JPH04332421A - Drive circuit for relay matrix - Google Patents

Drive circuit for relay matrix

Info

Publication number
JPH04332421A
JPH04332421A JP13023691A JP13023691A JPH04332421A JP H04332421 A JPH04332421 A JP H04332421A JP 13023691 A JP13023691 A JP 13023691A JP 13023691 A JP13023691 A JP 13023691A JP H04332421 A JPH04332421 A JP H04332421A
Authority
JP
Japan
Prior art keywords
relay
voltage
drive
current
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13023691A
Other languages
Japanese (ja)
Inventor
Kazuo Hamasato
和雄 浜里
Akira Ishizawa
石沢 昭
Norimitsu Obayashi
大林 徳満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13023691A priority Critical patent/JPH04332421A/en
Publication of JPH04332421A publication Critical patent/JPH04332421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

PURPOSE:To stably actuate driving coils in a column-row designating system by connecting non-linear voltage-drop elements in series to driving coils for a relay arranged in a matrix form. CONSTITUTION:Driving coils RL11-RL33 for a relay are arranged in a matrix form, and are connected in series to non-linear voltage dropping elements ZD11-ZD33, respectively. One side of each series circuit is connected to each other in the column direction, to serve as column side driving terminals DR1-DR3 while the other side thereof is connected to each other in the row direction, to serve as row side driving terminals DC1-DC3. A drive voltage is applied to a predetermined path between the terminals DR1, DC1, and a current is supplied if the voltage is larger than a dropping voltage of the elements ZD12, ZD21, ZD22. When a drive voltage applied to a path where it is not desirable that a current is supplied is set three times or less a dropping voltage of the non-linear voltage dropping element, the object can be achieved. Consequently, the driving coils for the relay arranged in a matrix form can be stably driven in a column-row designating system.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、マトリクス状に配置さ
れたリレーの駆動巻線を行列指定形式で安定に駆動する
回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit for stably driving drive windings of relays arranged in a matrix in a matrix designation format.

【0002】0002

【従来の技術】図2は、従来のリレーマトリクスの駆動
回路を説明するための図であって、RL11〜RL33
はリレーの駆動巻線であってS並びにRはその端子、D
R1〜DR3は行側駆動端子、DC1〜DC3は列側駆
動端子を表わす。
2. Description of the Related Art FIG. 2 is a diagram for explaining a conventional relay matrix drive circuit.
is the drive winding of the relay, S and R are its terminals, D
R1 to DR3 represent row side drive terminals, and DC1 to DC3 represent column side drive terminals.

【0003】リレーの駆動巻線はS端子からR端子の方
向に電流が流れた場合は図示していないリレー接点を動
作方向に駆動し、R端子からS端子の方向に電流が流れ
た場合は図示していないリレー接点を復旧方向に駆動す
る。
When the current flows from the S terminal to the R terminal, the drive winding of the relay drives a relay contact (not shown) in the operating direction, and when the current flows from the R terminal to the S terminal, it drives the relay contact (not shown) in the operating direction. A relay contact (not shown) is driven in the restoration direction.

【0004】リレー駆動巻線RL11を駆動する場合を
例にとって動作を説明すると、行側駆動端子DR1に駆
動信号の正極側を、列側駆動端子DC1に駆動信号の負
極側を接続することによって当該リレー巻線RL11が
動作方向に駆動される。このとき、両駆動端子DR1,
DC1間には次の各経路にも電流が流れる。すなわち
[0004] To explain the operation using the case of driving the relay drive winding RL11 as an example, the positive side of the drive signal is connected to the row side drive terminal DR1, and the negative side of the drive signal is connected to the column side drive terminal DC1. Relay winding RL11 is driven in the operating direction. At this time, both drive terminals DR1,
Current also flows through the following paths between DC1. i.e.


0005】■  DR1→RL12(S→R)→RL2
2(R→S)→RL21(S→R)→DC1■  DR
1→RL12(S→R)→RL32(R→S)→RL3
1(S→R)→DC1
[
0005]■ DR1→RL12 (S→R)→RL2
2(R→S)→RL21(S→R)→DC1■ DR
1 → RL12 (S → R) → RL32 (R → S) → RL3
1 (S→R)→DC1

【0006】■  DR1→RL13(S→R)→RL
23(R→S)→RL21(S→R)→DC1■  D
R1→RL13(S→R)→RL33(R→S)→RL
31(S→R)→DC1
[0006] ■ DR1→RL13 (S→R)→RL
23(R→S)→RL21(S→R)→DC1■ D
R1 → RL13 (S → R) → RL33 (R → S) → RL
31 (S→R)→DC1

【0007】上述のような経路にも電流が流れるため、
リレー巻線の感動電流値は駆動信号が直接印加された場
合にはリレー接点が動作方向に駆動されるが、上記経路
によって流れる望まない電流によってはリレー接点が駆
動されないように設定しなければならない。
[0007] Since current also flows through the above-mentioned paths,
The current value of the relay winding must be set so that when a drive signal is directly applied, the relay contacts will be driven in the operating direction, but the relay contacts will not be driven by unwanted current flowing through the above path. .

【0008】特にマトリクスサイズが大なる場合は上記
経路の説明から明らかなように中間部分で経由するリレ
ーの数が増大即ちこの区間の抵抗値が減少し、結局上記
経路における1段目並びに3段目のリレーの駆動巻線に
流れる電流の最大値は正規に駆動されている時の電流の
1/2にも及ぶこととなる。
In particular, when the matrix size becomes large, as is clear from the explanation of the above route, the number of relays passing through the intermediate section increases, that is, the resistance value in this section decreases, and eventually the first and third stages in the above route The maximum value of the current flowing through the drive winding of the second relay reaches 1/2 of the current when it is normally driven.

【0009】[0009]

【発明が解決しようとする課題】以上の説明から明らか
なように従来の駆動回路はリレーの感度設定が困難、換
言するとリレーの感度設定を高精度に行なうことが困難
なため安定な動作が得にくく、特に大規模なリレーマト
リクスの駆動が困難な欠点があった。
[Problems to be Solved by the Invention] As is clear from the above explanation, it is difficult to set the sensitivity of the relay in the conventional drive circuit.In other words, it is difficult to set the sensitivity of the relay with high precision, so stable operation cannot be achieved. The drawback was that it was particularly difficult to drive a large-scale relay matrix.

【0010】尚リレーの駆動巻線に直列にダイオードを
挿入する構成は復旧方向の駆動ができなくなるため即ち
R端子からS端子方向への電流を流せなくなるため適用
できない。
[0010] A configuration in which a diode is inserted in series with the drive winding of the relay cannot be applied because the drive in the recovery direction cannot be performed, that is, the current cannot flow from the R terminal to the S terminal.

【0011】本発明の目的は、リレーの駆動巻線の感動
電流値に対する制約条件がなく、かつ安定な動作が可能
なリレーマトリクスの駆動回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a relay matrix drive circuit which has no restrictions on the current value of the drive winding of the relay and is capable of stable operation.

【0012】0012

【課題を解決するための手段】上記目的達成のため、本
発明では、マトリクス形に配置されたリレーの駆動巻線
に直列に非線形電圧降下素子を接続するようにした。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, a nonlinear voltage drop element is connected in series with the drive winding of a relay arranged in a matrix.

【0013】[0013]

【作用】その結果、マトリクス回路において、望まない
経路には電流が流れなくなる。
[Operation] As a result, current no longer flows through undesired paths in the matrix circuit.

【0014】[0014]

【実施例】図1は本発明の一実施例を説明するための図
であって、ZD11〜ZD33は非線形電圧降下素子で
ある。
Embodiment FIG. 1 is a diagram for explaining an embodiment of the present invention, in which ZD11 to ZD33 are nonlinear voltage drop elements.

【0015】リレーの駆動巻線RL11〜RL33はマ
トリクス形に配置されており、かつ各駆動巻線には非線
形電圧降下素子が直列に接続され、該直列回路の一方の
側は行方向に各々相互に接続されて行側駆動端子DR1
〜DR3とされ、該直列回路の他方の側は列方向に各々
相互に接続されて列側駆動端子DC1〜DC3とされて
いる。
The driving windings RL11 to RL33 of the relay are arranged in a matrix, and a nonlinear voltage drop element is connected in series to each driving winding, and one side of the series circuit is connected to each other in the row direction. is connected to the row side drive terminal DR1
~DR3, and the other side of the series circuit is connected to each other in the column direction to form column side drive terminals DC1 to DC3.

【0016】非線形電圧降下素子は例えば双方向形ツェ
ナーダイオードであって、その電圧降下をVZで表わす
。以下従来の技術の説明と同様にリレー駆動巻線RL1
1を駆動する場合を例にとって説明する。
The nonlinear voltage drop element is, for example, a bidirectional Zener diode, and its voltage drop is expressed as VZ. In the following, similar to the explanation of the conventional technology, the relay drive winding RL1
The case of driving 1 will be explained as an example.

【0017】行側駆動端子DR1に駆動信号の正極側を
、列側駆動端子DC1に駆動信号の負極側を接続するこ
とによって当該リレー巻線RL11が動作方向に駆動さ
れ、このときの駆動電圧はリレーの動作に必要な電圧(
動作電圧)Vopと非線形電圧降下素子の電圧降下VZ
との和の電圧に選定される。
By connecting the positive side of the drive signal to the row side drive terminal DR1 and the negative side of the drive signal to the column side drive terminal DC1, the relay winding RL11 is driven in the operating direction, and the drive voltage at this time is Voltage required for relay operation (
Operating voltage) Vop and voltage drop VZ of nonlinear voltage drop element
The voltage is selected as the sum of

【0018】このとき、両駆動端子DR1,DC1間に
は例えばDR1→RL12→ZD12→ZD22→RL
22→RL21→ZD21→DC1なる経路で駆動電圧
が印加されるが、この経路に電流が流れるためには非線
形電圧降下素子が3個即ちZD12,ZD22,ZD2
1が直列に挿入されるためその電圧降下即ちVZの3倍
以上の電圧が必要となる。換言すると駆動電圧をVZの
3倍以下とすれば望まない経路に電流が流れることを防
止することができ、安定かつ確実な駆動が達成され、か
つマトリクスサイズに対する制約も除去される。尚リレ
ーの動作電圧はVZの2倍以下であれば任意の値に選定
できる。
At this time, for example, DR1→RL12→ZD12→ZD22→RL is connected between both drive terminals DR1 and DC1.
The driving voltage is applied through the path 22→RL21→ZD21→DC1, but in order for the current to flow through this path, three nonlinear voltage drop elements, namely ZD12, ZD22, and ZD2 are required.
1 is inserted in series, a voltage drop of three times or more than VZ is required. In other words, by setting the drive voltage to three times VZ or less, it is possible to prevent current from flowing in an undesired path, achieve stable and reliable drive, and remove restrictions on matrix size. Note that the operating voltage of the relay can be selected to any value as long as it is less than twice VZ.

【0019】図1の構成から明らかな如く、回路に方向
性素子が含まれないため、駆動信号の極性を反転すれば
リレーの駆動巻線に逆方向即ちR端子からS端子の方向
に電流が流れ、リレーは復旧方向に制御される。ここで
リレー接点ないし磁気回路が自己保持特性を有するもの
であれば、動作・復旧制御信号が停止された後も制御信
号印加時の状態が保持される。
As is clear from the configuration of FIG. 1, since the circuit does not include a directional element, if the polarity of the drive signal is reversed, current flows through the drive winding of the relay in the opposite direction, that is, from the R terminal to the S terminal. flow, the relay is controlled in the recovery direction. Here, if the relay contact or the magnetic circuit has a self-holding characteristic, the state at the time of application of the control signal will be maintained even after the operation/recovery control signal is stopped.

【0020】非線形電圧降下素子は必らずしも対称形で
ある必要はなく、片方向形のツェナーダイオードの適用
も可能であり、図1における非線形素子がS端子からR
端子に向けて流れる電流の方向に対して順方向となる片
方向形のツェナーダイオードの場合を例に説明する。尚
ツェナーダイオードの逆方向の電圧降下即ちツェナー電
圧はVZR,順方向の電圧降下は簡単のため零Vとし、
これまでの説明と同様リレーの駆動巻線RL11を駆動
するものとして説明を進める。
The nonlinear voltage drop element does not necessarily have to be symmetrical, and a unidirectional Zener diode can also be applied, and the nonlinear element in FIG.
The case of a unidirectional Zener diode in which the current flows in the forward direction toward the terminal will be explained as an example. Note that the voltage drop in the reverse direction of the Zener diode, that is, the Zener voltage, is assumed to be VZR, and the voltage drop in the forward direction is assumed to be 0 V for simplicity.
As in the previous explanation, the explanation will proceed assuming that the drive winding RL11 of the relay is driven.

【0021】リレー巻線RL11の動作方向の駆動はD
R1→RL11(S→R)→ZD11(順方向)→DC
1の経路で成され、駆動信号の電圧はリレーの動作電圧
Vopに選定される。電流が流れることを望まない経路
として例えばDR1→RL12→ZD12(順方向)→
ZD22(逆方向)→RL22→RL21→ZD21(
順方向)→DC1なる経路が存在するが、ツェナー電圧
VZRを動作電圧Vop以上に選定すれば電流の流通は
防止される。
The driving direction of the relay winding RL11 is D.
R1 → RL11 (S → R) → ZD11 (forward direction) → DC
1 path, and the voltage of the drive signal is selected to be the operating voltage Vop of the relay. For example, DR1 → RL12 → ZD12 (forward direction) → as a path where you do not want current to flow
ZD22 (reverse direction) → RL22 → RL21 → ZD21 (
There is a path (forward direction) → DC1, but if the Zener voltage VZR is selected to be higher than the operating voltage Vop, current flow is prevented.

【0022】リレー巻線の復旧方向の駆動はDC1→Z
D11(逆方向)→RL11(R→S)→DR1の経路
で成され、駆動信号の電圧はリレーの復旧電圧VREL
とツェナー電圧VZRの和の電圧に選定される。
[0022] The drive in the recovery direction of the relay winding is DC1→Z
The path is D11 (reverse direction) → RL11 (R → S) → DR1, and the voltage of the drive signal is the relay recovery voltage VREL.
and Zener voltage VZR.

【0023】電流が流れることを望まない経路として例
えばDC1→ZD21(逆方向)→RL21→RL22
→ZD22(順方向)→ZD12(逆方向)→RL12
→DR1なる経路が存在するが、この経路には逆方向の
ツェナーダイオードが2段挿入されるため、駆動電圧即
ち(VREL+VZR)がツェナー電圧VZRの2倍以
下、換言するとVZRをVREL以上に選定すれば電流
の流通は防止される。一般にリレーの動作電圧Vopと
復旧電圧VRELは等しく、該条件は容易に満たすこと
が可能である。
[0023] Examples of paths in which current is not desired to flow include, for example, DC1 → ZD21 (reverse direction) → RL21 → RL22.
→ZD22 (forward direction) →ZD12 (reverse direction) →RL12
→ There is a path called DR1, but since two stages of Zener diodes in the opposite direction are inserted in this path, the drive voltage (VREL + VZR) must be selected to be less than twice the Zener voltage VZR, in other words, VZR must be selected to be higher than VREL. If so, current flow is prevented. Generally, the relay operating voltage Vop and the recovery voltage VREL are equal, and this condition can be easily satisfied.

【0024】非線形電圧降下素子は一定電圧降下を生じ
る所謂ツェナーダイオード形に限らず、スイッチング形
例えば双方向サイリスタ等の適用も可能である。即ち、
双方向形サイリスタの阻止電圧は印加される電圧が該阻
止電圧以下であれば素子は非導通状態となるのでツェナ
ーダイオードにおけるツェナー電圧と等価な作用があり
、印加される電圧が阻止電圧以上即ち駆動経路における
動作の場合は電流が流通し始めると同時に素子がオン状
態となってその電圧降下が減少し、その結果リレーの駆
動巻線にはより多くの電流を流すことが可能となる。 換言すると駆動電圧は双方向サイリスタの阻止電圧以上
でかつ動作電圧以上であれば良く、駆動電圧の有効利用
が図れる。
The nonlinear voltage drop element is not limited to the so-called Zener diode type that produces a constant voltage drop, but may also be a switching type, such as a bidirectional thyristor. That is,
The blocking voltage of a bidirectional thyristor is equivalent to the Zener voltage in a Zener diode because if the applied voltage is below the blocking voltage, the element becomes non-conducting. In the case of operation in the path, the element turns on as soon as the current begins to flow, reducing its voltage drop, so that more current can flow through the drive winding of the relay. In other words, the driving voltage only needs to be higher than the blocking voltage of the bidirectional thyristor and higher than the operating voltage, and the driving voltage can be used effectively.

【0025】以上の説明におけるリレーは機械式の所謂
電磁リレーに限らず、電子的なリレーであっても良い。 更には非線形電圧降下素子は複数の素子を組み合わせた
回路であっても良いことは言うまでもない。
The relay in the above description is not limited to a mechanical so-called electromagnetic relay, but may also be an electronic relay. Furthermore, it goes without saying that the nonlinear voltage drop element may be a circuit that combines a plurality of elements.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
マトリクス状に配置されたリレーの駆動巻線を行列指定
形式で安定に駆動できる利点が得られる。
[Effects of the Invention] As explained above, according to the present invention,
The advantage is that the drive windings of the relays arranged in a matrix can be stably driven in a matrix designation format.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing one embodiment of the present invention.

【図2】従来のリレーマトリクスの駆動回路図である。FIG. 2 is a diagram of a conventional relay matrix drive circuit.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  マトリクス形に配置されたリレーの駆
動巻線には各々双方向非線形電圧降下素子が直列に接続
され、該直列回路の一方の側は行方向に各々相互に接続
して駆動端子の一方の端子とし、該直列回路の他方の側
は列方向に各々相互に接続して駆動端子の他方の端子と
したことを特徴とするリレーマトリクスの駆動回路。
1. A bidirectional nonlinear voltage drop element is connected in series to each of the drive windings of the relays arranged in a matrix, and one side of the series circuit is connected to each other in the row direction to form drive terminals. A drive circuit for a relay matrix, characterized in that the other side of the series circuit is connected to each other in the column direction to serve as the other terminal of the drive terminals.
JP13023691A 1991-05-07 1991-05-07 Drive circuit for relay matrix Pending JPH04332421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13023691A JPH04332421A (en) 1991-05-07 1991-05-07 Drive circuit for relay matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13023691A JPH04332421A (en) 1991-05-07 1991-05-07 Drive circuit for relay matrix

Publications (1)

Publication Number Publication Date
JPH04332421A true JPH04332421A (en) 1992-11-19

Family

ID=15029372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13023691A Pending JPH04332421A (en) 1991-05-07 1991-05-07 Drive circuit for relay matrix

Country Status (1)

Country Link
JP (1) JPH04332421A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9500608A (en) * 1995-03-30 1996-11-01 Robert Jan Verheul Matrix network and electrical network element therefor
CN106653479A (en) * 2016-11-14 2017-05-10 合肥同智机电控制技术有限公司 Triggering control device for multipath triggering load

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9500608A (en) * 1995-03-30 1996-11-01 Robert Jan Verheul Matrix network and electrical network element therefor
CN106653479A (en) * 2016-11-14 2017-05-10 合肥同智机电控制技术有限公司 Triggering control device for multipath triggering load

Similar Documents

Publication Publication Date Title
US4051394A (en) Zero crossing ac relay control circuit
US4490655A (en) Bi-directional driver system for electrical load
EP0088445B1 (en) Circuit arrangements for transmitting energy to and from coils
US4319301A (en) Circuits for electromagnet energization control
US3794888A (en) Remote control switch circuit
JPH04332421A (en) Drive circuit for relay matrix
JPH0541682A (en) Branch device
US3723767A (en) Reed relay type permanent nor memory circuit
JPS60107915A (en) Electronic control circuit
SU788219A1 (en) Relay switching device
JPS5923157B2 (en) Progressive energization equipment
SU1101990A1 (en) Thyristor converter with protection
SU826317A1 (en) Minium and maximum voltage protected power supply source
JPS595514A (en) Arcless switching device
EP0527641B1 (en) H-bridge flyback recirculator
SU1306788A1 (en) Receiver for railway circuit
US3022429A (en) Magnetic control apparatus
JPS644143Y2 (en)
US2985766A (en) Static control unit with feedback winding and capacitors
SU1714692A1 (en) Device for control of electromagnetic apparatus
US3427473A (en) Static switching apparatus for selectively controlling one or more output circuits
JPS6241539Y2 (en)
SU1130940A1 (en) Device for limiting emergency currents of converter
JPH07264029A (en) Drive circuit for bidirectional connecting transistor
SU970707A1 (en) Relay flip-flop