JPH04334564A - Two-liquid separating recovery device - Google Patents

Two-liquid separating recovery device

Info

Publication number
JPH04334564A
JPH04334564A JP19753991A JP19753991A JPH04334564A JP H04334564 A JPH04334564 A JP H04334564A JP 19753991 A JP19753991 A JP 19753991A JP 19753991 A JP19753991 A JP 19753991A JP H04334564 A JPH04334564 A JP H04334564A
Authority
JP
Japan
Prior art keywords
pump
shaft
liquid
impeller
functional part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19753991A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Sekino
関野 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19753991A priority Critical patent/JPH04334564A/en
Publication of JPH04334564A publication Critical patent/JPH04334564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Floating Material (AREA)
  • Centrifugal Separators (AREA)

Abstract

PURPOSE:To ensure that only a single drive source is required and thereby the compactness of a device and energy saving can be realized with the capability of operating a pump functional part intermittently by connecting a recovery functional part to the pump functional part which is conventionally provided separately. CONSTITUTION:The subject device is designed so that a floating liquid between two mutually insoluble liquids such as water and oil is recovered by separation using a vortex centripetal force method. A recovery functional part consists of one or more spiral plates 1 half-submerged horizontally below the liquid level and a suspending device 12 supporting the spiral plates. In addition, an enveloped cylinder 4 is provided in the central of the recovery functional part in such a manner that a lower end member is positioned deeper than the spiral plate 1. At the same time, a vortex impeller 3 is installed in a cylindrical cover 2 provided beneath the spiral plate. The spiral plate 1 is connected to a motor shaft through a reduction gear part 10 and is driven by a motor. On the other hand, the pump functional part consists of an impeller 6 mounted in a pump casing 8 as a centrifugal pump, and the pump shaft is connected to the motor shaft 11 through a clutch part 9.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は水と油あるいは有機溶剤
などの如く、互に不溶な二液間における浮上液を、渦流
による向心力方式で、分離回収する装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for separating and recovering a floating liquid between two mutually insoluble liquids, such as water and oil or an organic solvent, using a centripetal force method using a vortex flow.

【0002】0002

【従来の技術】相互に不溶な二液の渦流による分離回収
方式には、比重差を利用した高速回転による遠心力方式
(例えば特公昭52−47185など)と、回転座標系
内の運動の慣性力を利用した低速渦流による向心力方式
(例えば特公昭59−20807など)とがある。前者
は被回収液が少量の場合は回収が困難であるが、後者は
微量でもよく、連続回収も可能て、且つ省エネルギーの
ため、多方面に利用されつつある。
[Prior Art] Separation and recovery methods using eddy currents for two mutually insoluble liquids include a centrifugal force method using high-speed rotation that utilizes the difference in specific gravity (for example, Japanese Patent Publication No. 52-47185, etc.), and a method based on inertia of motion within a rotating coordinate system. There is a centripetal force method (for example, Japanese Patent Publication No. 59-20807) using low-speed eddy currents that utilize force. The former method is difficult to recover when the amount of liquid to be recovered is small, but the latter method is being used in a wide variety of fields because it can be collected in small amounts, continuous collection is possible, and it saves energy.

【0003】0003

【発明が解決しようとする課題】低速渦流による向心力
方式は、回収浮上液を中心部に効率よく収集する回収機
能は有するものの、そこから吸引排出するポンプ機能が
ないため、別途にポンプ装置を装備しなければならず、
そのために2種類の原動機や、仕様条件によっては2系
統の動力源を要し、装置も大形化して設置上の不都合や
、特に液面に浮べて使用するフロート式などでは、小形
軽量化や動力の供給面に難点が有った。
[Problem to be solved by the invention] Although the centripetal force method using low-speed eddies has a collection function that efficiently collects the collected floating liquid in the center, it does not have a pump function to suck and discharge it from there, so a separate pump device is required. have to,
For this purpose, two types of prime movers and two systems of power sources are required depending on the specification conditions, and the equipment becomes large and inconvenient to install.In particular, float type, which is used floating on the liquid surface, needs to be made smaller and lighter. There was a problem with the power supply.

【0004】0004

【課題を解決するための手段】本発明ては回転機能部と
ポンプ機能部の双方を一体構造にして、両機能を具備し
た装置にすることて両者の原動機を一つに統合し、動力
源も一元化して小形化と省エネルギー化を図ると共に、
回収機能部を連続稼働させたまま、ポンプ機能部の稼働
だけを回収液の状況に応じて間欠運転し得るようにし、
且つ同運転の自動化も可能にした。
[Means for Solving the Problems] The present invention integrates both the rotary function section and the pump function section into a device that has both functions, and integrates the two prime movers into one, thereby providing a power source. In addition to centralizing the equipment to make it more compact and save energy,
While the recovery function is kept in continuous operation, only the pump function can be operated intermittently depending on the situation of the recovered liquid.
It also made it possible to automate the operation.

【0005】[0005]

【実施例】図1は、本発明装置の一実施例の縦断面図で
、水槽Tの液面に吊り下げる様に設置した状態を示す。   尚Qは水槽内の非回収液(以後単に液Qと呼称する
)でRは液面に浮上した回収液である。  又液QとR
の混合液は図示されてない供給口から流入し、同じく図
示されてない排出口から流出して、液面は常に一定の水
位に維持されているものとする。  尚図2は図1のA
−A矢視断面図で、図3は同じくB−B矢視断面図てあ
る。  先ず回収機能部から説明する。図1及び図2に
おいて、渦巻板1は中心部を包絡円の筒状に成形して水
槽Tの上板から吊具12で液面に水平に、且つ下半分は
液中に没するように保持し、包絡円筒4の下端部材は周
辺の渦巻板部材より深くなるようにし、又包絡円筒4の
上端は適宜水中に没して、回収液Rの侵入流路を妨げな
いように構成されている。  尚図1の実施例では渦巻
板1は2個であるが、1個以上の複数個でもよい。そし
てこの渦巻板直下に円筒カバー2を同心に保持し、カバ
ーの上端面は円筒部直径よりも小さな同心円の穴を設け
、下端は円筒状に開放しておく。  又この円筒内に、
渦流を発生させる渦流インペラー3がパイプ軸5に取り
付けられて配設され、渦巻板1の巻込方向(図2では時
計方向)に回転する様構成されている。  殊にパイプ
軸5は上端を減速機部10を介して原動機軸11と連結
し、下端は下方に配置されたポンプ機能部の吸入口に、
適宜滑り軸受を介して回転自在にかん合している。ここ
で減速機部10について説明すると、図1では歯車式で
あるがベルト式でもよく、又液体の性状(動粘性係数)
によっては渦流速度を調整する必要があるので、従来公
知の無段変速装置などを用いてもよい。また原動機につ
いても従来公知の減速機付電動モータや油圧或るいはエ
アーモータで構成されているものとする。  以上の如
く構成された回収機能部1〜5において、原動機軸11
から減速機部10を介してパイプ軸5を回転すると、渦
流用インペラー3は低速駆動される。  すると液Q及
びRは矢印に示すような渦流を生じ、液面の回収液Rは
図1と図2に示す如く渦巻板1と旋回流の相互作用で中
心部に誘導され、下層の液Qを分離し乍ら包絡円筒4内
に収集され、次第に厚く蓄積される。尚液Qは円筒カバ
ー2の下方に放散されるので、液面側の回収液Rは流入
を妨げられることなく効率よく回収される。以上が回収
機能部の動作説明の概要である。  なおこの一連の動
作は低速回転で行われるため、極めて省エネルギーで稼
働される利点がある。次にポンプ機能部について説明す
る。図1及び図3において、回収機能部の下方に図示さ
れてない保持具でポンプケーシング8を配置固定し、そ
の中にポンプインペラー6を取り付けたポンプインペラ
ー軸(以下単にポンプ軸と呼称する)7を回転自在にか
ん装し、遠心ポンプを構成している。  なお遠心ポン
プは渦巻ポンプやカスケードポンプなどを総称称したも
のとする。かくの如くしてポンプ軸7はポンプケーシン
グ8の中央上部の吸入口から上方に伸び、パイプ軸5の
軸心を通り、上端部の軸受15と回転自在にかん合して
二重軸を構成し、クラッチ部9を介して原動機軸11と
(図4では継手17を介して)連結している。此のよう
にして渦流用とポンプ用の両インペラーは同一原動機で
駆動される。 又14は排水管である。以上のように配置構成された本
装置において本発明装置の特徴であるポンプ吸入機構に
ついて説明する。今上方の包絡円筒4内の回収液Rを下
方のポンプ室に吸引するためには、その間を連通する通
路が必要である。  そのためパイプ軸5を吸入管とし
て兼用する様に工夫されている。  即ちパイプ軸5の
内径は液の流通抵抗を少なくするため、ポンプ軸7の直
径よりも少なくとも2倍以上に設定し、又包絡円筒4内
の液面下に回収液の流入孔13を1個所以上穿ち、パイ
プ軸5の下端は渦流インペラー3を貫通してポンプ吸入
口に達し、適宜軸受を介して回転自在にかん合させてあ
る。 以上の如く構成されたポンプ機能部6〜9において、原
動機軸11からクラッチ部9を介してポンプ軸7を図3
の矢印方向に回転すると、包絡円筒4内に蓄積された回
収液Rはパイプ軸5の流入孔13から二重軸内を通り、
遠心ポンプの吸入口に入る。  そしてポンプインペラ
ー6の遠心力で排水管14から水槽外へ排出される。以
上がポンプ機能部の動作説明の概要である。此で留意す
可きことは、回収液の多少に関係なくポンプの排出量は
一定であるということである。  従って回収機能部と
ポンプ機能部とが同時に駆動されているときは、回収液
Rの割合が少なくなってくると、その分たけ液Qの混入
する割合が多くなってくる。  この不都合を解消し、
回収液だけを排出させるには、先ず包絡円筒内に蓄積さ
れる回収液Rが所定量に達するまでは、ポンプを停止さ
せておくことである。そして所定量に達したらポンプを
稼働させる。そして又蓄積量が減して液QとRの境界が
流入孔13に近づいたら、再度ポンプを停止させるよう
にすればよい。このような操作を反復して行うためには
ポンプ軸の駆動をクラッチ部9で適宜継・断させ間欠運
転するようにすればよい。次にこの間欠操作の自動化に
ついて説明する。図1に示す如く、包絡円筒4の内側に
回収液の検知センサーSを前述したポンプの稼働範囲の
上限と下限にそれぞれ設置し、或は又回収液の発生率が
ほぼ一定である場合には、外部の制御部P内に設けた稼
働時間用と休止時間用のタイマーで、それぞれの時間帯
を設定するなどして、クラッチ部9の継・断を自動的に
制御し、ポンプインペラー6を間欠駆動するようにすれ
ばよい。尚クラッチ部は従来公知の電磁力や油圧又は空
気圧式制御のものでよく、また回収液検知センサーSは
静電容量式や超音波式センサーなどが望ましい。以上が
本発明装置の今一つの特徴であるポンプ間欠自動運転方
式の概要である。次ぎに図4に示す今一つの実施例につ
いて説明する。これは回収機能部の渦流インペラーとポ
ンプインペラーとを二階建の一体構造にし、一つの駆動
軸て回転するようにした簡易型の実施例である。尚16
は回収トラップで、これは微量な薄膜浮上液を回収する
場合に効果を発揮するもので、図1の実施例の場合にも
同様に適用てきる。これの機能説明は後に譲り、二階建
構造のインペラーについて先に説明する。図4において
、ポンプ用下部インペラー20の羽根の上にドーナツ状
円盤を張り付け、その上に渦流用の上部インペラー19
を間筒18を介し、且つポンプケーシングの吸入側隔壁
を挟んで同心に取付け二階建の一体構造に構成し、ポン
プ軸7で回転駆動されるようになっている。  尚図4
のポンプ軸7は継手17を介して原動機軸11と直接連
結している。以上のような構造のため、ポンプ室から排
出される液が渦流インペラー側へ洩れることは少ない。   又この二階建インペラーは上部インペラー19より
下部インペラー20の方が強い遠心作用を要するため、
羽根の形状や大きさ及び枚数などに十分考慮されている
ものとする。以上が二階建インペラーの構造の概要であ
る。本実施例では次ぎの様な特徴がある。  即ち駆動
軸がポンプ軸のみでよいため、図1のようなクラッチ部
や減速機部を省略でき、パイプ軸5も二重軸構造となっ
ているものの吸入管専用になっており、構造的に簡略化
される利点がある。尚回収トラップ16を除くその他の
部材の配置,構造及び機能は、図1の場合と同様である
ため動作説明は省略する。次に回収トラップ16の作用
効果について説明する。図4において包絡円筒4内の液
面直下にコップ状の回収トラップ16を吸入管15に(
図1に適用する場合は適宜滑り軸受を介して)かん合し
、包絡円筒4から伸びるアーム21で回転しないよう保
持されている。  尚パイプ軸5の回収液流入孔13は
回収トラップの底近くに設け、パイプ軸上端は図1の場
合と同様にポンプ軸7と軸受15を介して回転自在にか
ん合している。さて、説明上包絡円筒4内に前以て回収
液が或る程度収集されているものとする。  この状態
から今ポンプが稼働すると、回収トラップ16内の液が
先ず流入孔13からポンプ室へ吸引され、回収トラップ
内の水位は低下し、従ってその周縁から包絡円筒内の表
層液が流れ込み、従って表層に浮上している希薄回収液
も共に落流して流入孔13からポンプ室へ吸引される。 尚此の方法で回収する場合には、液Qも当然混入するが
短時間で終るので総合的には少ない。  むしろ液の表
層部から優先的に回収されるので、少量で且つ拡散性の
高い回収液(例えばガソリンや軽油等)を回収する場合
には極めて有効な手段である。以上が図4の実施例の概
要である。  この実施例では渦流インペラーがポンプ
インペラーと一体構造のため、回転の選択範囲は少ない
が、回収液が定量的に発生する環境下では、比較的構造
が簡単で廉価に製造でき、安直に使用できるなどの利点
がある。以上説明した様に本発明装置についての図1及
び図4の実施例はいづれも固定式装置の場合についてで
あるが、これ等をフロートによる浮上式装置の場合に適
用しても、全く同様に機能効果を発揮し得ることは勿論
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a longitudinal sectional view of an embodiment of the apparatus of the present invention, showing the apparatus suspended above the liquid level of a water tank T. Note that Q is the unrecovered liquid in the water tank (hereinafter simply referred to as liquid Q), and R is the recovered liquid that has floated to the liquid surface. Also liquid Q and R
It is assumed that the mixed liquid flows in from a supply port (not shown) and flows out from a discharge port (also not shown), so that the liquid level is always maintained at a constant level. Note that Figure 2 is A of Figure 1.
3 is a sectional view taken along the line B-B. First, the collection function section will be explained. In FIGS. 1 and 2, the spiral plate 1 has a central part formed into a cylindrical shape with an enveloping circle, and is suspended from the upper plate of the water tank T by a hanging tool 12 so that it is horizontal to the liquid surface, and the lower half is submerged in the liquid. The lower end member of the envelope cylinder 4 is configured to be deeper than the surrounding spiral plate members, and the upper end of the envelope cylinder 4 is appropriately submerged in water so as not to obstruct the intrusion flow path of the recovered liquid R. There is. In the embodiment shown in FIG. 1, there are two spiral plates 1, but one or more spiral plates 1 may be used. A cylindrical cover 2 is held concentrically just below this spiral plate, the upper end surface of the cover is provided with a concentric hole smaller than the diameter of the cylindrical part, and the lower end is left open in a cylindrical shape. Also, inside this cylinder,
A vortex impeller 3 that generates a vortex is attached to a pipe shaft 5 and is configured to rotate in the winding direction of the vortex plate 1 (clockwise in FIG. 2). In particular, the pipe shaft 5 has an upper end connected to a prime mover shaft 11 via a reducer section 10, and a lower end connected to an inlet of a pump function section disposed below.
They are rotatably engaged via suitable sliding bearings. Here, the reduction gear section 10 is explained. In FIG. 1, it is a gear type, but it may be a belt type.
In some cases, it is necessary to adjust the vortex velocity, so a conventionally known continuously variable transmission or the like may be used. Further, the prime mover is also constituted by a conventionally known electric motor with a reduction gear, hydraulic motor, or air motor. In the recovery function units 1 to 5 configured as described above, the prime mover shaft 11
When the pipe shaft 5 is rotated through the reducer section 10, the vortex impeller 3 is driven at a low speed. Then, the liquids Q and R generate a vortex flow as shown by the arrow, and the recovered liquid R on the liquid surface is guided to the center by the interaction of the swirl plate 1 and the swirling flow, as shown in FIGS. 1 and 2, and the liquid Q in the lower layer is collected in the enveloping cylinder 4 while being separated, and gradually accumulates thickly. Since the liquid Q is dispersed below the cylindrical cover 2, the recovered liquid R on the liquid surface side is efficiently recovered without being prevented from flowing in. The above is an outline of the explanation of the operation of the collection function section. Note that this series of operations is performed at low rotation speed, which has the advantage of extremely energy-saving operation. Next, the pump function section will be explained. In FIGS. 1 and 3, a pump casing 8 is arranged and fixed with a holder (not shown) below the recovery function part, and a pump impeller shaft (hereinafter simply referred to as pump shaft) 7 has a pump impeller 6 attached therein. is rotatably mounted to form a centrifugal pump. Note that centrifugal pump is a general term for centrifugal pumps, cascade pumps, etc. In this way, the pump shaft 7 extends upward from the suction port at the upper center of the pump casing 8, passes through the axis of the pipe shaft 5, and is rotatably engaged with the bearing 15 at the upper end to form a double shaft. However, it is connected to the prime mover shaft 11 via the clutch portion 9 (via the joint 17 in FIG. 4). In this way, both the vortex and pump impellers are driven by the same prime mover. Further, 14 is a drain pipe. The pump suction mechanism, which is a feature of the device of the present invention, will be explained in the device arranged and configured as described above. In order to suck the collected liquid R in the upper envelope cylinder 4 into the lower pump chamber, a passage communicating therebetween is required. Therefore, the pipe shaft 5 is devised so that it can also be used as a suction pipe. That is, in order to reduce the flow resistance of the liquid, the inner diameter of the pipe shaft 5 is set at least twice the diameter of the pump shaft 7, and one inlet hole 13 for the recovered liquid is provided below the liquid level in the envelope cylinder 4. The lower end of the pipe shaft 5 passes through the vortex impeller 3 to reach the pump suction port, and is rotatably engaged with the pipe shaft 5 through a suitable bearing. In the pump function sections 6 to 9 configured as described above, the pump shaft 7 is connected from the prime mover shaft 11 via the clutch section 9 as shown in FIG.
When rotated in the direction of the arrow, the collected liquid R accumulated in the envelope cylinder 4 passes through the inlet hole 13 of the pipe shaft 5 into the double shaft,
Enter the inlet of the centrifugal pump. Then, due to the centrifugal force of the pump impeller 6, it is discharged from the drain pipe 14 to the outside of the water tank. The above is an outline of the explanation of the operation of the pump function section. What should be noted here is that the pump discharge rate is constant regardless of the amount of recovered liquid. Therefore, when the recovery function section and the pump function section are driven simultaneously, as the proportion of the recovery liquid R decreases, the proportion of the liquid Q mixed in increases accordingly. Eliminate this inconvenience,
In order to discharge only the recovered liquid, the pump must first be stopped until the recovered liquid R accumulated in the envelope cylinder reaches a predetermined amount. Then, when a predetermined amount is reached, the pump is activated. Then, when the accumulated amount decreases again and the boundary between liquids Q and R approaches the inflow hole 13, the pump may be stopped again. In order to repeatedly perform such an operation, the drive of the pump shaft may be appropriately connected and disconnected by the clutch portion 9 to perform intermittent operation. Next, automation of this intermittent operation will be explained. As shown in FIG. 1, the collected liquid detection sensors S are installed inside the envelope cylinder 4 at the upper and lower limits of the operating range of the pump, or when the generation rate of the collected liquid is almost constant. , the engagement and disengagement of the clutch section 9 is automatically controlled by setting the respective time periods with timers for operating time and rest time provided in the external control section P, and the pump impeller 6 is controlled automatically. It is sufficient to perform intermittent driving. The clutch portion may be controlled by a conventionally known electromagnetic force, hydraulic pressure, or pneumatic force, and the recovered liquid detection sensor S is preferably a capacitance type sensor, an ultrasonic type sensor, or the like. The above is an overview of the pump intermittent automatic operation system, which is another feature of the device of the present invention. Next, another embodiment shown in FIG. 4 will be described. This is a simple embodiment in which the vortex impeller of the recovery function section and the pump impeller are integrated into a two-story structure and rotated by one drive shaft. Sho 16
is a collection trap, which is effective when collecting a small amount of thin film floating liquid, and can be similarly applied to the embodiment shown in FIG. I will leave the functional explanation for this later and explain the two-story structure impeller first. In FIG. 4, a donut-shaped disk is pasted on the blades of the lower pump impeller 20, and the upper impeller 19 for vortex flow is placed on top of the donut-shaped disk.
are attached concentrically via a cylinder 18 and across the suction side bulkhead of the pump casing to form a two-story integral structure, and are rotatably driven by the pump shaft 7. Figure 4
The pump shaft 7 is directly connected to the prime mover shaft 11 via a joint 17. Due to the above structure, the liquid discharged from the pump chamber rarely leaks to the swirl impeller side. Also, in this double-decker impeller, the lower impeller 20 requires a stronger centrifugal action than the upper impeller 19, so
Sufficient consideration shall be given to the shape, size, number, etc. of the blades. The above is an overview of the structure of the double-decker impeller. This embodiment has the following features. In other words, since the drive shaft only needs to be the pump shaft, the clutch section and reducer section as shown in Fig. 1 can be omitted, and although the pipe shaft 5 has a double shaft structure, it is dedicated to the suction pipe, so it is structurally simpler. This has the advantage of being simplified. Note that the arrangement, structure, and function of the other members except for the recovery trap 16 are the same as in the case of FIG. 1, so the explanation of the operation will be omitted. Next, the effects of the recovery trap 16 will be explained. In FIG. 4, a cup-shaped recovery trap 16 is connected to the suction pipe 15 just below the liquid level in the envelope cylinder 4 (
In the case of application to FIG. 1, the arms 21 are engaged with each other via appropriate sliding bearings, and are held so as not to rotate by arms 21 extending from the envelope cylinder 4. The recovered liquid inflow hole 13 of the pipe shaft 5 is provided near the bottom of the recovery trap, and the upper end of the pipe shaft is rotatably engaged with the pump shaft 7 via a bearing 15, as in the case of FIG. Now, for the sake of explanation, it is assumed that a certain amount of recovered liquid has been collected in the envelope cylinder 4 in advance. When the pump starts operating from this state, the liquid in the recovery trap 16 is first sucked into the pump chamber from the inflow hole 13, the water level in the recovery trap decreases, and the surface liquid in the envelope cylinder flows from its periphery, and thus The dilute recovered liquid floating on the surface layer also flows down and is sucked into the pump chamber from the inflow hole 13. In addition, when recovering with this method, the liquid Q is naturally mixed in, but it is finished in a short time, so the overall amount is small. Rather, it is preferentially recovered from the surface layer of the liquid, so it is an extremely effective means when recovering a small amount of liquid with high diffusivity (eg, gasoline, light oil, etc.). The above is an overview of the embodiment shown in FIG. In this example, the vortex impeller is integrated with the pump impeller, so the range of rotation options is limited, but in an environment where recovered liquid is generated quantitatively, the structure is relatively simple, it can be manufactured at low cost, and it can be used easily. There are advantages such as As explained above, the embodiments shown in FIGS. 1 and 4 regarding the device of the present invention are both fixed type devices, but even if they are applied to a floating type device using a float, the results will be exactly the same. Of course, it can exhibit functional effects.

【0006】[0006]

【発明の効果】以上説明した如く、本発明の相互に不溶
な二液分離回収装置は、回収機能部と従来別途に装備さ
れていたポンプ機能部とを、上下に連結して一体構造に
したため、駆動源を一つにでき、動力源も一元化できる
利点がある。又ポンプ軸のクラッチ部を制御することで
回収量に応じた間欠運転ができ、更にこれを回収液検知
センサーやタイマーで自動化することも可能である。又
装置の小形化や省エネルギー化の他、設備費の低減化が
図れるなどの利点あり、更には又これをフロートによる
浮上式装置に適用した場合は、軽量化と動力の一元化に
より機動性を発揮し得る効果がある。尚また本発明装置
は相互に不溶な二液の他、比重の異る液体であれば多少
の分散性のある二液同志でもよく、又浮上性の粉末など
が混入された液体の回収にも適用できる。  更には又
同一液でも他の化学成分(例えば水中の酸素や窒素或は
リン等)や、浮遊微生物(例えば赤潮やアオコ等のプラ
ンクトン)及び物性(例えば液温や粘性或はPH等)の
異る領域などを含有する上層液を回収する場合にも適用
できることは勿論である。従ってその用途も、薬品や食
品及びバイオ産業などの生産工程の他、産業廃液処理や
水質油濁防止装置などの環境公害防止分野にも利用が期
待できる。
[Effects of the Invention] As explained above, the mutually insoluble two-liquid separation and recovery device of the present invention has an integral structure by vertically connecting the recovery function section and the pump function section, which was conventionally provided separately. , there is an advantage that the driving source can be unified, and the power source can also be unified. In addition, by controlling the clutch part of the pump shaft, intermittent operation can be performed depending on the amount of recovered liquid, and furthermore, it is also possible to automate this using a recovered liquid detection sensor and a timer. In addition to making the device more compact and energy-saving, it also has the advantage of reducing equipment costs.Furthermore, when this is applied to a levitation device using floats, it exhibits maneuverability due to weight reduction and centralization of power. There is a potential effect. Furthermore, the device of the present invention can be used not only for two liquids that are insoluble in each other, but also for the collection of two liquids that have some degree of dispersibility as long as they have different specific gravities, and for the recovery of liquids mixed with buoyant powders. Applicable. Furthermore, even in the same liquid, there may be differences in other chemical components (e.g., oxygen, nitrogen, or phosphorus in the water), suspended microorganisms (e.g., plankton such as red tide or blue-green algae), and physical properties (e.g., liquid temperature, viscosity, PH, etc.). It goes without saying that this method can also be applied to the case where the upper layer liquid containing a region containing a large amount of water is recovered. Therefore, it can be expected to be used not only in production processes in the pharmaceutical, food, and bioindustries, but also in the field of environmental pollution prevention, such as industrial waste liquid treatment and water pollution prevention equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明装置の一実施例の縦断面図。FIG. 1 is a longitudinal sectional view of one embodiment of the device of the present invention.

【図2】図1のA−A矢視断面図。FIG. 2 is a sectional view taken along the line AA in FIG. 1;

【図3】図1のB−B矢視断面図。FIG. 3 is a sectional view taken along the line BB in FIG. 1;

【図4】本発明装置の今一つの実施例の縦断面図である
FIG. 4 is a longitudinal sectional view of another embodiment of the device according to the invention.

【符号の説明】[Explanation of symbols]

1  渦巻板                   
   14  排水管2  円筒カバー       
           15  軸受3  渦流インペ
ラー              16  回収トラッ
プ4  包絡円筒                 
   17  継手5  パイプ軸         
           18  間筒6  ポンプイン
ペラー            19  (渦流用)上
部インペラー 7  ポンプ軸                  
  20  (ポンプ用)下部インペラー 8  ポンプケーシング            21
  アーム9  クラッチ部 10  減速機部                 
     P  制御部11  原動機軸      
                Q  (非回収)液 12  吊具                   
       R  回収液13  流入孔     
                   S  回収液
検知センサー T  水槽
1 spiral board
14 Drain pipe 2 Cylindrical cover
15 Bearing 3 Eddy current impeller 16 Recovery trap 4 Enveloping cylinder
17 Joint 5 Pipe shaft
18 Interval 6 Pump impeller 19 (For vortex flow) Upper impeller 7 Pump shaft
20 (For pump) Lower impeller 8 Pump casing 21
Arm 9 Clutch section 10 Reducer section
P control unit 11 prime mover shaft
Q (Non-collected) liquid 12 Hanging tool
R Recovery liquid 13 Inflow hole
S Recovered liquid detection sensor T Water tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  1枚以上の渦巻板を液面に水平に半没
して保持し、渦巻中心部の包絡円筒部材の下端を周辺部
材より深く没する様に構成し、その下方に上端面が同心
円の穴を有する円筒カバーを介し、且つその内側に渦流
インペラーを同心に配置して回収機能部を構成せしめ、
その下方に遠心ポンプ室を設けて、ポンプ軸とその外側
に該軸より十分太い内径のパイプ軸を同心にかん挿して
二重軸を構成し、パイプ軸に就いて前記包絡円筒内の液
面下に流入孔を設け、その下端はポンプ室の吸入口に回
転自在にかん合せしめ、包絡円筒内とポンプ吸入口とを
連通せしめたことを特徴とする二液分離回収装置。
Claim 1: One or more spiral plates are held horizontally half-submerged in the liquid surface, the lower end of the envelope cylindrical member at the center of the spiral is configured to be sunk deeper than the surrounding members, and the upper end surface is below the spiral plate. a cylindrical cover having a concentric hole, and a vortex impeller is arranged concentrically inside the cylindrical cover to constitute a recovery function part,
A centrifugal pump chamber is provided below the pump shaft, and a pipe shaft having an inner diameter sufficiently thicker than the pump shaft is inserted concentrically to the outside of the pump shaft to form a double shaft. A two-liquid separation and recovery device characterized in that an inflow hole is provided at the bottom, the lower end of which is rotatably engaged with the suction port of the pump chamber, thereby communicating the inside of the envelope cylinder and the pump suction port.
【請求項2】  渦流インペラーを取り付けたパイプ軸
と、この軸心を貫通するポンプ軸とで二重軸を構成し、
原動機軸と前者は減速機部を介し、後者はクラッチ部を
介してそれぞれ連結し、且つクラッチ部の継・断を制御
することで、渦流インペラーの回転は継続させたまま、
ポンプ軸のみを適宜間欠運転し得る様にしたことを特徴
とする請求項1の二液分離回収装置。
[Claim 2] A double shaft is constituted by a pipe shaft to which a vortex impeller is attached and a pump shaft passing through this shaft center,
The former is connected to the prime mover shaft through the reducer section, and the latter is connected through the clutch section, and by controlling the connection/disconnection of the clutch section, the vortex impeller continues to rotate.
2. The two-liquid separation and recovery apparatus according to claim 1, wherein only the pump shaft can be operated intermittently.
【請求項3】  渦流インペラーをポンプインペラーの
上部にポンプ室の壁を隔てて二階建ての一体構造とし、
両者を同一駆動軸で回転せしめるようにしたことを特徴
とする請求項1の二液分離回収装置。
[Claim 3] The vortex impeller is formed into a two-story integral structure with a wall of the pump chamber separated from the upper part of the pump impeller,
2. A two-liquid separation and recovery device according to claim 1, wherein both are rotated by the same drive shaft.
JP19753991A 1991-05-07 1991-05-07 Two-liquid separating recovery device Pending JPH04334564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19753991A JPH04334564A (en) 1991-05-07 1991-05-07 Two-liquid separating recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19753991A JPH04334564A (en) 1991-05-07 1991-05-07 Two-liquid separating recovery device

Publications (1)

Publication Number Publication Date
JPH04334564A true JPH04334564A (en) 1992-11-20

Family

ID=16376161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19753991A Pending JPH04334564A (en) 1991-05-07 1991-05-07 Two-liquid separating recovery device

Country Status (1)

Country Link
JP (1) JPH04334564A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972713A (en) * 2010-11-25 2011-02-16 山东省农业科学院农产品研究所 High-speed protein segregating unit
CN106195392A (en) * 2016-08-24 2016-12-07 南京福碧源环境技术有限公司 A kind of mechanical flow instant type control valve
JP2021176611A (en) * 2020-05-07 2021-11-11 国立大学法人静岡大学 Mist recovery device, swirl plate, and mist recovery method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972713A (en) * 2010-11-25 2011-02-16 山东省农业科学院农产品研究所 High-speed protein segregating unit
CN106195392A (en) * 2016-08-24 2016-12-07 南京福碧源环境技术有限公司 A kind of mechanical flow instant type control valve
JP2021176611A (en) * 2020-05-07 2021-11-11 国立大学法人静岡大学 Mist recovery device, swirl plate, and mist recovery method

Similar Documents

Publication Publication Date Title
US5484521A (en) Rotary drum fluid/liquid separator with energy recovery means
CA2618551C (en) Magnetic separation filtering and cleaning apparatus
US5124038A (en) Apparatus for separating and recovering floating liquid
CN110000011A (en) A kind of separation of solid and liquid uses centrifugation apparatus
SE9901234L (en) Separation device for purifying a liquid from suspended or liquid particles suspended therein which is lighter and / or heavier than the liquid
JPH04334564A (en) Two-liquid separating recovery device
CN201899900U (en) Liquid-liquid two-phase mixing-separating device
CN110441473A (en) Prefabricated pumping plant toxic gas detection device
CN210069452U (en) Lubricating oil removes bubble device
JP2005532149A5 (en)
US3631985A (en) Device for cleaning magnetic filters
JP2005532149A (en) Concentrator dilution device
JPS6245363A (en) Centrifugal concentrator
CN107416934A (en) Vibrating air floating pond
CN217746620U (en) Concentric double-shaft reverse-rotation stirring slime water slurry mixing device for laboratory
CN210356128U (en) Novel membrane-oil-water separation equipment
CN205533296U (en) Take liquid storage tank of unsteady pump of liquid level response warning
CN111963450B (en) Intelligent automatic cooling submersible pump
KR20170017091A (en) A Skimmer
CN207333216U (en) A kind of water pump
CN207632646U (en) A kind of high-efficiency grease separation integrated apparatus
CN206518926U (en) A kind of rotary mud discharging device
CN214416698U (en) Oil drainage recovery device for centrifugal oil purifier
CN218320882U (en) Sewage treatment air supporting device
CN217350969U (en) Oil field oily sewage biochemical treatment device