JPH04332405A - Heat-resisting electric insulating conductor - Google Patents

Heat-resisting electric insulating conductor

Info

Publication number
JPH04332405A
JPH04332405A JP3102535A JP10253591A JPH04332405A JP H04332405 A JPH04332405 A JP H04332405A JP 3102535 A JP3102535 A JP 3102535A JP 10253591 A JP10253591 A JP 10253591A JP H04332405 A JPH04332405 A JP H04332405A
Authority
JP
Japan
Prior art keywords
heat
conductive material
inorganic hard
insulating material
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3102535A
Other languages
Japanese (ja)
Inventor
Junji Kinoshita
木下 純二
Masao Mine
峯 雅夫
Shizuka Yamaguchi
静 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3102535A priority Critical patent/JPH04332405A/en
Publication of JPH04332405A publication Critical patent/JPH04332405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To offer a coil not lowering heat resistance and insulating performance even at a high temperature. CONSTITUTION:A heat-resisting electric insulating conductor is composed by containing a conductive material 1, a mixed lemination 2 consisting of a conductive material, and an inorganic hard insulating material formed by thermal spray on the surface of aforesaid conductive material 1 and an insulating film 3 consisting of an inorganic hard insulating material formed on aforesaid mixed lamination 2 by thermal spray. Further, intergrain voids and cracks on the surface of the insulating film 3 are filled with an inorganic hard insulating material. The heat-resisting electric insulating conductor is composed by containing the conductive material 1, the mixed lamination 2 consisting of the conductive material and the inorganic hard insulating material formed on the surface of the conductive material by thermal spray and the insulating film 3 consisting of the in-organic hard insulating material formed by thermal spray on aforesaid mixed lamination 2 while the voids and cracks on the surface of the coil formed of the heat-resisting insulating conductor, are filled with the inorganic curing insulating material. The heat-resisting conductor having generation of rether crack nor separation even at the high temperature and having no damage of electric insulation can be offered while suppressing lowering of heat resistance and insulating performance of the coil at a high temperature.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、発電機,電動機,変圧
器等のコイル用導電線,ケ−ブル等の導電性部品に係り
、特に液体金属を循環する電磁ポンプ用コイル等の高温
状態で使用する電気絶縁導体及びコイルに関する。
[Industrial Field of Application] The present invention relates to conductive parts such as conductive wires and cables for coils of generators, motors, transformers, etc., and particularly to coils for electromagnetic pumps that circulate liquid metal, etc. under high temperature conditions. Related to electrically insulated conductors and coils used in

【0002】0002

【従来の技術】従来の導線の絶縁には、導体上に、直接
もしくは油性エナメル塗料,ポリエステル塗料などの絶
縁塗料を塗布,焼き付けすることにより形成される絶縁
層を介して、ポリアミド樹脂,ポリビニルブチラ−ル樹
脂,ポリビニルホルマ−ル樹脂あるいはこれに耐熱性を
向上させるためにエポキシ樹脂,フェノ−ル樹脂,メラ
ミン樹脂などを混合した樹脂組成物を適当な溶剤に溶解
した樹脂液を同様に塗布、焼き付けしたものなど有機絶
縁材料が使用されているが、高温の液体金属を循環する
電磁ポンプ等に用いる高温用コイルの絶縁材料としては
、これらの有機絶縁材料は冷却しないかぎり使用できな
い。耐熱性に優れた絶縁材料としてマイカ、セラミック
などの無機硬質絶縁材料の使用が考えられるが、これら
は導体に比べ、熱膨張率が小さく、圧縮応力には強いが
、引張応力には脆い特性を有しているため、これらを絶
縁材としてコ−ティングした導体を高温にすると、両者
の熱膨張率の差による熱応力により絶縁材料に剥離、亀
裂が生じ、絶縁性能が著しく低下する。
[Prior Art] Conventionally, conducting wires are insulated using polyamide resin, polyvinyl butyl resin, etc., either directly or through an insulating layer formed by applying and baking an insulating paint such as oil-based enamel paint or polyester paint onto the conductor. Similarly, apply a resin solution prepared by dissolving ral resin, polyvinyl formal resin, or a resin composition mixed with epoxy resin, phenol resin, melamine resin, etc. in an appropriate solvent to improve heat resistance. Organic insulating materials, such as baked ones, are used, but these organic insulating materials cannot be used as insulating materials for high-temperature coils used in electromagnetic pumps that circulate high-temperature liquid metal unless they are cooled. Inorganic hard insulating materials such as mica and ceramics can be used as insulating materials with excellent heat resistance, but these have a lower coefficient of thermal expansion than conductors and are strong against compressive stress but brittle against tensile stress. Therefore, when a conductor coated with these insulating materials is heated to a high temperature, the insulating material peels and cracks due to thermal stress due to the difference in coefficient of thermal expansion between the two, resulting in a significant drop in insulation performance.

【0003】0003

【発明が解決しようとする課題】従来の導電線あるいは
巻線には、限られたスペ−スに大電流を供給したり、多
数の線をより合わせたりするので絶縁する必要があり、
導電体の他にこの絶縁物の占める比率が大きいこと、大
電流が流れる場合は電磁気力により線相互がこすれたり
、たたかれたりすること、上述の有機絶縁材料は電線の
抵抗発熱に対して耐熱性が乏しく、電流値に制約がある
こと、エナメル線などでは、これらの外的要因により絶
縁材料が容易に損傷し、絶縁破壊する恐れがあること等
の問題があった。
[Problems to be Solved by the Invention] Conventional conductive wires or winding wires must be insulated because large currents are supplied to a limited space or a large number of wires are twisted together.
In addition to the conductor, this insulator accounts for a large proportion; when a large current flows, the wires rub or strike each other due to electromagnetic force; There are problems such as poor heat resistance, restrictions on current value, and enamelled wires, etc., where the insulating material is easily damaged by these external factors and there is a risk of dielectric breakdown.

【0004】これらの問題を解決するために導電材表面
に耐熱性に優れ、絶縁抵抗の大きな無機硬質絶縁材料か
らなる薄膜を緻密かつ強固に形成することが考えられる
が、前述したように、無機硬質絶縁材料は、導体に比べ
、熱膨張率が小さく、引張応力には脆いことから高温に
すると両者の熱膨張率の差による熱応力により絶縁材料
に剥離、亀裂が生じ、絶縁性能が著しく低下する恐れが
あった。一方、例えば、特開昭60−114561号公
報には、金属表面からのセラミックコーティングの剥離
や割れを防止するために、セラミックコーティング中に
金属粉末を混入し、その混入比率をコーティングの厚み
方向に変化させる技術が開示されている。しかしこの技
術をコイル用電線に適用しようとしても、コイルに用い
られる電線のように、コーティング後に曲げ加工を受け
ることは想定されておらず、曲げることによってコーテ
ィングに亀裂が生じ、絶縁低下を来す恐れがあった。 また、溶射によって形成されたコーティングには粒子間
に空隙が多く、絶縁性能の面からは好ましくなかった。
In order to solve these problems, it is conceivable to form a dense and strong thin film made of an inorganic hard insulating material with excellent heat resistance and high insulation resistance on the surface of a conductive material. Rigid insulating materials have a smaller coefficient of thermal expansion than conductors and are brittle under tensile stress, so when heated to high temperatures, the thermal stress caused by the difference in the coefficient of thermal expansion between the two causes peeling and cracking in the insulating material, significantly reducing insulation performance. There was a fear that it would happen. On the other hand, for example, in Japanese Patent Application Laid-open No. 114561/1983, in order to prevent the ceramic coating from peeling or cracking from the metal surface, metal powder is mixed into the ceramic coating, and the mixing ratio is adjusted in the thickness direction of the coating. Techniques for changing this are disclosed. However, even if this technology is applied to wires for coils, it is not assumed that the wires used for coils will be bent after being coated, and bending will cause cracks in the coating, resulting in a decrease in insulation. There was fear. Furthermore, the coating formed by thermal spraying had many voids between particles, which was not desirable from the standpoint of insulation performance.

【0005】本発明の課題は、高温でも耐熱性及び絶縁
性能が低下しないコイルを提供するにある。
An object of the present invention is to provide a coil whose heat resistance and insulation performance do not deteriorate even at high temperatures.

【0006】[0006]

【課題を解決するための手段】上記の課題は、導電材と
、該導電材の表面に形成された導電材と無機硬質絶縁材
料の混合積層と、該混合積層表面に形成された無機硬質
絶縁材料からなる絶縁皮膜とを含んでなり、少なくとも
絶縁皮膜の表面層の粒子間の空隙が無機硬質絶縁材料に
より充填されている耐熱電気絶縁導体により達成される
[Means for Solving the Problem] The above problem is solved by a conductive material, a mixed laminated layer of a conductive material and an inorganic hard insulating material formed on the surface of the conductive material, and an inorganic hard insulating material formed on the surface of the mixed laminated layer. This is achieved by a heat-resistant electrically insulated conductor comprising an insulating film made of a material, and at least the voids between particles in the surface layer of the insulating film are filled with an inorganic hard insulating material.

【0007】上記の課題はまた、導電材と混合積層の間
に、前記導電材と同材質からなる無数の微小空隙を有す
る層が設けられている請求項1に記載の耐熱電気絶縁導
体によっても達成される。
The above problem can also be solved by the heat-resistant electrically insulated conductor according to claim 1, wherein a layer made of the same material as the conductive material and having countless microscopic voids is provided between the conductive material and the mixed laminated layer. achieved.

【0008】上記の課題はまた、混合積層の導電材と無
機硬質絶縁材料の混合比が、該混合積層の厚さ方向に変
化している請求項1または2に記載の耐熱電気絶縁導体
によっても達成される。
The above problem can also be solved by the heat-resistant electrically insulated conductor according to claim 1 or 2, wherein the mixing ratio of the conductive material and the inorganic hard insulating material in the mixed laminate varies in the thickness direction of the mixed laminate. achieved.

【0009】上記の課題はまた、絶縁皮膜及びまたは混
合積層が、繊維強化セラミックス(FRC)からなる請
求項1乃至3のいずれかに記載の耐熱電気絶縁導体によ
っても達成される。
The above object is also achieved by the heat-resistant electrically insulated conductor according to any one of claims 1 to 3, wherein the insulating film and/or the mixed laminate is made of fiber reinforced ceramics (FRC).

【0010】上記の課題はまた、耐熱電気絶縁導体を用
いて形成された高温コイルにおいて、前記耐熱電気絶縁
導体を請求項1乃至4のいずれかに記載の耐熱電気絶縁
導体とすることによっても達成される。
The above object can also be achieved in a high-temperature coil formed using a heat-resistant electrically insulated conductor, by making the heat-resistant electrically insulated conductor the heat-resistant electrically insulated conductor according to any one of claims 1 to 4. be done.

【0011】上記の課題はまた、請求項5に記載の高温
コイルにおいて、コイル表面に無機硬質絶縁材料を充填
することによっても達成される上記の課題はまた、耐熱
電気絶縁導体を用いて形成された高温コイルにおいて、
前記耐熱電気絶縁導体を導電材と、該導電材の表面に形
成された導電材と無機硬質絶縁材料の混合積層と、該混
合積層表面に形成された無機硬質絶縁材料からなる絶縁
皮膜とを含んで形成し、該耐熱電気絶縁導体を用いて構
成された高温コイル表面に無機硬質絶縁材料を充填する
ことによっても達成される。
The above object can also be achieved by filling the coil surface with an inorganic hard insulating material in the high temperature coil according to claim 5. The above object can also be achieved by filling the coil surface with an inorganic hard insulating material. In the high temperature coil,
The heat-resistant electrically insulated conductor includes a conductive material, a mixed laminated layer of a conductive material and an inorganic hard insulating material formed on the surface of the conductive material, and an insulating film made of an inorganic hard insulating material formed on the surface of the mixed laminated layer. This can also be achieved by filling the surface of a high-temperature coil constructed using the heat-resistant electrically insulated conductor with an inorganic hard insulating material.

【0012】上記の課題はまた、請求項5乃至7のいず
れかに記載の高温コイルにおいて、コイルの対地絶縁を
無機硬質絶縁材料の溶射皮膜で形成し、該溶射皮膜の粒
子間の空隙の一部あるいは全てを無機硬質絶縁材料によ
り充填することや、コイルの対地絶縁を繊維強化セラミ
ックスで形成することによっても達成される。
The above-mentioned problem is also solved in the high-temperature coil according to any one of claims 5 to 7, in which the ground insulation of the coil is formed by a thermally sprayed coating of an inorganic hard insulating material, and one of the voids between particles of the thermally sprayed coating is formed. This can also be achieved by filling part or all of the coil with an inorganic hard insulating material, or by forming the coil's ground insulation with fiber-reinforced ceramics.

【0013】[0013]

【作用】導電材と、ZrO2−MgO,Zr−CaO,
ZrO2−Y2O3等の無機硬質絶縁材料からなる絶縁
皮膜の間に設けられた、導電材と無機硬質絶縁材料の混
合積層は両者の中間的な熱膨張性、熱伝導性を有し、導
電材の発熱による導電材と絶縁皮膜の間の温度勾配を緩
和する。温度勾配が緩和されると熱応力が分散されるた
め、高温においても無機硬質絶縁材料からなる絶縁皮膜
に働く熱応力が低減される。また、絶縁皮膜を溶射によ
り形成させた場合に生じる空隙に無機硬質絶縁材料が充
填されると、該絶縁皮膜の電気絶縁性が向上する。さら
に、コイル形成時に絶縁皮膜に生じる亀裂に、無機硬質
絶縁材料が充填されると、亀裂部分の応力集中が緩和さ
れ、該絶縁皮膜の強度が向上する。
[Function] Conductive material, ZrO2-MgO, Zr-CaO,
The mixed laminated layer of a conductive material and an inorganic hard insulating material, which is provided between the insulating films made of an inorganic hard insulating material such as ZrO2-Y2O3, has thermal expansion and thermal conductivity intermediate between the two. Alleviates the temperature gradient between the conductive material and the insulating film due to heat generation. Since the thermal stress is dispersed when the temperature gradient is relaxed, the thermal stress acting on the insulating film made of the inorganic hard insulating material is reduced even at high temperatures. Furthermore, when the inorganic hard insulating material is filled into the voids created when the insulating film is formed by thermal spraying, the electrical insulation properties of the insulating film are improved. Furthermore, when cracks that occur in the insulating film during coil formation are filled with an inorganic hard insulating material, stress concentration in the cracked portions is alleviated and the strength of the insulating film is improved.

【0014】また、導電材と絶縁皮膜の間に設けられた
、無数の微小空隙を有する、金属層,金属とセラミック
の混合積層,セラミック層などは、高温状態での導電材
と絶縁皮膜の熱膨張差を吸収し、絶縁皮膜を構成する無
機硬質絶縁材料に働く熱応力を低減する。
[0014] Furthermore, metal layers, mixed laminates of metal and ceramic, ceramic layers, etc., which have countless micro-gaps provided between the conductive material and the insulating film, can absorb heat between the conductive material and the insulating film at high temperatures. It absorbs the difference in expansion and reduces the thermal stress acting on the inorganic hard insulating material that makes up the insulating film.

【0015】空隙への無機硬質絶縁材料の充填方法とし
ては、例えばオルトケイ酸塩四エチル溶液(TEOS)
を溶射皮膜の空隙に真空充填した後、焼成してSiO2
を空隙に充填するゾル、ゲル法を用いる。
[0015] As a method for filling the voids with an inorganic hard insulating material, for example, a tetraethyl orthosilicate solution (TEOS) is used.
is vacuum-filled into the voids of the thermal sprayed coating, and then fired to form SiO2
A sol or gel method is used to fill the voids.

【0016】[0016]

【実施例】以下、本発明の実施例を図1〜図6により説
明する。 実施例1 本実施例においては、導電材1として銅線を用い、絶縁
皮膜3を構成する無機硬質絶縁材料としてZrO2−M
gO,Zr−CaO,ZrO2−Y2O3等を用いた。 図2に示すように銅とZrO2−MgO,Zr−CaO
,ZrO2−Y2O3等の混合粉末を原料としてプラズ
マ溶射法により導電材1の銅線表面上に混合積層2を形
成した。この時、銅線側に近い層程銅粉の混合率を高く
し、遠い層程銅粉の混合率を小さくして溶射することに
より両者の成分比が連続的に変化した混合積層2とした
。次いで、その混合積層2の表面に絶縁に充分な厚さの
ZrO2−MgO,Zr−CaO,ZrO2−Y2O3
等の無機硬質絶縁材料からなる絶縁皮膜3をプラズマ溶
射法により形成させてコイル用の素線を作成した。
[Embodiments] Hereinafter, embodiments of the present invention will be explained with reference to FIGS. 1 to 6. Example 1 In this example, copper wire was used as the conductive material 1, and ZrO2-M was used as the inorganic hard insulating material constituting the insulating film 3.
gO, Zr-CaO, ZrO2-Y2O3, etc. were used. As shown in Figure 2, copper and ZrO2-MgO, Zr-CaO
, ZrO2-Y2O3, etc., were used as raw materials to form a mixed laminated layer 2 on the surface of the copper wire of the conductive material 1 by plasma spraying. At this time, the layer closer to the copper wire side had a higher mixing ratio of copper powder, and the farther the layer was, the lower the mixing ratio of copper powder was thermal sprayed, resulting in a mixed laminate 2 in which the ratio of both components changed continuously. . Next, ZrO2-MgO, Zr-CaO, ZrO2-Y2O3 with a sufficient thickness for insulation is deposited on the surface of the mixed laminated layer 2.
An insulating film 3 made of an inorganic hard insulating material such as the following was formed by plasma spraying to create a wire for a coil.

【0017】この素線4を図3に示すダブルパンケ−キ
巻きによりコイルに成形した。図4に示すように、この
コイル素線4表面の混合積層2及び絶縁皮膜3内には溶
射時に生じた空隙5、コイル成形時に生じた亀裂6があ
る。このコイルを容器にいれ、容器内を真空ポンプで減
圧したのち、該容器にTEOS(Tetra Eitx
l OrthoSilicate:Si(OC2H5)
4)溶液を注入し、該溶液中に前記コイルを浸漬して混
合積層2及び絶縁皮膜3内の空隙5及び亀裂6にTEO
S溶液を含浸させた。次いで、電気炉内で400℃に加
熱して加水分解反応によりTEOSをSiO2に転換さ
せた。この真空中でのTEOS含浸⇒焼成(ゾル・ゲル
法によるTEOS処理)を数回繰り返して空隙5及び亀
裂6をSiO2で充填した。このゾル・ゲル法によるT
EOS処理で、少なくとも絶縁皮膜の表面層の粒子間の
空隙や亀裂がSiO2で充填されるまで、処理を繰り返
した。絶縁皮膜の表面層の粒子間の空隙がSiO2で充
填されることにより絶縁性能が向上し、かつ、前記亀裂
がSiO2で充填されることにより、亀裂部分への応力
の集中が緩和され、絶縁皮膜3や混合積層2の剥離が防
止される。図1は、空隙5及び亀裂6がSiO29で充
填された状態を示す。
This wire 4 was formed into a coil by double pancake winding as shown in FIG. As shown in FIG. 4, in the mixed laminated layer 2 and the insulating film 3 on the surface of the coil wire 4, there are voids 5 created during thermal spraying and cracks 6 created during coil forming. This coil is placed in a container, the pressure inside the container is reduced using a vacuum pump, and then TEOS (Tetra Eitx) is placed in the container.
l OrthoSilicate:Si(OC2H5)
4) Inject a solution and immerse the coil in the solution to fill the voids 5 and cracks 6 in the mixed laminated layer 2 and insulating film 3 with TEO.
Impregnated with S solution. Next, it was heated to 400° C. in an electric furnace to convert TEOS to SiO2 by a hydrolysis reaction. This TEOS impregnation and firing in vacuum (TEOS treatment by sol-gel method) was repeated several times to fill the voids 5 and cracks 6 with SiO2. T by this sol-gel method
The EOS treatment was repeated until at least the gaps and cracks between particles in the surface layer of the insulating film were filled with SiO2. By filling the gaps between particles in the surface layer of the insulating film with SiO2, the insulation performance is improved, and by filling the cracks with SiO2, the concentration of stress on the cracked portion is alleviated, and the insulating film 3 and the mixed laminated layer 2 are prevented from peeling off. FIG. 1 shows a state in which the voids 5 and cracks 6 are filled with SiO29.

【0018】次に、図5に示すように、コイル周囲にZ
rO2−MgO,Zr−CaO,ZrO2−Y2O3等
からなる対地絶縁皮膜7をプラズマ溶射法により形成し
た後に、TEOS処理をさらに数回繰り返して空隙を完
全にSiO2で充填した。 この空隙の充填により、対地絶縁皮膜7の絶縁性能が向
上した。
Next, as shown in FIG. 5, Z is placed around the coil.
After forming the ground insulating film 7 made of rO2-MgO, Zr-CaO, ZrO2-Y2O3, etc. by plasma spraying, the TEOS treatment was repeated several times to completely fill the voids with SiO2. By filling this void, the insulation performance of the ground insulation film 7 was improved.

【0019】また、対地絶縁皮膜7に繊維強化セラミッ
クス(FRC)を使用することにより更に強度を向上さ
せることができる。
Further, by using fiber reinforced ceramics (FRC) for the ground insulating film 7, the strength can be further improved.

【0020】上記絶縁処理を行うことにより、約600
℃の高温においても絶縁材料に亀裂、剥離が発生しない
耐熱性に優れた高温コイルとすることができ、かつ亀裂
、剥離に伴う絶縁性能低下がない高温コイルとすること
ができた。
By performing the above insulation treatment, approximately 600
A high-temperature coil with excellent heat resistance that does not cause cracking or peeling of the insulating material even at high temperatures of 0.degree.

【0021】なお、上記実施例においては、ゾル・ゲル
法によるTEOS処理をコイル形成後に実施したが、コ
イルの曲率半径が大きく、曲げた場合の亀裂発生の恐れ
を無視できる場合は、絶縁皮膜形成後の素線に対してゾ
ル・ゲル法によるTEOS処理を行った方が、素線の全
周の空隙に対して無機硬質絶縁材料を充填できる。
In the above example, the TEOS treatment using the sol-gel method was performed after the coil was formed, but if the radius of curvature of the coil is large and the risk of cracking when bent can be ignored, the insulation coating may be formed. If the strands are subsequently subjected to TEOS treatment using the sol-gel method, the voids around the entire periphery of the strands can be filled with the inorganic hard insulating material.

【0022】実施例2 本実施例においては図6に示すように、銅線1表面上に
銅粉のみを原料としてプラズマ溶射行い、銅線1表面に
微小空隙のある銅層8を形成した。この微小空隙のある
銅層8の上に、前記実施例1と同様な混合積層2及び絶
縁皮膜3を形成した。このような構造とすることにより
高温における銅の熱膨張を空隙5で吸収して絶縁皮膜3
に働く熱応力をさらに低減することができた。
Example 2 In this example, as shown in FIG. 6, plasma spraying was carried out on the surface of a copper wire 1 using only copper powder as a raw material to form a copper layer 8 having minute voids on the surface of the copper wire 1. A mixed laminated layer 2 and an insulating film 3 similar to those in Example 1 were formed on the copper layer 8 having minute voids. With this structure, the thermal expansion of copper at high temperatures is absorbed by the voids 5 and the insulation film 3
We were able to further reduce the thermal stress acting on the

【0023】上記各実施例における空隙5の大きさは、
原料粉末粒子径の大小,プラズマ出力,溶射ガンとの距
離,雰囲気圧力により調節することが可能である。また
、上記各実施例における絶縁皮膜及びまたは混合積層を
、無機硬質絶縁材料のかわりに、繊維強化セラミックス
(FRC)を使用して形成することによっても同様の効
果が得られる。
The size of the void 5 in each of the above embodiments is as follows:
It can be adjusted by the size of the raw material powder particles, plasma output, distance to the thermal spray gun, and atmospheric pressure. Further, the same effect can be obtained by forming the insulating film and/or the mixed laminate in each of the above embodiments using fiber reinforced ceramics (FRC) instead of the inorganic hard insulating material.

【0024】[0024]

【発明の効果】本発明によれば、無機硬質絶縁材料から
なる絶縁皮膜と導電材の間に、両者の混合物である混合
積層が形成され、さらに前記絶縁皮膜の少なくとも表面
層の空隙が無機硬質絶縁材料で充填されるので、高温時
に絶縁皮膜に加わる熱応力が低減されるとともに、絶縁
性能が向上し、高温においても亀裂の発生や剥離がなく
、電気絶縁が破損しない耐熱電気絶縁導体が得られ、高
温でも使用可能な高温コイルが提供できる。また、絶縁
皮膜の空隙への無機硬質絶縁材料の充填をコイル形成後
に行うことにより、コイル形成時に絶縁皮膜及び混合積
層に発生する亀裂が充填され、絶縁皮膜の剥離や絶縁性
能の低下が防止される。
According to the present invention, a mixed laminate, which is a mixture of the two, is formed between an insulating film made of an inorganic hard insulating material and a conductive material, and furthermore, the voids in at least the surface layer of the insulating film are made of an inorganic hard insulating material. Since it is filled with an insulating material, the thermal stress applied to the insulating film at high temperatures is reduced, the insulation performance is improved, and a heat-resistant electrically insulated conductor that does not crack or peel even at high temperatures and does not damage the electrical insulation can be obtained. It is possible to provide a high-temperature coil that can be used even at high temperatures. Furthermore, by filling the voids in the insulating film with an inorganic hard insulating material after forming the coil, cracks that occur in the insulating film and mixed laminated layers during coil formation are filled, preventing peeling of the insulating film and deterioration of insulation performance. Ru.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1の空隙及び亀裂が充填された
状態を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a state in which voids and cracks are filled in Example 1 of the present invention.

【図2】本発明の実施例1の素線横断面図である。FIG. 2 is a cross-sectional view of a wire in Example 1 of the present invention.

【図3】本発明の実施例1のコイル成形状態を示す斜視
図である。
FIG. 3 is a perspective view showing a coil forming state in Example 1 of the present invention.

【図4】本発明の実施例1の空隙及び亀裂の状態を模式
的に示す断面図である。
FIG. 4 is a cross-sectional view schematically showing the state of voids and cracks in Example 1 of the present invention.

【図5】本発明の実施例1のコイルの部分を示す横断面
図である。
FIG. 5 is a cross-sectional view showing a portion of a coil according to Example 1 of the present invention.

【図6】本発明の実施例2の素線の横断面図である。FIG. 6 is a cross-sectional view of a wire according to Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1  導電材 2  混合積層 3  絶縁皮膜 4  素線 5  空隙 6  亀裂 7  対地絶縁 8  空隙のある導電材層 9  SiO2 1 Conductive material 2 Mixed lamination 3 Insulating film 4 Element wire 5 Voids 6 Crack 7 Ground insulation 8 Conductive material layer with voids 9 SiO2

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  導電材と、該導電材の表面に形成され
た導電材と無機硬質絶縁材料の混合積層と、該混合積層
表面に形成された無機硬質絶縁材料からなる絶縁皮膜と
を含んでなり、少なくとも絶縁皮膜の表面層の粒子間の
空隙が無機硬質絶縁材料により充填されている耐熱電気
絶縁導体。
1. A conductive material comprising a conductive material, a mixed laminated layer of a conductive material and an inorganic hard insulating material formed on the surface of the conductive material, and an insulating film made of the inorganic hard insulating material formed on the surface of the mixed laminated layer. A heat-resistant electrically insulated conductor in which at least the voids between particles in the surface layer of the insulating film are filled with an inorganic hard insulating material.
【請求項2】  導電材と混合積層の間に、前記導電材
と同材質からなる無数の微小空隙を設けた層が設けられ
ていることを特徴とする請求項1に記載の耐熱電気絶縁
導体。
2. The heat-resistant electrically insulated conductor according to claim 1, further comprising a layer made of the same material as the conductive material and provided with numerous microgaps between the conductive material and the mixed laminated layer. .
【請求項3】  混合積層の導電材と無機硬質絶縁材料
の混合比が、該混合積層の厚さ方向に変化していること
を特徴とする請求項1または2に記載の耐熱電気絶縁導
体。
3. The heat-resistant electrically insulated conductor according to claim 1, wherein the mixing ratio of the conductive material and the inorganic hard insulating material in the mixed laminate varies in the thickness direction of the mixed laminate.
【請求項4】  絶縁皮膜及びまたは混合積層が、繊維
強化セラミックス(FRC)からなることを特徴とする
請求項1乃至3のいずれかに記載の耐熱電気絶縁導体。
4. The heat-resistant electrically insulated conductor according to claim 1, wherein the insulating film and/or the mixed laminate are made of fiber reinforced ceramics (FRC).
【請求項5】  耐熱電気絶縁導体を用いて形成された
高温コイルにおいて、前記耐熱電気絶縁導体が請求項1
乃至4のいずれかに記載の耐熱電気絶縁導体であること
を特徴とする高温コイル。
5. A high temperature coil formed using a heat resistant electrically insulated conductor, wherein the heat resistant electrically insulated conductor is a heat resistant electrically insulated conductor.
5. A high-temperature coil characterized by being the heat-resistant electrically insulated conductor according to any one of items 4 to 4.
【請求項6】  コイル表面に無機硬質絶縁材料が充填
されていることを特徴とする請求項5に記載の高温コイ
ル。
6. The high-temperature coil according to claim 5, wherein the coil surface is filled with an inorganic hard insulating material.
【請求項7】  耐熱電気絶縁導体を用いて形成された
高温コイルにおいて、前記耐熱電気絶縁導体が導電材と
、該導電材の表面に形成された導電材と無機硬質絶縁材
料の混合積層と、該混合積層表面に形成された無機硬質
絶縁材料からなる絶縁皮膜とを含んでなり、該耐熱電気
絶縁導体を用いて形成された高温コイル表面に無機硬質
絶縁材料が充填されていることを特徴とする高温コイル
7. A high-temperature coil formed using a heat-resistant electrically insulated conductor, wherein the heat-resistant electrically insulated conductor comprises a conductive material, a mixed laminate of a conductive material and an inorganic hard insulating material formed on the surface of the conductive material; an insulating film made of an inorganic hard insulating material formed on the surface of the mixed laminated layer, and the surface of the high-temperature coil formed using the heat-resistant electrically insulated conductor is filled with the inorganic hard insulating material. high temperature coil.
【請求項8】  コイルの対地絶縁が無機硬質絶縁材料
の溶射皮膜で形成され、該溶射皮膜の粒子間の空隙の一
部あるいは全てが無機硬質絶縁材料により充填されてい
ることを特徴とする請求項5乃至7のいずれかに記載の
高温コイル。
8. A claim characterized in that the ground insulation of the coil is formed by a thermally sprayed coating of an inorganic hard insulating material, and some or all of the gaps between particles of the thermally sprayed coating are filled with the inorganic hard insulating material. The high temperature coil according to any one of items 5 to 7.
【請求項9】  コイルの対地絶縁が繊維強化セラミッ
クスで形成されていることを特徴とする請求項5乃至7
のいずれかに記載の高温コイル。
9. Claims 5 to 7, wherein the ground insulation of the coil is made of fiber-reinforced ceramics.
A high temperature coil as described in any of the above.
JP3102535A 1991-05-08 1991-05-08 Heat-resisting electric insulating conductor Pending JPH04332405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3102535A JPH04332405A (en) 1991-05-08 1991-05-08 Heat-resisting electric insulating conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3102535A JPH04332405A (en) 1991-05-08 1991-05-08 Heat-resisting electric insulating conductor

Publications (1)

Publication Number Publication Date
JPH04332405A true JPH04332405A (en) 1992-11-19

Family

ID=14329981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3102535A Pending JPH04332405A (en) 1991-05-08 1991-05-08 Heat-resisting electric insulating conductor

Country Status (1)

Country Link
JP (1) JPH04332405A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025750A1 (en) * 1995-02-14 1996-08-22 Sundstrand Corporation High temperature electrical insulation system
JP2013530313A (en) * 2010-07-08 2013-07-25 シーメンス エナジー インコーポレイテッド Method for forming a material layer on the surface of a non-metallic substrate
JP2013530312A (en) * 2010-07-08 2013-07-25 シーメンス エナジー インコーポレイテッド Method for applying an electrically insulating material layer to the surface of a conductor
JP2018073903A (en) * 2016-10-26 2018-05-10 株式会社村田製作所 Electronic component and method of manufacturing the same
EP3696833A1 (en) * 2019-02-13 2020-08-19 Siemens Aktiengesellschaft Method for producing a coil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025750A1 (en) * 1995-02-14 1996-08-22 Sundstrand Corporation High temperature electrical insulation system
JP2013530313A (en) * 2010-07-08 2013-07-25 シーメンス エナジー インコーポレイテッド Method for forming a material layer on the surface of a non-metallic substrate
JP2013530312A (en) * 2010-07-08 2013-07-25 シーメンス エナジー インコーポレイテッド Method for applying an electrically insulating material layer to the surface of a conductor
JP2018073903A (en) * 2016-10-26 2018-05-10 株式会社村田製作所 Electronic component and method of manufacturing the same
EP3696833A1 (en) * 2019-02-13 2020-08-19 Siemens Aktiengesellschaft Method for producing a coil
WO2020164899A1 (en) * 2019-02-13 2020-08-20 Siemens Aktiengesellschaft Method for producing a coil

Similar Documents

Publication Publication Date Title
US10510459B2 (en) Insulated winding wire articles having conformal coatings
JP2827333B2 (en) Manufacturing method of heat-resistant insulating coil
CN205264362U (en) Corona -resistant polyimide film -sintered enameled rectangular copper wire
JPH04332405A (en) Heat-resisting electric insulating conductor
JP6900934B2 (en) Insulated wire and its manufacturing method
CN1326157C (en) Corona-proof conductor
EP0729157B1 (en) Electrical conductor member such as a wire with an inorganic insulating coating
JPS621242B2 (en)
CA2142765C (en) Inorganic insulating member
CN107574413B (en) Method and device for inhibiting charge injection
JP3228520B2 (en) Vacuum wire
CN210156157U (en) 180-grade polyester-imide enameled round copper wire
JPS63237404A (en) Coil
JPS59185148A (en) Insulating method of electric machine coil
WO2023012662A1 (en) Method for the electromagentic insulation of components of an electric motor
JPH0749687Y2 (en) Insulation structure for electrical equipment
US3513080A (en) Coated sintered conductor
JPH0246711A (en) Manufacture of heat resistant insulated coil
JPH0810936Y2 (en) Electrical equipment insulation structure
CN102222540A (en) Single-surface film mica tape wrapped rectangular copper wire
JPS63184311A (en) Coil insulation of vacuum electric apparatus
JPH05300708A (en) Manufacture of heat-resistant insulting coil
JPH0393107A (en) Heat resistant insulating electric wire and manufacture thereof
JPH0982547A (en) Induction heating coil
JPH04112505A (en) Inorganic insulated coil