JPH04332621A - Injection molding machine possessing estimation function of temperature of resin eithin mold - Google Patents

Injection molding machine possessing estimation function of temperature of resin eithin mold

Info

Publication number
JPH04332621A
JPH04332621A JP13029991A JP13029991A JPH04332621A JP H04332621 A JPH04332621 A JP H04332621A JP 13029991 A JP13029991 A JP 13029991A JP 13029991 A JP13029991 A JP 13029991A JP H04332621 A JPH04332621 A JP H04332621A
Authority
JP
Japan
Prior art keywords
mold
temperature
resin
resin temperature
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13029991A
Other languages
Japanese (ja)
Inventor
Yoji Kobayashi
洋二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP13029991A priority Critical patent/JPH04332621A/en
Publication of JPH04332621A publication Critical patent/JPH04332621A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To enable highly acculately calculation of a temperature of resin within a mold. CONSTITUTION:The title machine is provided with a resin temperature sensor (43) within a reservoir in a heating cylinder, a temperature sensor (42) of a mold, a timer (30) measuring a time from completion of injection of resin to the foregoing mold or starting of dwell, a parameter input device (33) for setting up of an estimation value of resin in a terminal condition as parameter and an estimation device estimating a resin temperature within the foregoing mold until the lapse of a fixed time from starting of timing of the foregoing timer by signals from the foregoing parts each. Then the estimation device performs estimation of the resin temperature within the foregoing mold based on a formula obtained by superposing the first index function having lowering time constant of the resin temperature within the mold for its index and the second index function having lowering time constant of a mold temperature for its index upon each other.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は射出成形機に関し、特に
金型内樹脂温度推定機能を有する射出成形機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection molding machine, and more particularly to an injection molding machine having a function of estimating resin temperature within a mold.

【0002】0002

【従来の技術】一般に、射出成形は樹脂の可塑化→金型
への射出→金型内での保圧→冷却という工程で行われる
。このような工程を経て得られる成形品の品質は、特に
保圧工程での金型内の樹脂圧力及び温度制御に左右され
る。このうち樹脂圧力については、金型に設置された圧
力センサにより検出して精度良く制御することができる
。しかしながら、樹脂温度については、金型のキャビテ
ィ表面の温度では不十分であり、かといってキャビティ
内に温度センサを設置することは難しく、実測値による
温度制御は不可能である。従来、金型内の樹脂温度制御
は、樹脂温度を推定によって得ることで行われており、
樹脂温度の推定方式としては以下の2通りの方法が提案
されている。第1の方法は、平板における熱伝導の式を
利用する方法であり、樹脂温度の推定値は下記の数式1
によって求められる。
2. Description of the Related Art Generally, injection molding is carried out through the following steps: plasticization of resin, injection into a mold, holding pressure in the mold, and cooling. The quality of the molded product obtained through such a process is particularly influenced by the resin pressure and temperature control within the mold during the pressure holding process. Of these, the resin pressure can be detected and controlled with high precision by a pressure sensor installed in the mold. However, regarding the resin temperature, the temperature at the surface of the mold cavity is insufficient, and it is difficult to install a temperature sensor inside the cavity, making it impossible to control the temperature using actual measured values. Conventionally, resin temperature control in the mold has been performed by obtaining the resin temperature by estimation.
The following two methods have been proposed as methods for estimating resin temperature. The first method is to use the formula for heat conduction in a flat plate, and the estimated value of the resin temperature is calculated using the following formula 1.
It is determined by

【0003】0003

【数1】[Math 1]

【0004】但し、Tm (t)は金型温度、θr は
射出開始時の加熱シリンダ内の樹脂温度、aは熱拡散係
数、sは成形品の代表厚み、πは円周率、tは射出開始
からの時間である。第2の方法は、金型のキャビティ表
面と金型内部の2点における温度計測値を用いる方法で
あり、推定値Eθmは以下の式によって求められる。 Eθm =x・Tf −y・Tw  但し、Tf はキャビティ表面の温度、Tw は金型内
部の温度である。また、x,yはそれぞれ、金型及び樹
脂により決まる定数であり、次のようにして求められる
。まず、成形を行なって金型内のキャビティ表面近くに
埋め込まれた温度センサによりキャビティ表面温度Tf
1を測定し、金型内に埋め込まれた温度センサにより金
型内部温度Tw1を測定する。次に、金型温度を変化さ
せてキャビティ表面温度Tf2、金型内部温度Tw2を
それぞれ測定する。推定値Eθm としては、加熱シリ
ンダ内の温度(トーピードヘッド温度あるいはフランジ
部設定温度)を入れてxとyを連立方程式の解として求
める。
[0004] However, Tm (t) is the mold temperature, θr is the resin temperature in the heating cylinder at the start of injection, a is the thermal diffusion coefficient, s is the typical thickness of the molded product, π is the circumference, and t is the injection This is the time since the start. The second method is a method that uses temperature measurements at two points: the surface of the mold cavity and the inside of the mold, and the estimated value Eθm is determined by the following formula. Eθm =x·Tf −y·Tw where Tf is the temperature of the cavity surface and Tw is the temperature inside the mold. Further, x and y are constants determined by the mold and resin, respectively, and are determined as follows. First, molding is performed, and a temperature sensor embedded near the cavity surface in the mold determines the cavity surface temperature Tf.
1, and the mold internal temperature Tw1 is measured by a temperature sensor embedded in the mold. Next, the mold temperature is changed and the cavity surface temperature Tf2 and mold internal temperature Tw2 are measured, respectively. As the estimated value Eθm, the temperature inside the heating cylinder (torpedo head temperature or flange part set temperature) is entered, and x and y are determined as solutions of simultaneous equations.

【0005】例えば、樹脂温度が200℃(Eθm =
200℃)で金型温度を40℃に設定して成形した時T
f1=60℃、Tw1=40℃と実測されたとする。         200=60x−40y      
                         
 (1)次に、樹脂温度はそのままにして金型温度を5
0℃に変更して成形した時Tf2=70℃、Tw2=5
0℃が実測されたとする。         200=70x−50y      
                         
 (2)(1),(2)式を解いてx,yを求めると、
x=10、y=10になる。このようにしてx,yを求
め、成形中のキャビティ表面温度Tf 、金型内部温度
Tw を測定することにより推定値Eθm を算出する
For example, when the resin temperature is 200°C (Eθm =
200℃) and molding with the mold temperature set to 40℃T
Assume that f1=60°C and Tw1=40°C were actually measured. 200=60x-40y

(1) Next, keep the resin temperature as it is and increase the mold temperature to 5.
When molded at 0℃, Tf2=70℃, Tw2=5
Assume that 0°C is actually measured. 200=70x-50y

(2) Solving equations (1) and (2) to find x and y, we get
x=10, y=10. In this way, x and y are determined, and the estimated value Eθm is calculated by measuring the cavity surface temperature Tf and the mold internal temperature Tw during molding.

【0006】[0006]

【発明が解決しようとする課題】前述した第1の方法で
は、パラメータaやsが決めにくいことや、1つの指数
関数による近似であるため射出プロセスや保圧プロセス
の全時間域にわたって高い精度で推定値を得ることは難
しい。一方、第2の方法でも、連続成形中に温度推定を
行なった場合には、加熱シリンダ内の樹脂温度変動は推
定値に反映されないことになり、推定値の精度が低下す
ることを意味する。以上のような問題点に鑑み、本発明
の課題は金型内樹脂温度の推定値を高精度で算出するこ
とのできる金型内樹脂温度推定機能を有する射出成形機
を提供することにある。
[Problems to be Solved by the Invention] In the first method described above, it is difficult to determine the parameters a and s, and because the approximation is based on a single exponential function, it is difficult to determine the parameters a and s with high accuracy over the entire time range of the injection process and pressure holding process. Estimates are difficult to obtain. On the other hand, in the second method as well, when temperature estimation is performed during continuous molding, resin temperature fluctuations within the heating cylinder are not reflected in the estimated value, which means that the accuracy of the estimated value is reduced. In view of the above-mentioned problems, an object of the present invention is to provide an injection molding machine having an in-mold resin temperature estimation function that can calculate an estimated value of the in-mold resin temperature with high accuracy.

【0007】[0007]

【課題を解決するための手段】本発明による射出成形機
は、加熱シリンダにおけるリザーバ内の樹脂温度センサ
と、金型の温度センサと、前記金型への樹脂の射出完了
あるいは保圧開始時からの時間を計測するタイマと、終
端条件における樹脂温度推定値をパラメータとして設定
するためのパラメータ入力手段と、前記各部からの信号
により前記タイマの計時開始から所定時間が経過するま
での前記金型内の樹脂温度を推定する手段とを備え、該
推定手段は、金型内樹脂温度の降下時定数を指数とする
第1の指数関数と金型温度の降下時定数を指数とする第
2の指数関数との重ね合わせによる式に基づいて前記金
型内樹脂温度の推定を行うことを特徴とする。
[Means for Solving the Problems] An injection molding machine according to the present invention includes a resin temperature sensor in a reservoir in a heating cylinder, a temperature sensor in a mold, and a temperature sensor that detects the temperature of the resin from the time of completion of injection of resin into the mold or the start of pressure retention. a timer for measuring time, a parameter input means for setting an estimated value of resin temperature under terminal conditions as a parameter; a first exponential function whose index is a time constant of decrease in resin temperature in the mold; and a second index whose index is a time constant of decrease in mold temperature. The method is characterized in that the temperature of the resin in the mold is estimated based on a formula superimposed with a function.

【0008】[0008]

【作用】本発明においては、成形条件出しの終了後、試
験的な成形を行う。そして、終端条件における樹脂温度
推定値をパラメータとして設定し、実際の連続成形に入
る。この連続成形作業中、推定手段は各成形サイクル毎
にタイマで規定された時間中の金型内樹脂温度を時間プ
ロフィールとして推定し、このプロフィールに基づいた
温度制御を行う。
[Operation] In the present invention, test molding is carried out after completion of determining the molding conditions. Then, the estimated value of the resin temperature under the final condition is set as a parameter, and actual continuous molding is started. During this continuous molding operation, the estimating means estimates the resin temperature within the mold during the time specified by the timer for each molding cycle as a time profile, and performs temperature control based on this profile.

【0009】[0009]

【実施例】はじめに、図1を参照して本発明を適用した
射出成形機について説明する。この射出成形機100は
、溶融樹脂を射出するための射出装置1と、溶融樹脂を
固めて目的とする成形品を得るための金型2と、射出装
置1の制御系3とを有する。射出装置1では、スクリュ
11を回転駆動することにより、溶融樹脂を加熱シリン
ダ12の先端に設けられているリザーバ13に送る。 この工程は、計量工程と呼ばれる。その後、射出工程に
おいては制御系3がサーボ弁4への操作量を決定し、サ
ーボ弁4を操作する。この操作により、リザーバ13内
の溶融樹脂はゲートを介して金型2内へ充填される。
[Embodiment] First, an injection molding machine to which the present invention is applied will be explained with reference to FIG. This injection molding machine 100 includes an injection device 1 for injecting molten resin, a mold 2 for solidifying the molten resin to obtain a desired molded product, and a control system 3 for the injection device 1. In the injection device 1, the screw 11 is rotationally driven to send the molten resin to the reservoir 13 provided at the tip of the heating cylinder 12. This process is called the metering process. Thereafter, in the injection process, the control system 3 determines the amount of operation to be performed on the servo valve 4, and operates the servo valve 4. By this operation, the molten resin in the reservoir 13 is filled into the mold 2 through the gate.

【0010】次に、保圧工程では、制御系3が金型内の
樹脂圧センサ41、金型温度センサ42、リザーバ13
に設置されたノズル部樹脂温度センサ43からの各検出
信号にもとづいて保圧設定値を演算してサーボ弁4への
操作量を決定し、サーボ弁4を操作する。この操作によ
り、金型2内に充填された溶融樹脂は押圧される。制御
系3はまた、金型温度センサ42、ノズル部樹脂温度セ
ンサ43からの検出信号にもとづいて後述する方法で金
型2のキャビティ内の樹脂温度の変化パターンの推定を
行い、この推定結果にもとづいて樹脂温度の制御を行う
。スクリュ11の移動量及びスクリュ11を駆動する油
圧はそれぞれ、移動量検出器44、油圧検出器45で電
気信号に変換され、増幅器46,47を通して制御系3
にフィードバックされる。
Next, in the pressure holding process, the control system 3 controls the resin pressure sensor 41 in the mold, the mold temperature sensor 42, and the reservoir 13.
The holding pressure set value is calculated based on each detection signal from the nozzle resin temperature sensor 43 installed in the servo valve 4 to determine the operation amount to the servo valve 4, and the servo valve 4 is operated. By this operation, the molten resin filled in the mold 2 is pressed. The control system 3 also estimates the change pattern of the resin temperature in the cavity of the mold 2 based on the detection signals from the mold temperature sensor 42 and the nozzle resin temperature sensor 43 using a method described later, and uses this estimation result. Based on this, the resin temperature is controlled. The amount of movement of the screw 11 and the oil pressure for driving the screw 11 are converted into electric signals by a movement amount detector 44 and an oil pressure detector 45, respectively, and sent to the control system 3 through amplifiers 46 and 47.
will be given feedback.

【0011】制御系3は、計時用のタイマ30、保圧制
御と樹脂温度の推定及び制御機能を有するCPU31、
メモリ32の他に、終端条件の金型内樹脂温度の推定値
をパラメータとして入力するための入力コンソール33
との間でデータを授受する入出力インタフェース34を
有する。制御系3は更に、樹脂圧センサ41、金型温度
センサ42、ノズル部樹脂温度センサ43からの検出信
号をそれぞれディジタル信号に変換するための第1のA
/D変換部35、移動量検出器44、油圧検出器45か
らの検出信号をそれぞれディジタル信号に変換するため
の第2のA/D変換部36、サーボ弁4を駆動するため
のディジタル指令値をアナログ信号に変換するためのD
/A変換部37、増幅器38を有する。
The control system 3 includes a timer 30 for measuring time, a CPU 31 having functions of pressure holding control and resin temperature estimation and control;
In addition to the memory 32, there is an input console 33 for inputting the estimated value of the resin temperature in the mold as a parameter for the termination condition.
It has an input/output interface 34 for exchanging data with. The control system 3 further includes a first A for converting detection signals from a resin pressure sensor 41, a mold temperature sensor 42, and a nozzle resin temperature sensor 43 into digital signals.
A second A/D converter 36 for converting the detection signals from the /D converter 35, the movement amount detector 44, and the oil pressure detector 45 into digital signals, respectively, and a digital command value for driving the servo valve 4. D for converting to analog signal
It has a /A converter 37 and an amplifier 38.

【0012】次に、金型内樹脂温度推定のためのアルゴ
リズムについて説明する。本発明は、金型内樹脂温度を
2つの指数関数の重ね合わせで表わされる以下の数式2
にもとづいて推定する。第1の指数関数は金型内樹脂温
度の降下時定数αを指数とする関数であり、第2の指数
関数は金型温度の降下時定数βを指数とする関数である
Next, an algorithm for estimating the resin temperature in the mold will be explained. The present invention calculates the resin temperature in the mold using the following formula 2, which is expressed by the superposition of two exponential functions.
Estimate based on The first exponential function is a function whose index is the time constant α of the resin temperature drop in the mold, and the second exponential function is a function whose index is the time constant β of the mold temperature drop.

【0013】[0013]

【数2】[Math 2]

【0014】但し、Eθr (t)は保圧開始(t=0
)からの金型内樹脂温度推定値、θN (t0)は射出
開始時におけるリザーバ13内の樹脂温度検出値、A,
Bはいずれも後述する式で表わされる時定数である。降
下時定数α,βは以下の数式3,数式4で表わされる。
[0014] However, Eθr (t) is the start of holding pressure (t=0
), θN (t0) is the detected value of the resin temperature in the reservoir 13 at the start of injection, A,
Both B are time constants expressed by formulas described below. The falling time constants α and β are expressed by Equations 3 and 4 below.

【0015】[0015]

【数3】[Math 3]

【0016】[0016]

【数4】[Math 4]

【0017】但し、θm (0)は保圧開始時における
金型温度の検出値、tH は保圧時間、t1は保圧プロ
セスにおける中間の時刻、例えばt1=tH /2、Δ
θm は現在の成形サイクルと前回の成形サイクルにお
ける金型温度の差の時間平均値である。この差Δθm 
は以下の数式5で表わされる。
However, θm (0) is the detected value of the mold temperature at the start of pressure holding, tH is the pressure holding time, and t1 is the intermediate time in the pressure holding process, for example, t1=tH /2, Δ
θm is the time average value of the difference in mold temperature between the current molding cycle and the previous molding cycle. This difference Δθm
is expressed by Equation 5 below.

【0018】[0018]

【数5】[Math 5]

【0019】但し、θm ,i(n・ΔT)は第i成形
サイクルのサンプル時刻n・ΔTにおける金型温度の検
出値。次に、定数A,Bは次のようにして計算される。 (1)保圧開始時の初期条件、時刻t=0において以下
の式が成立するものと仮定する。 θr (t)=θN (t0)(A+B)=θN (t
0)これは(A+B)=1であることを意味する。 (2)終端条件としては、時刻t=tH において次の
数式6が成立する。
However, θm, i(n·ΔT) is the detected value of the mold temperature at sample time n·ΔT of the i-th molding cycle. Next, constants A and B are calculated as follows. (1) Assume that the following equation holds true at time t=0, which is the initial condition at the start of pressure holding. θr (t)=θN (t0)(A+B)=θN (t
0) This means (A+B)=1. (2) As a terminal condition, the following equation 6 holds true at time t=tH.

【0020】[0020]

【数6】[Math 6]

【0021】ここで、θr (tH )は入力コンソー
ル33からパラメータとして与えられるので、定数Aは
次の数式7で与えられる。
Here, since θr (tH) is given as a parameter from the input console 33, the constant A is given by the following equation 7.

【0022】[0022]

【数7】[Math 7]

【0023】また、定数Bは(1−A)で与えられる。 実際に、ポリスチレンを材料として成形を行なった場合
の金型内温度樹脂の計測データと、上記のアルゴリズム
により推定した結果を図2に示す。
Further, the constant B is given by (1-A). FIG. 2 shows measurement data of the resin temperature inside the mold when polystyrene was actually used as the material, and the results estimated using the above algorithm.

【0024】次に、実際の作業手順について説明する。 (A)成形条件出しを行う。 (B)終端条件における金型内樹脂温度の推定値をパラ
メータとして入力コンソール33より入力する。 (C)推定値の確認、パラメータの調整を行う。 (D)連続成形に入り、成形サイクル毎に所定時間域の
金型内樹脂温度の推定を行い、この推定値にもとづいて
樹脂温度の制御を行う。
Next, the actual work procedure will be explained. (A) Set the molding conditions. (B) Input the estimated value of the resin temperature in the mold under the terminal conditions as a parameter from the input console 33. (C) Check estimated values and adjust parameters. (D) Continuous molding is started, and the resin temperature in the mold is estimated in a predetermined time range for each molding cycle, and the resin temperature is controlled based on this estimated value.

【0025】[0025]

【発明の効果】以上説明してきたように本発明によれば
、金型内樹脂温度を精度良く推定することができる。 特に、本発明の推定によれば、入力すべきパラメータの
数が少なくて済み、金型や物性に依存しない。また、加
熱シリンダ内の樹脂温度、金型温度双方の変動を反映し
た推定値を計算することができる。
As described above, according to the present invention, the temperature of the resin in the mold can be estimated with high accuracy. In particular, according to the estimation of the present invention, the number of parameters to be input is small and does not depend on the mold or physical properties. Furthermore, it is possible to calculate an estimated value that reflects fluctuations in both the resin temperature in the heating cylinder and the mold temperature.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による射出成形機の概略構成を示した図
である。
FIG. 1 is a diagram showing a schematic configuration of an injection molding machine according to the present invention.

【図2】本発明による樹脂温度の推定を説明するための
推定樹脂温度−時間の特性図である。
FIG. 2 is a characteristic diagram of estimated resin temperature versus time for explaining estimation of resin temperature according to the present invention.

【符号の説明】[Explanation of symbols]

1    射出装置 2    金型 3    制御系 4    サーボ弁 13    リザーバ 41    金型内の樹脂圧センサ 42    金型温度センサ 43    ノズル部樹脂温度センサ 1 Injection device 2 Mold 3 Control system 4 Servo valve 13 Reservoir 41 Resin pressure sensor inside the mold 42 Mold temperature sensor 43 Nozzle resin temperature sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加熱シリンダにおけるリザーバ内の樹
脂温度センサと、金型の温度センサと、前記金型への樹
脂の射出完了あるいは保圧開始時からの時間を計測する
タイマと、終端条件における樹脂温度推定値をパラメー
タとして設定するためのパラメータ入力手段と、前記各
部からの信号により前記タイマの計時開始から所定時間
が経過するまでの前記金型内の樹脂温度を推定する手段
とを備え、該推定手段は、金型内樹脂温度の降下時定数
を指数とする第1の指数関数と金型温度の降下時定数を
指数とする第2の指数関数との重ね合わせによる式に基
づいて前記金型内樹脂温度の推定を行うことを特徴とす
る金型内樹脂温度推定機能を有する射出成形機。
1. A resin temperature sensor in a reservoir in a heating cylinder, a mold temperature sensor, a timer for measuring the time from the completion of injection of resin into the mold or the start of pressure holding, and a temperature sensor for resin in a reservoir at a terminal condition. A parameter input means for setting an estimated temperature value as a parameter, and a means for estimating the resin temperature in the mold from the start of timing of the timer until a predetermined time elapses based on signals from each of the parts, The estimating means calculates the amount of the metal based on a formula obtained by superposing a first exponential function whose index is a time constant of decrease in resin temperature in the mold and a second exponential function whose index is a time constant of decrease in mold temperature. An injection molding machine having an in-mold resin temperature estimation function, characterized by estimating an in-mold resin temperature.
JP13029991A 1991-05-07 1991-05-07 Injection molding machine possessing estimation function of temperature of resin eithin mold Withdrawn JPH04332621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13029991A JPH04332621A (en) 1991-05-07 1991-05-07 Injection molding machine possessing estimation function of temperature of resin eithin mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13029991A JPH04332621A (en) 1991-05-07 1991-05-07 Injection molding machine possessing estimation function of temperature of resin eithin mold

Publications (1)

Publication Number Publication Date
JPH04332621A true JPH04332621A (en) 1992-11-19

Family

ID=15030999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13029991A Withdrawn JPH04332621A (en) 1991-05-07 1991-05-07 Injection molding machine possessing estimation function of temperature of resin eithin mold

Country Status (1)

Country Link
JP (1) JPH04332621A (en)

Similar Documents

Publication Publication Date Title
US5419858A (en) Method for controlling fluctuation in flow property of resin in injection molding machine
JP2559651B2 (en) Injection molding control method and apparatus
EP1091842B1 (en) Automated molding technology for thermoplastic injection molding
EP0522061B1 (en) Control of injection moulding machine
WO1989006185A1 (en) Adjustment of mold clamping force
KR20010020317A (en) Method and apparatus for the control of injection molding
JPH04332621A (en) Injection molding machine possessing estimation function of temperature of resin eithin mold
US5296174A (en) Method of controlling holding pressure in injection molding and apparatus therefor
JPH04239620A (en) Injection molding machine having estimating function for temperature of resin in mold
JPH0242339B2 (en)
JP7381749B2 (en) Injection molding machine control device and program
JPH0513809B2 (en)
JPH0753404B2 (en) Holding pressure control method and apparatus for injection molding
JPH0473683B2 (en)
JP7397185B2 (en) Injection molding machine control device and program
KR101119949B1 (en) Method for determining time of arrival of resin flow in mold
JP2711909B2 (en) Insulation control device for injection molding machine
JP2003112348A (en) Method for injection molding
JP2006218870A (en) Estimating method for injection-molding condition
JPH0577301A (en) Method and apparatus for estimating resin temperature in injection molding
JP2003340898A (en) Method for calculating pressure history of tip of nozzle in consideration of characteristic of molding machine, method for simulating injection molding, and its program
JP2631069B2 (en) Method and apparatus for controlling holding pressure in injection molding
JP2736683B2 (en) Insulation control device for injection molding machine
JPH0345329A (en) Control device of injection molder
JPH05309712A (en) Dwell controlling device of injection molding machine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806