and the voltage setting operation.
a voltage control unit that inputs a power setting signal representing a target power Pa, a frequency setting signal representing a target frequency Fa, the frequency adjustment signal and the angular velocity signal, and performs a power setting operation and a frequency setting operation. is added and outputs a setting frequency signal representing a setting frequency Fc corresponding to the target frequency Fa, the value of the frequency adjustment signal, and the frequency setting operation, and setting according to the target power Pa and the power setting operation. an original machine torque signal generation unit that performs a predetermined first calculation using the electric power Pc, the set frequency Fc, and the angular velocity ωr represented by the angular velocity signal and outputs an original machine torque signal according to the result of the first calculation; and the phase difference between the three-phase output terminal side voltage Vx1, the reference point voltage Vxz of the reference point Z as a desired point of the same phase as the voltage Vx1 in the simulated power system, and the voltage Vx1 and the reference point voltage Vxz. When the phase difference setting signal representing the target phase difference δz, which is the target value, and the setting frequency signal are input and the power flow state setting signal is not input, the angular frequency corresponding to the setting frequency Fc represented by the setting frequency signal is In a state where an angular frequency signal representing
an angular frequency signal generation unit that performs a second calculation under predetermined conditions using xz, the target phase difference δz, and the set frequency Fc, and outputs the angular frequency signal representing the angular frequency of the calculation result; a signal switching section that switches between the angular velocity signal and the angular frequency signal and outputs it as the angular frequency setting signal; and an angular velocity to which the angular velocity signal, the angular frequency signal, and the original machine torque signal are input and that the angular velocity signal represents. By outputting the machine torque signal having a value that is the sum of the value obtained by performing a predetermined control calculation on the difference between ωr and the angular frequency ωb represented by the angular frequency signal and the value of the original machine torque signal, a plurality of power generation equipment simulators comprising: a mechanical torque signal generating unit that causes the angular velocity ωr to follow the angular frequency ωb in a signal switching state in which the signal switching unit outputs the angular frequency signal as the angular frequency setting signal; and the power setting signal and the voltage setting signal that are input to all of the simulated power system and the specific power generation equipment simulator as the power generation equipment simulator that needs to be connected to this simulated power system, and the reference a phase difference calculation unit that outputs the phase difference setting signal to each of the specific power generation equipment simulators by inputting position data of point Z in the simulated power system; In the specific power generation equipment simulator, the signal switching unit is in a signal switching state in which the angular frequency signal is output as the angular frequency setting signal, and the electric circuit switching unit is in the closed state, and the second calculation is performed. In each of the specific power generation equipment simulators, the frequency F1 of the three-phase AC voltage is made equal to the set frequency Fc, and the three-phase output terminal side voltage Vx1 input to the angular frequency signal generator and the reference point The calculation is performed so that the phase difference between both voltages of Vxz becomes equal to the target phase difference δz represented by the phase difference setting signal inputted to the same angular frequency signal generation section, and the first calculation is performed based on the signal When the switching unit is in a signal switching state in which the angular velocity signal is output as the angular frequency setting signal and the electric circuit opening/closing unit is in the closed state, the mechanical torque signal and the electric torque signal are transmitted to the generator rotor simulator. An angular frequency at which the three-phase power output from the generator function simulator to the three-phase output terminal becomes equal to the set power Pc and the angular velocity ωr represented by the angular velocity signal corresponds to the set frequency Fc. An analog simulation device for a power system, characterized in that the calculation is made to be equal to ωc.
【請求項2】請求項1に記載のシミュレーション装置に
おいて、角周波数信号発生部を、三相出力端子側電圧V
x1及び基準点電圧Vxz間の位相差δを検出して前記
位相差δを表す位相差信号を出力する位相差検出器と、
前記位相差信号と位相差設定信号とが入力されてこの位
相差設定信号が表す目標位相差δzと前記位相差δとの
差(δz−δ)を表す偏差信号を出力する第1減算器と
、潮流状態設定信号が入力されていないと角周波数値が
零になり、前記偏差信号が入力されていてかつ前記潮流
状態設定信号が入力されると前記偏差信号について比例
制御演算または比例積分制御演算を行って前記角周波数
値がこれらの演算結果に等しくなる角周波数ωaを表す
第1信号を出力する第1信号生成部と、前記第1信号と
設定周波数信号とが入力されかつ前記角周波数ωaと前
記設定周波数信号が表す設定周波数Fcに対応した角周
波数ωcとの和の角周波数ωbを表す角周波数信号を出
力する第1加算器とで構成したことを特徴とする電力系
統のアナログシミュレーション装置。
2. The simulation device according to claim 1, wherein the angular frequency signal generating section is controlled by a voltage V on the three-phase output terminal side.
a phase difference detector that detects a phase difference δ between x1 and a reference point voltage Vxz and outputs a phase difference signal representing the phase difference δ;
a first subtracter that receives the phase difference signal and the phase difference setting signal and outputs a deviation signal representing the difference (δz−δ) between the target phase difference δz represented by the phase difference setting signal and the phase difference δ; , if the power flow state setting signal is not input, the angular frequency value becomes zero, and if the deviation signal is input and the power flow state setting signal is input, proportional control calculation or proportional integral control calculation is performed for the deviation signal. a first signal generating section that outputs a first signal representing an angular frequency ωa at which the angular frequency value is equal to the result of these calculations; and a first adder that outputs an angular frequency signal representing the sum of the angular frequency ωc and the angular frequency ωc corresponding to the set frequency Fc represented by the set frequency signal. .
【請求項3】請求項1に記載のシミュレーション装置に
おいて、機械トルク信号発生部を、角速度信号と角周波
数信号とが入力されかつ前記角周波数信号が表す角周波
数ωbと前記角速度信号が表す角速度ωrとの差を表す
第2信号を出力する第2減算器と、前記第2信号につい
て比例積分制御演算を行ってこの演算結果を表す第3信
号を出力する第3信号生成部と、前記第3信号と原機械
トルク信号とが入力されかつ前記第3信号の値と前記原
機械トルク信号の値との和の値を有する機械トルク信号
を出力する第2加算器とで構成したことを特徴とする電
力系統のアナログシミュレーション装置。
3. The simulation device according to claim 1, wherein the mechanical torque signal generator is configured to receive an angular velocity signal and an angular frequency signal, and to generate an angular frequency ωb represented by the angular frequency signal and an angular velocity ωr represented by the angular velocity signal. a second subtracter that outputs a second signal representing the difference between and a second adder that receives the signal and the original machine torque signal and outputs a machine torque signal having a value that is the sum of the value of the third signal and the value of the original machine torque signal. An analog simulation device for electric power systems.
【請求項4】発電機回転子シミュレータが出力する角速
度信号と発電機能シミュレータが出力する出力電圧の周
波数を指定する角周波数信号とを切り換えて該発電機能
シミュレータに入力する信号切換部と、前記角周波数信
号が表す角周波数ωbを介して上記出力電圧が模擬電力
系統における所定の初期潮流状態を満足する位相状態に
なるようにする位相制御手段と、前記角速度信号が表す
回転子角速度が前記角周波数ωbを追従する手段とを有
することを特徴とする電力系統のアナログシミュレーシ
ョン装置。
4. A signal switching section that switches between an angular velocity signal outputted by a generator rotor simulator and an angular frequency signal specifying the frequency of an output voltage outputted by the power generation function simulator and inputs the signal to the power generation function simulator; a phase control means for causing the output voltage to be in a phase state that satisfies a predetermined initial power flow state in the simulated power system via the angular frequency ωb represented by the frequency signal; 1. An analog simulation device for a power system, comprising means for tracking ωb.
JP3102900A 1991-05-09 1991-05-09 Analog simulator for power system Pending JPH04334929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3102900A JPH04334929A (en) 1991-05-09 1991-05-09 Analog simulator for power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3102900A JPH04334929A (en) 1991-05-09 1991-05-09 Analog simulator for power system

Publications (1)

Publication Number Publication Date
JPH04334929A true JPH04334929A (en) 1992-11-24

Family

ID=14339738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3102900A Pending JPH04334929A (en) 1991-05-09 1991-05-09 Analog simulator for power system

Country Status (1)

Country Link
JP (1) JPH04334929A (en)

Similar Documents

Publication Publication Date Title
US8198753B2 (en) Power system with method for adding multiple generator sets
Zhu et al. A model-in-the-loop interface to emulate source dynamics in a zonal DC distribution system
CN109217371A (en) Consider voltage converter grid-connected system method for analyzing stability, apparatus and system that phaselocked loop influences
CN113572199A (en) Smooth switching method of network-forming type current converter based on model prediction algorithm
Li et al. Development of a converter based microgrid test platform
Xiao et al. Implementation of system level control and communications in a Hardware-in-the-Loop microgrid testbed
D'Arco et al. Evaluation of virtual inertia control strategies for MMC-based HVDC terminals by P-HiL experiments
Feng et al. Current-type power hardware-in-the-loop interface for black-start testing of grid-forming converter
Hans et al. Towards full electrical certification of wind turbines on test benches-experiences gained from the HiL-GridCoP project
Fyodorova et al. Synchronization digital device development for generators automatic connection to the network by various methods
Hong et al. Realization of high fidelity power-hardware-in-the-loop capability using a MW-scale motor-generator set
Runtz et al. Digital control scheme for a generating unit
JPH04334929A (en) Analog simulator for power system
Wald et al. Virtual synchronous machine control for asynchronous grid connections
Walker et al. Discrete control of an AC turbogenerator by output feedback
Reddy et al. Automatic generation control of multi-area power system using active disturbance rejection control
Venayagamoorthy et al. Simulation studies with a continuously online trained artificial neural network controller for a micro-turbogenerator
Peiris et al. Generation of fuzzy rules to develop fuzzy logic modulation controllers for damping of power system oscillations
Nicholson Integrated control of a nonlinear turboalternator model under fault conditions
Ernst et al. Validation of a Converter Control based on a Generator Model as Voltage Source
JPH09130978A (en) Emergency power supply unit
Colas et al. Wp3-control and operation of a grid with 100% converter-based devices deliverable 3.5: Local control for grid-forming converters
Mishra Analysis and design of gradient descent based pre‐synchronization control for synchronverter.
Campos et al. Dynamic analysis and design of static series compensators for unbalanced AC voltage supplies
Ferrari Maglia et al. Design and Evaluation of a Model-Free Frequency Control Strategy in Islanded Microgrids with Power-Hardware-in-the-Loop Testing