JPH04334171A - Waveform equalizing device for muse signal - Google Patents

Waveform equalizing device for muse signal

Info

Publication number
JPH04334171A
JPH04334171A JP3104463A JP10446391A JPH04334171A JP H04334171 A JPH04334171 A JP H04334171A JP 3104463 A JP3104463 A JP 3104463A JP 10446391 A JP10446391 A JP 10446391A JP H04334171 A JPH04334171 A JP H04334171A
Authority
JP
Japan
Prior art keywords
signal
filter
muse signal
muse
averaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3104463A
Other languages
Japanese (ja)
Inventor
Hironori Mitsufuji
洋徳 三藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3104463A priority Critical patent/JPH04334171A/en
Publication of JPH04334171A publication Critical patent/JPH04334171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Television Systems (AREA)

Abstract

PURPOSE:To prevent malfunction due to noise without being affected of increase in an equalization processing time when an adaptive equalizer filter 5 is in use to apply waveform equalization to a MUSE signal. CONSTITUTION:A filter is controlled in response to a detection output of a transmission distortion detection section 7 provided in a post-stage of an adaptive equalization filter 5 receiving a MUSE signal. An addition averaging circuit 11 implementing the averaging processing of the MUSE signal is provided in a pre-stage of the filter 5 and a changeover circuit 10 is used to input an output signal of the averaging circuit 11 to the filter 5 only at the start of equalization processing and the MUSE signal is directly inputted to the filter 5 in the case of other than the start.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ハイビジョン信号を帯
域圧縮してなるMUSE信号の伝送系内の中継器や受信
機に使用される波形等化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveform equalization device used in a repeater or receiver in a transmission system for a MUSE signal obtained by band-compressing a high-definition signal.

【0002】0002

【従来の技術】MUSE信号は、放送衛星、同軸ケーブ
ル、光ケーブル等によって伝送されるが、このような伝
送系により種々の信号歪みを受ける。このため、そのよ
うな歪みによる信号劣化を等化処理し、歪みのないMU
SE信号に戻してデコーダに供給する必要がある。
2. Description of the Related Art MUSE signals are transmitted by broadcasting satellites, coaxial cables, optical cables, etc., and are subject to various signal distortions due to such transmission systems. Therefore, by equalizing the signal deterioration caused by such distortion, a distortion-free MU is created.
It is necessary to convert it back into an SE signal and supply it to the decoder.

【0003】このような目的で使用されるMUSE信号
用の波形等化装置としては、例えば特開昭64−827
78号公報(H04N  7/13)等に示されるよう
に、MUSE信号の垂直ブランキング期間内の第1、第
2ラインに挿入されたVIT信号を利用して伝送歪みを
検出し、その検出出力に応じて波形等化用フィルタのタ
ップ係数を制御するようにした構成が一般的である。
[0003] As a waveform equalizer for MUSE signals used for this purpose, for example, Japanese Patent Laid-Open No. 64-827
As shown in Publication No. 78 (H04N 7/13), etc., transmission distortion is detected using the VIT signal inserted into the first and second lines within the vertical blanking period of the MUSE signal, and the detected output is It is common to have a configuration in which the tap coefficients of the waveform equalization filter are controlled according to the waveform equalization filter.

【0004】図3は斯る従来のMUSE信号用波形等化
装置の概略構成を示しており、(1)は入力されたアナ
ログMUSE信号の伝送帯域幅(8.1MHz)以上を
カットするためのローパスフィルタ、(2)はこのフィ
ルタからのMUSE信号をデジタル信号に変換するA/
D変換部、(3)はそのA/D変換後のMUSE信号中
の水平、垂直同期信号を分離検出する同期検出部、(4
)はその各同期信号を時間基準として各種のタイミング
パルスを発生するタイミングパルス発生部、(5)はA
/D変換後のMUSE信号が入力される多段のトランス
バーサルフィルタからなる適応等化型のフィルタである
FIG. 3 shows a schematic configuration of such a conventional MUSE signal waveform equalization device, and (1) is a device for cutting the transmission bandwidth (8.1 MHz) or more of the input analog MUSE signal. A low-pass filter, (2) is an A/C converting the MUSE signal from this filter into a digital signal.
The D conversion unit (3) is a synchronization detection unit that separates and detects the horizontal and vertical synchronization signals in the MUSE signal after the A/D conversion, (4
) is a timing pulse generator that generates various timing pulses using each synchronization signal as a time reference, and (5) is A.
This is an adaptive equalization type filter consisting of a multi-stage transversal filter into which the MUSE signal after /D conversion is input.

【0005】また、(6)は上記フィルタ(5)を通過
したMUSE信号からVIT信号を分離抽出するVIT
信号取込み部、(7)はその抽出されたVIT信号のゴ
ーストや波形歪み等の伝送歪みを理想VIT波形に対す
る誤差信号として検出する伝送歪み検出部、(8)はそ
の誤差信号に基づいて前記フィルタ(5)の各段のタッ
プ係数の変更を行うタップ係数補正部、(9)は前記タ
イミングパルス発生部(4)のタイミングでタップ係数
の書込み/読出しが行われるタップ係数メモリである。
Further, (6) is a VIT signal that separates and extracts the VIT signal from the MUSE signal that has passed through the filter (5).
a signal acquisition section; (7) a transmission distortion detection section that detects transmission distortion such as a ghost or waveform distortion of the extracted VIT signal as an error signal with respect to the ideal VIT waveform; (5) is a tap coefficient correction section that changes the tap coefficients of each stage; (9) is a tap coefficient memory in which tap coefficients are written/read at the timing of the timing pulse generation section (4).

【0006】[0006]

【発明が解決しようとする課題】さて、この波形等化装
置では、前述のようにMUSE信号の垂直ブランキング
期間の第1、第2ラインに挿入された図4に示すVIT
信号期間を用いて伝送歪みの検出を行っており、このV
IT信号期間は264サンプル目以外では本来は一定の
直流レベルとなっている筈であるが、実際には種々のノ
イズが混入している。このため、これらのノイズが上記
264サンプル目のVIT信号のゴースト成分として誤
検出されると、却ってゴーストを付加してしまうことに
なる。
[Problem to be Solved by the Invention] Now, in this waveform equalizer, as mentioned above, the VIT signal shown in FIG.
Transmission distortion is detected using the signal period, and this V
The IT signal period should originally be at a constant DC level except for the 264th sample, but in reality, various noises are mixed in. Therefore, if these noises are erroneously detected as a ghost component of the 264th sample of the VIT signal, a ghost will be added instead.

【0007】このような事態を解消するには、MUSE
信号からVIT信号期間を1回だけ取り込んで伝送歪み
の検出を行うのではなく、多数回取り込んでそれらの加
算平均によってノイズの影響を除去し、それをVIT信
号期間の出力として伝送歪みの検出を行うようにすれば
よい。その際、取り込み回数が多いほどノイズの除去効
果が大きいから、取り込み回数としては128回程度が
適当と考えられる。
[0007] To resolve this situation, MUSE
Instead of capturing the VIT signal period from the signal only once and detecting transmission distortion, it captures it multiple times and averages it to remove the influence of noise, and uses it as the output of the VIT signal period to detect transmission distortion. Just do it. At this time, since the noise removal effect is greater as the number of times the image is captured increases, it is considered that approximately 128 times is appropriate for the number of times the image is captured.

【0008】しかしながら、VIT信号は1フレーム即
ち1/30秒に1回(実際には図4のように第1ライン
目と第2ライン目の2回であるが、それらはサンプリン
グ位相が異なるため実質的に1回)しか伝送されないか
ら、128回の取り込みを行うには4秒以上かかる。こ
れはフィルタ(5)のタップ係数設定のための演算時間
に比較して膨大な時間であり、従って、波形等化動作が
開始されてから定常状態に移行するまでに極めて長時間
を要することになる。
[0008] However, the VIT signal is generated once every frame, that is, 1/30 second (actually twice, on the first line and the second line as shown in Fig. 4, but because the sampling phases are different, Since the data is actually transmitted only once), it takes more than 4 seconds to capture 128 times. This is a huge amount of time compared to the calculation time for setting the tap coefficients of the filter (5), and therefore it takes an extremely long time from the start of the waveform equalization operation to the transition to a steady state. Become.

【0009】そこで、本発明は、上記欠点を解消し、M
USE信号の波形等化処理を効率よく行うことができる
ようにすることを目的とする。
[0009] Therefore, the present invention solves the above-mentioned drawbacks and
It is an object of the present invention to enable efficient waveform equalization processing of a USE signal.

【0010】0010

【課題を解決するための手段】本発明では、MUSE信
号が入力される適応等化型フィルタの後段に設けた伝送
歪み検出部の出力に応じて前記フィルタを制御する波形
等化装置に於いて、前記MUSE信号の平均化処理を行
う加算平均化回路と、この加算平均化回路の出力信号と
上記MUSE信号とを切り換えて導出する切換回路とを
前記フィルタの前段に設け、前記切換回路により等化処
理開始時のみ前記加算平均化回路の出力信号を前記フィ
ルタに入力せしめ、上記開始時以外の時は前記MUSE
信号を前記フィルタに直接入力せしめるようにした。
[Means for Solving the Problems] In the present invention, in a waveform equalization device that controls the filter according to the output of a transmission distortion detection section provided after the adaptive equalization filter to which the MUSE signal is input, , an averaging circuit that performs averaging processing of the MUSE signal, and a switching circuit that switches and derives the output signal of the averaging circuit and the MUSE signal are provided at a stage before the filter, and the switching circuit The output signal of the averaging circuit is input to the filter only at the start of the averaging process, and the MUSE
The signal is directly input to the filter.

【0011】また、本発明では、前記加算平均化回路を
、入力されるMUSE信号とその1フレーム遅延出力と
を或る係数比率で順次累積加算して行く累積加算回路に
より構成するとともに、前記MUSE信号中のノイズ量
を検出し、その検出出力に応じて上記係数比率を変化さ
せるようにした。
Further, in the present invention, the averaging circuit is constituted by an accumulative adding circuit that sequentially cumulatively adds the input MUSE signal and its one-frame delayed output at a certain coefficient ratio; The amount of noise in the signal is detected, and the coefficient ratio is changed according to the detected output.

【0012】そして、前記ノイズ量の検出は、例えばM
USE信号の垂直ブランキング期間内のクランプレベル
期間に行うように構成される。
[0012]The detection of the amount of noise is carried out using, for example, M
It is configured to be performed during the clamp level period within the vertical blanking period of the USE signal.

【0013】[0013]

【作  用】本発明に依れば、MUSE信号の加算平均
化処理が等化処理の開始前に行われているので、等化処
理の開始時には直ちに伝送歪みの検出を行うことができ
、等化処理時間の大幅な短縮が可能になる。
[Operation] According to the present invention, since the averaging process of the MUSE signal is performed before the start of the equalization process, transmission distortion can be detected immediately at the start of the equalization process, etc. This makes it possible to significantly reduce processing time.

【0014】また、上記加算平均化回路を構成する累積
加算回路の前記係数比率がノイズ量に応じて可変される
ので、伝送歪みの時間変動の追随性を必要以上に犠牲に
することなく、ノイズの影響を除去できる。
Further, since the coefficient ratio of the cumulative addition circuit constituting the above-mentioned averaging circuit is varied according to the amount of noise, noise can be reduced without unnecessarily sacrificing followability of time fluctuations of transmission distortion. The influence of can be removed.

【0015】更に、上記ノイズ量の検出を垂直ブランキ
ング期間内の上記クランプレベル期間に行うことにより
、ノイズを映像信号と区別して確実に検出できる。
Furthermore, by detecting the amount of noise during the clamp level period within the vertical blanking period, the noise can be reliably detected while being distinguished from the video signal.

【0016】[0016]

【実施例】図1は本発明の波形等化装置の一実施例を示
しており、(10)(11)(12)はそれぞれ本発明
により新たに追加された切換回路、加算平均化部、及び
ノイズ検出部であり、他の部分は図4の従来装置と同一
であるので、その同一部分には同じ符号を付して説明を
省略する。
[Embodiment] Fig. 1 shows an embodiment of the waveform equalization device of the present invention, and (10), (11), and (12) respectively indicate a switching circuit, an averaging section, and a newly added switching circuit according to the present invention. and a noise detection section, and the other parts are the same as the conventional device shown in FIG. 4, so the same parts are given the same reference numerals and the explanation will be omitted.

【0017】前記加算平均化部(11)はA/D変換部
(2)から出力されるMUSE信号を1フレーム毎に累
積加算して平均化を行ない、また、ノイズ検出部(12
)は例えば上記MUSE信号の垂直ブランキング期間内
のクランプレベル区間を使用してそのMUSE信号中の
ノイズ量の大小を検出するようになっており、その検出
出力に応じて上記加算平均化部(12)を制御するよう
になっている。
The averaging section (11) cumulatively adds and averages the MUSE signals output from the A/D converter (2) for each frame, and also averages the MUSE signals output from the A/D converter (2).
) detects the amount of noise in the MUSE signal using, for example, the clamp level section within the vertical blanking period of the MUSE signal, and the averaging section ( 12).

【0018】すなわち、上記加算平均化部(11)は図
2の如く乗算係数K(0<K<1)の乗算器(13)、
乗算係数1−Kの乗算器(16)、加算器(14)及び
1フレーム遅延回路(15)から構成されており、ノイ
ズ検出部(12)の出力が上記各乗算器(13)(16
)の係数Kを変化させる(その構成はここでは詳述しな
いが)のである。その際、ノイズ量大の検出時には上記
係数Kが小さくなるように変化させて加算平均化効果即
ちノイズ除去効果が大きくなるようにし、ノイズ量小の
検出時には上記Kが大きくなるように変化させて伝送歪
みの時間変化の追随性が余り低下しないように制御して
いる。
That is, the averaging section (11) includes a multiplier (13) with a multiplication coefficient K (0<K<1) as shown in FIG.
It consists of a multiplier (16) with a multiplication coefficient of 1-K, an adder (14), and a 1-frame delay circuit (15), and the output of the noise detection section (12) is applied to each of the multipliers (13) (16).
) (although its structure will not be described in detail here). At this time, when a large amount of noise is detected, the coefficient K is changed to become smaller so that the averaging effect, that is, the noise removal effect becomes larger, and when a small amount of noise is detected, the above-mentioned K is changed to become larger. Control is performed so that the ability to follow temporal changes in transmission distortion does not deteriorate too much.

【0019】一方、前記切換回路(10)は、A/D変
換部(2)の出力信号と上記加算平均化部(11)の出
力信号とを切り換えて、その一方をフィルタ(5)に入
力させるものであり、タイミング発生部(4)からのタ
イミング信号によって等化処理動作の開始時のみb側に
切り換わり、それ以外のとき即ち等化処理の開始前及び
等化処理開始から所定微小時間経過後の定常動作(等化
処理)状態ではa側に切り換わるようになっている。
On the other hand, the switching circuit (10) switches between the output signal of the A/D conversion section (2) and the output signal of the averaging section (11), and inputs one of them to the filter (5). The timing signal from the timing generator (4) switches to the b side only at the start of the equalization processing operation, and at other times, that is, before the start of the equalization processing and for a predetermined minute time after the start of the equalization processing. In the steady operation (equalization processing) state after the elapse of time, the switch is made to the side a.

【0020】したがって、この図1の装置では、電源投
入時から加算平均化部(11)によって既に平均化処理
が行われているので、その後に波形等化処理を行わせる
べく切換回路(10)をb側に切り換えると、上記平均
化処理によってノイズが除去又は軽減されたMUSE信
号に対して伝送歪みの検出が直ちに行われ、短時間の内
にフィルタ(5)のタップ係数の設定が完了することに
なる。この伝送歪み検出からタップ係数設定までの動作
は図4の場合と同一である。そして、タップ係数の設定
が完了すると、前述したように切換回路(10)はa側
に復帰してA/D変換部(2)からのMUSE信号に対
して等化処理が行われるのである。
Therefore, in the apparatus shown in FIG. 1, since the averaging process has already been performed by the adding and averaging section (11) when the power is turned on, the switching circuit (10) is used to perform the waveform equalization process after that. When switched to the b side, transmission distortion is immediately detected for the MUSE signal from which noise has been removed or reduced by the above averaging process, and the setting of the tap coefficients of the filter (5) is completed within a short time. It turns out. The operations from transmission distortion detection to tap coefficient setting are the same as in the case of FIG. 4. When the setting of the tap coefficients is completed, the switching circuit (10) returns to the a side as described above, and equalization processing is performed on the MUSE signal from the A/D converter (2).

【0021】また、上記のよう等化処理が行われている
定常動作状態からフィルタ(5)のタップ係数を再設定
して波形等化を行う場合も、切換回路(10)をb側に
切り換えると同様に達成される。
[0021] Also, when performing waveform equalization by resetting the tap coefficient of the filter (5) from the steady operating state where equalization processing is being performed as described above, the switching circuit (10) is switched to the b side. is achieved in the same way.

【0022】なお、上述ではノイズ量検出の一例として
垂直ブランキング期間内のクランプレベル期間を用いる
ようにしたが、この他にも例えば上記垂直ブランキング
期間内のVIT信号期間やフレームパルス期間を利用す
るようにしてもよい。
[0022] In the above description, the clamp level period within the vertical blanking period is used as an example of noise amount detection, but in addition to this, for example, the VIT signal period or frame pulse period within the vertical blanking period may be used. You may also do so.

【0023】[0023]

【発明の効果】本発明に依れば、MUSE信号を複数回
加算平均化した後、その伝送歪みを検出して波形等化処
理を行う波形等化装置に於いて、上記加算平均化処理が
常に等化処理の開始前に行われるので、上記加算平均化
のために等化処理時間が徒に大きくならず、必要最小限
の処理時間で波形等化処理を行わせることができる。
[Effects of the Invention] According to the present invention, in a waveform equalization device that performs waveform equalization processing by detecting transmission distortion after averaging a MUSE signal a plurality of times, the above-mentioned averaging processing is performed. Since it is always performed before the start of the equalization process, the equalization process time is not unnecessarily increased due to the above-mentioned averaging process, and the waveform equalization process can be performed in the minimum necessary processing time.

【0024】また、上記加算平均化回路を構成する累積
加算回路の前記係数比率がノイズ量に応じて可変される
ので、伝送歪みの時間変動の追随性を必要以上に犠牲に
することなく、ノイズの影響を適切に除去できる。
Further, since the coefficient ratio of the cumulative addition circuit constituting the averaging circuit is varied according to the amount of noise, the noise can be reduced without unnecessarily sacrificing the followability of time fluctuations of transmission distortion. The effects of this can be appropriately removed.

【0025】更に、上記ノイズ量の検出を垂直ブランキ
ング期間のクランプレベル区間に行うようにした場合は
、検出期間が長くなるので、ノイズ量を確実に検出でき
る。
Furthermore, if the noise amount is detected during the clamp level section of the vertical blanking period, the detection period becomes longer, so the noise amount can be detected reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の概略構成を示すブロック図
である。
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention.

【図2】その要部の内部構成の一例を示すブロック図で
ある。
FIG. 2 is a block diagram showing an example of the internal configuration of its main parts.

【図3】従来の波形等化装置の概略構成を示すブロック
図である。
FIG. 3 is a block diagram showing a schematic configuration of a conventional waveform equalization device.

【図4】VIT信号及びその前後の期間の信号波形図で
ある。
FIG. 4 is a signal waveform diagram of the VIT signal and periods before and after the VIT signal.

【符号の説明】[Explanation of symbols]

(13)乗算器 (14)加算器 (16)乗算器 (13) Multiplier (14) Adder (16) Multiplier

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  MUSE信号が入力される適応等化型
フィルタの後段に伝送歪み検出部を設け、この検出部の
出力に応じて前記フィルタを制御する波形等化装置に於
いて、前記MUSE信号の平均化処理を行う加算平均化
回路と、この加算平均化回路の出力信号と上記MUSE
信号とを切り換えて導出する切換回路とを前記フィルタ
の前段に設け、前記切換回路により等化処理開始時のみ
前記加算平均化回路の出力信号を前記フィルタに入力せ
しめ、上記開始時以外の時は前記MUSE信号を上記フ
ィルタに直接入力せしめるようにしたことを特徴とする
MUSE信号の波形等化装置。
1. A waveform equalization device that includes a transmission distortion detection unit provided at a subsequent stage of an adaptive equalization filter to which a MUSE signal is input, and controls the filter according to the output of the detection unit, wherein the MUSE signal An averaging circuit that performs averaging processing, an output signal of this averaging circuit, and the above MUSE
A switching circuit for switching and deriving the signal is provided before the filter, and the switching circuit allows the output signal of the averaging circuit to be input to the filter only at the start of equalization processing, and at other times other than the start time. A waveform equalization device for a MUSE signal, characterized in that the MUSE signal is directly input to the filter.
【請求項2】  前記加算平均化回路を、入力されるM
USE信号とその1フレーム遅延出力とを或る係数比率
で順次累積加算して行く累積加算回路により構成すると
ともに、前記MUSE信号中のノイズ量を検出し、その
検出出力に応じて上記係数比率を変化せしめるようにし
てなる請求項1記載のMUSE信号の波形等化装置。
[Claim 2] The averaging circuit is connected to the input M
It is constituted by a cumulative addition circuit that sequentially cumulatively adds the USE signal and its one-frame delayed output at a certain coefficient ratio, detects the amount of noise in the MUSE signal, and adjusts the coefficient ratio according to the detected output. 2. The MUSE signal waveform equalizer according to claim 1, wherein the MUSE signal waveform equalizer is configured to change the waveform of the MUSE signal.
【請求項3】  前記ノイズ量の検出をMUSE信号の
垂直ブランキング期間内のクランプレベル期間に行うよ
うにしてなる請求項3記載のMUSE信号の波形等化装
置。
3. The MUSE signal waveform equalization device according to claim 3, wherein the detection of the noise amount is performed during a clamp level period within a vertical blanking period of the MUSE signal.
JP3104463A 1991-05-09 1991-05-09 Waveform equalizing device for muse signal Pending JPH04334171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104463A JPH04334171A (en) 1991-05-09 1991-05-09 Waveform equalizing device for muse signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104463A JPH04334171A (en) 1991-05-09 1991-05-09 Waveform equalizing device for muse signal

Publications (1)

Publication Number Publication Date
JPH04334171A true JPH04334171A (en) 1992-11-20

Family

ID=14381285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104463A Pending JPH04334171A (en) 1991-05-09 1991-05-09 Waveform equalizing device for muse signal

Country Status (1)

Country Link
JP (1) JPH04334171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174590A (en) * 2005-12-26 2007-07-05 Canon Inc Signal processor and imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174590A (en) * 2005-12-26 2007-07-05 Canon Inc Signal processor and imaging apparatus

Similar Documents

Publication Publication Date Title
JPH06233156A (en) Ghost-erasing reference signal trapping circuit used for tv receiver or video recorder
JPH0223049B2 (en)
JP2514854B2 (en) Video signal noise eliminator
JP3168576B2 (en) Waveform equalization filter device
JPH04334171A (en) Waveform equalizing device for muse signal
US5210607A (en) Ghost reduction device for removing ghost components of a television signal
KR0144839B1 (en) A ghost cancelling apparatus
JP2599036B2 (en) MUSE signal waveform equalization method
US4458269A (en) Sampling arrangement for a television ghost signal cancellation system
JPH04281676A (en) Waveform equalizing method for muse signal
KR0129563B1 (en) A ghost cancelling apparatus
JPS63117571A (en) Waveform distortion detecting system for television signal
JP2776938B2 (en) Waveform equalizer
JPH0690385A (en) Waveform equalizer
KR930011842B1 (en) Low band filter circuit of muse system
JP2000156799A (en) Ghost eliminating device
KR100556377B1 (en) Symbol Timing Recovery
JPH0888783A (en) Control method for waveform equalizer
JP2901646B2 (en) Waveform equalizer
JPH0591370A (en) Signal waveform equalizing method
JPH04322569A (en) Waveform equalizing circuit
JPH01288173A (en) Long ghost eliminating device
JPH0458755B2 (en)
JPH03167968A (en) Ghost reducer
JPH0670196A (en) Muse signal processing circuit