JPH04332391A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH04332391A
JPH04332391A JP1782491A JP1782491A JPH04332391A JP H04332391 A JPH04332391 A JP H04332391A JP 1782491 A JP1782491 A JP 1782491A JP 1782491 A JP1782491 A JP 1782491A JP H04332391 A JPH04332391 A JP H04332391A
Authority
JP
Japan
Prior art keywords
heat exchanger
flow
tube
storage material
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1782491A
Other languages
Japanese (ja)
Other versions
JP2976538B2 (en
Inventor
Yuji Nakazawa
仲沢 優司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3017824A priority Critical patent/JP2976538B2/en
Publication of JPH04332391A publication Critical patent/JPH04332391A/en
Application granted granted Critical
Publication of JP2976538B2 publication Critical patent/JP2976538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To maintain and or increase the overcooling degree of a heat transfer tube and prevent the blockading of a flow passage due to freezing. CONSTITUTION:A flow passage forming body 21 is inserted into a heat transfer tube 20. The flow passage of cold heat accumulating material W is formed cylindrically between the flow passage forming body 21 and the inner peripheral wall of the heat transfer tube 20. A spiral projection 22, formed on the outer periphery of the flow passage forming body 21, changes the flow of the cold heat accumulating material W into whirling flow. The flow of the cold heat accumulating material W is pushed against the inner peripheral wall of the heat transfer tube 20 by the centrifugal force of the whirling flow whereby disturbance is hardly generated and the flow of the cold heat accumulating material W is stabilized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、蓄氷槽の蓄冷材を循環
させて過冷却したのちその過冷却状態を解消してスラリ
ー状の氷化物にする氷蓄熱装置などに用いる熱交換器に
係り、熱交換器の凍結防止対策に関する。
[Industrial Application Field] The present invention is applied to a heat exchanger used in an ice heat storage device, etc., which circulates and supercools the cold storage material in an ice storage tank, and then eliminates the supercooled state and converts it into a slurry-like frozen product. Regarding measures to prevent freezing of heat exchangers.

【0002】0002

【従来の技術】近年、工業プラントやビルなどにおける
比較的大規模な空調システムには蓄熱空調システムが利
用されている。蓄熱空調システムに使用する装置として
、過冷却制御型の氷蓄熱装置が知られている。
2. Description of the Related Art In recent years, thermal storage air conditioning systems have been used in relatively large-scale air conditioning systems in industrial plants, buildings, and the like. A supercooling control type ice heat storage device is known as a device used in a heat storage air conditioning system.

【0003】この過冷却制御型の氷蓄熱装置は、冷却装
置に接続された熱交換器と蓄氷槽との間で蓄氷槽の蓄冷
材を循環させる循環路を設け、熱交換器により蓄氷槽の
蓄冷材を冷却した後、過冷却状態を解消させてスラリ―
状の氷にするものである。
[0003] This supercooling control type ice heat storage device has a circulation path for circulating the cold storage material in the ice storage tank between a heat exchanger connected to the cooling device and the ice storage tank, and the ice storage material is stored by the heat exchanger. After cooling the cold storage material in the ice tank, the supercooled state is eliminated and the slurry is
It is used to make ice cubes.

【0004】過冷却用の熱交換器としては、例えば、U
SP4401449号公報,USP4671077号公
報および特開昭63−14064号公報に開示された氷
蓄熱装置では、よく知られている多管型(Shell−
and−tubetype)熱交換器が用いられている
。そして、シェル内に低温熱媒体としての冷媒またはブ
ラインを流通する一方、シェル内に多数配設された伝熱
管に水を流通し、冷媒またはブラインによって水を過冷
却している。
[0004] As a heat exchanger for supercooling, for example, U
The ice heat storage devices disclosed in SP4401449, USP4671077, and JP-A-63-14064 are of the well-known multi-tube type (shell-type).
and-tube type) heat exchangers are used. A refrigerant or brine as a low-temperature heat medium is passed through the shell, while water is passed through a large number of heat transfer tubes disposed inside the shell, and the water is supercooled by the refrigerant or brine.

【0005】[0005]

【発明が解決しようとする課題】熱交換器を設計する場
合、一般的に伝熱管内の水の流れを乱した方が有利であ
る。これは、乱れによる管壁近傍の流体と主流の流体と
の間の熱交換により、伝熱が効果的に行われるためであ
る。
When designing heat exchangers, it is generally advantageous to disrupt the flow of water within the heat exchanger tubes. This is because heat exchange between the fluid near the tube wall and the mainstream fluid due to the turbulence results in effective heat transfer.

【0006】しかしながら、過冷却を目的とする上記熱
交換器では、激しい乱れがおきると流路が閉塞するとい
う問題がある。すなわち、過冷却された水は不安定で、
わずかの刺激によっても過冷却状態を解消して氷化を開
始しやすい。そして、過冷却状態の解消は伝熱管内の水
の流れに生じた激しい乱れによってもおこる。いったん
氷化が開始すると、氷が伝熱管の管壁に付着して着氷層
をつくり、着氷層がさらに厚くなれば流路を閉塞し、さ
らには氷の膨脹圧によって伝熱管が破損するという問題
が生じてくる。
However, the above-mentioned heat exchanger intended for supercooling has a problem in that the flow path becomes clogged when severe turbulence occurs. In other words, supercooled water is unstable;
Even with the slightest stimulus, the supercooled state can be overcome and freezing can easily begin. The elimination of the supercooled state also occurs due to severe turbulence that occurs in the flow of water within the heat transfer tube. Once icing begins, ice adheres to the tube wall of the heat transfer tube and forms an icing layer, and if the icing layer becomes even thicker, it blocks the flow path, and the heat transfer tubes are further damaged by the expansion pressure of the ice. A problem arises.

【0007】このような問題を解決する方法として、伝
熱管の管外側の低温熱媒体の温度をあまり下げず、伝熱
管温度を比較的高い値にすることにより、氷の付着を防
止することが考えられる。しかし、この方法では、水の
過冷却度△Tsc(冷却温度Tが凝固点Tf より低い
度合いを示すものであって、△Tsc=|T−Tf |
で現される)が小さいために一循環あたりの製氷量が少
なくなり、単位時間あたりの製氷量が減少してしまう。 したがって、昼間の空調に必要な蓄氷量を確保するには
、熱交換器をスケールアップをしなければならないとい
う問題が生じてくる。
[0007] As a way to solve this problem, it is possible to prevent ice from forming by keeping the temperature of the heat exchanger tube at a relatively high value without lowering the temperature of the low-temperature heat medium on the outside of the heat exchanger tube too much. Conceivable. However, in this method, the degree of supercooling ΔTsc of water (indicating the degree to which the cooling temperature T is lower than the freezing point Tf, ΔTsc=|T−Tf|
) is small, the amount of ice made per cycle is small, and the amount of ice made per unit time is reduced. Therefore, in order to secure the amount of ice storage necessary for daytime air conditioning, a problem arises in that the heat exchanger must be scaled up.

【0008】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、伝熱管の過冷却度を維持しさらには
増大させると共に、流路の凍結閉塞を防止することにあ
る。
[0008] The present invention has been made in view of these points, and its purpose is to maintain and even increase the degree of supercooling of heat exchanger tubes, and to prevent freezing and blockage of flow passages.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明が講じた手段は、伝熱管内を流れる蓄冷材の
流路を伝熱管の管内周壁に沿って筒状に形成する流路形
成体と、流路形成体の外周または伝熱管の内周のいずれ
か一方に、流路形成体によって設定された流路を流れる
蓄冷材に螺旋状の旋回流をつくる突条を設けたものであ
る。
[Means for Solving the Problems] In order to achieve the above object, the means taken by the present invention is to form a flow path for a cold storage material flowing inside a heat transfer tube into a cylindrical shape along the inner circumferential wall of the heat transfer tube. A protrusion is provided on the channel forming body and either the outer periphery of the channel forming body or the inner periphery of the heat transfer tube to create a spiral swirl flow in the regenerator material flowing through the channel set by the channel forming body. It is something.

【0010】具体的には、本発明の解決手段は、図1(
実線部分のみ)に示すように、低温熱媒体が流通する外
側流路(11)と、該外側流路(11)内に配設され、
蓄冷材(W)が流通し、上記低温熱媒体(M)により蓄
冷材(W)を過冷却する伝熱管(20)とを備えた熱交
換器を前提としている。
Specifically, the solution of the present invention is as shown in FIG.
As shown in the solid line portion only), an outer flow path (11) through which a low-temperature heat medium flows, and an outer flow path (11) disposed within the outer flow path (11),
The present invention is based on a heat exchanger including a heat exchanger tube (20) through which a cold storage material (W) flows and supercools the cold storage material (W) by the low-temperature heat medium (M).

【0011】さらに、伝熱管(20)内に流路形成体(
21)が挿入され、該流路形成体(21)の外周または
伝熱管(20)の管内周壁のいずれか一方には、伝熱管
(20)内における蓄冷材(W)の流れを螺旋状の旋回
流にする螺旋突条(22)が形成された構成としている
Furthermore, a flow path forming body (
21) is inserted into either the outer periphery of the flow path forming body (21) or the inner circumferential wall of the heat transfer tube (20) to control the flow of the regenerator material (W) in the heat transfer tube (20) in a spiral shape. It has a configuration in which a spiral protrusion (22) is formed to create a swirling flow.

【0012】0012

【作用】以上の構成により、本発明の構成によれば、蓄
氷槽(2)より蓄冷材(W)が強制循環され熱交換器の
伝熱管(20)内に流入する。伝熱管(20)内には流
路形成体(21)が挿入されている。この流路形成体(
21)の外周と伝熱管(20)の管内周壁とにより、伝
熱管(20)内を流れる蓄冷材(W)の流路が筒状に形
成される。そして、流路形成体(21)の外周または伝
熱管(20)の管内周壁のいずれか一方に形成された螺
旋突条(22)が、蓄冷材(W)の流れを螺旋状の旋回
流にする。したがって、蓄冷材(W)の流れは、筒状の
流路内で旋回流の遠心力によって伝熱管(20)の管内
周壁に押し付けられるので、乱れが発生しにくくなり、
流れが安定する。
[Operation] According to the structure of the present invention, the cold storage material (W) is forcedly circulated from the ice storage tank (2) and flows into the heat exchanger tube (20) of the heat exchanger. A flow path forming body (21) is inserted into the heat exchanger tube (20). This channel forming body (
21) and the tube inner peripheral wall of the heat exchanger tube (20), a flow path for the cool storage material (W) flowing inside the heat exchanger tube (20) is formed in a cylindrical shape. The spiral protrusion (22) formed on either the outer periphery of the flow path forming body (21) or the inner circumferential wall of the heat transfer tube (20) transforms the flow of the cold storage material (W) into a spiral swirling flow. do. Therefore, the flow of the regenerator material (W) is pressed against the inner circumferential wall of the heat transfer tube (20) by the centrifugal force of the swirling flow within the cylindrical flow path, making it difficult for turbulence to occur.
The flow becomes stable.

【0013】[0013]

【実施例】以下、本発明を氷蓄熱装置に用いる過冷却用
の熱交換器に適用した例を図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is applied to a supercooling heat exchanger used in an ice heat storage device will be described below with reference to the drawings.

【0014】図1に氷蓄熱装置の構成を示す。氷蓄熱装
置(1)は、スラリ―状に氷化した蓄冷材(W)を貯溜
するための蓄氷槽(2)を備え、該蓄氷槽(2)と冷却
器としての熱交換器(3)との間は、循環路(4)によ
り蓄冷材(W)の循環可能に接続されている。該循環路
(4)は、蓄氷槽(2)の底部から熱交換器(3)に蓄
冷材(W)を供給する往流路(4A)と、熱交換器(3
)から蓄氷槽(2)の上部にスラリ―状の氷になった蓄
冷材(W)を戻す復流路(4B)とからなっており、往
流路(4A)に介設されたポンプ(5)により、循環路
(4)内で蓄氷槽(2)の蓄冷材(W)を強制循環させ
ている。
FIG. 1 shows the configuration of an ice heat storage device. The ice storage device (1) is equipped with an ice storage tank (2) for storing a cold storage material (W) frozen in the form of slurry, and includes an ice storage tank (2) and a heat exchanger (as a cooler). 3) is connected by a circulation path (4) so that the cold storage material (W) can be circulated. The circulation path (4) includes an outflow path (4A) that supplies cold storage material (W) from the bottom of the ice storage tank (2) to the heat exchanger (3), and a
) and a return flow path (4B) that returns the cold storage material (W) in the form of slurry ice to the upper part of the ice storage tank (2), and a pump interposed in the outflow flow path (4A). By (5), the cold storage material (W) of the ice storage tank (2) is forcedly circulated within the circulation path (4).

【0015】さらに、上記循環路(4)の復流路(4B
)において、熱交換器(3)の下流側には、熱交換器(
3)で過冷却された蓄冷材(W)の過冷却状態を解消さ
せる過冷却解消部(6)が設けられている。
Furthermore, the return flow path (4B) of the circulation path (4) is
), on the downstream side of the heat exchanger (3), there is a heat exchanger (
A supercooling eliminating section (6) is provided to eliminate the supercooling state of the cool storage material (W) supercooled in step 3).

【0016】過冷却解消部(6)の過冷却状態の解消方
式としては、冷却することにより熱的衝撃を与えるもの
、大きな流速や乱れを発生させたり、振動や気泡を発生
させることにより機械的な衝撃を与えるものなど、種々
のものが挙げられる。
Methods for eliminating the supercooled state in the supercooling elimination section (6) include methods that apply thermal shock by cooling, mechanical methods that generate large flow velocity and turbulence, or generate vibrations and bubbles. There are various types, including those that give a strong impact.

【0017】また、蓄氷槽(2)には、図1に示すよう
に、蓄冷材(W)に混在する氷化物がもつ冷熱を空調に
用いるための冷房負荷(7)が設けられている。冷房負
荷(7)としては、貯溜されている蓄冷材(W)を冷媒
回路の冷媒を冷却するのに用いる方式であっても、空気
を直接冷却する方式であってもよい。
[0017] Furthermore, as shown in Fig. 1, the ice storage tank (2) is provided with a cooling load (7) for using the cold energy of frozen substances mixed in the cold storage material (W) for air conditioning. . The cooling load (7) may be a method in which the stored cold storage material (W) is used to cool the refrigerant in the refrigerant circuit, or a method in which the air is directly cooled.

【0018】熱交換器(3)の冷却方式としては、低温
熱媒体として冷媒を用いて蓄冷材(W)を直接冷却する
直接膨脹式、あるいは低温熱媒体として冷却されたブラ
インを用いて蓄冷材(W)を間接的に冷却する間接膨脹
式のいずれであってもよい。蓄冷材(W)には、水又は
水溶液が用いられる。
The cooling method for the heat exchanger (3) is a direct expansion type that uses a refrigerant as a low-temperature heat medium to directly cool the cold storage material (W), or a direct expansion type that uses cooled brine as a low-temperature heat medium to cool the cold storage material (W). Any indirect expansion type that cools (W) indirectly may be used. Water or an aqueous solution is used for the cold storage material (W).

【0019】次に、多管型熱交換器の構造の具体例を図
2に示す。図2に示された多管型熱交換器(3)は、縦
置型ワンパス方式の熱交換器(冷却器)であって、管板
(10)を介して外側流路としての円筒型のシェル(1
1)と、該シェル(11)の上下に位置する端室(12
),(12)とが区画形成されている。シェル(11)
内には多数の伝熱管(20)の束が収納されている。伝
熱管(20)の両端は管板(10)に固定されていると
共に、上下の両端室(12),(12)に連通している
。シェル(11)には、流体の流入口(13)と流出口
(14)とが開設されている。一方、下方の端室(12
)に流入ノズル(15)が設けられ、上方の端室(12
)に流出ノズル(16)が設けられている。そして、シ
ェル(11)内に低温側流体である低温熱媒体(M)が
流通され、伝熱管(20)に高温側流体である蓄冷材(
W)が流通されている。両流体はいずれも下から上へ流
通する並流となるように配管されている。つまり、低温
熱媒体(M)は流入口(13)よりシェル(11)内に
流入し、流出口(14)より流出する。また、蓄冷材(
W)は流入ノズル(15)より下方の端室(12)内に
流入し、該下方の端室(12)より伝熱管(20)内を
流通した後上方の端室(12)に入り、上方の端室(1
2)の流出ノズル(16)より流出する。
Next, a specific example of the structure of a multi-tubular heat exchanger is shown in FIG. The multi-tubular heat exchanger (3) shown in FIG. (1
1) and end chambers (12) located above and below the shell (11).
), (12) are formed into sections. Shell (11)
A bundle of a large number of heat exchanger tubes (20) is housed inside. Both ends of the heat exchanger tube (20) are fixed to the tube plate (10) and communicate with the upper and lower end chambers (12), (12). The shell (11) has a fluid inlet (13) and an outlet (14). On the other hand, the lower end chamber (12
) is provided with an inflow nozzle (15), and the upper end chamber (12
) is provided with an outflow nozzle (16). Then, a low-temperature heat medium (M), which is a low-temperature fluid, is passed through the shell (11), and a cold storage material (M), which is a high-temperature fluid, is passed through the heat transfer tube (20).
W) is being distributed. Both fluids are piped so that they flow in parallel from the bottom to the top. That is, the low temperature heat medium (M) flows into the shell (11) through the inlet (13) and flows out through the outlet (14). In addition, cold storage material (
W) flows into the lower end chamber (12) from the inflow nozzle (15), flows through the heat transfer tube (20) from the lower end chamber (12), and then enters the upper end chamber (12); Upper end chamber (1
2) flows out from the outflow nozzle (16).

【0020】次に、本発明の特徴として、図3に示すよ
うに、伝熱管(20)内には、流路形成体(21)が挿
入されている。流路形成体(21)は内側に変形可能な
円筒中空体に形成され、外周には螺旋突条(22)が形
成されている。流路形成体(21)の形状を内側に変形
可能な中空体としたのは、たとえ過冷却状態が解消し氷
が生成し、氷が伝熱管(20)と流路形成体(21)と
の間の流路を閉塞したときにも、氷の膨脹圧によって流
路形成体(21)が内側に膨出変形できるようにし、伝
熱管(20)が氷によって破損されないようにするため
である。
Next, as a feature of the present invention, as shown in FIG. 3, a flow path forming body (21) is inserted into the heat exchanger tube (20). The flow path forming body (21) is formed into a cylindrical hollow body that can be deformed inwardly, and a spiral protrusion (22) is formed on the outer periphery. The reason why the shape of the flow path forming body (21) is made into a hollow body that can be deformed inward is that even if the supercooling state is resolved and ice is generated, the ice will not connect to the heat exchanger tube (20) and the flow path forming body (21). This is to prevent the heat transfer tubes (20) from being damaged by the ice by allowing the flow path forming body (21) to expand and deform inward due to the expansion pressure of the ice even when the flow path between the heat exchanger tubes (20) is blocked. .

【0021】螺旋突条(22)は、蓄冷材(W)の流れ
に螺旋状の旋回流を形成できるものであればよい。とく
に、図3の螺旋突条(22)は、スクリューコンベアの
ねじ羽根と同じような曲面形状がヘリカルに形成された
ねじり羽根に形成している。ねじり羽根を採用した場合
には、乱れをおこすことなく蓄冷材(W)の流れを反転
でき、つまり、螺旋突条(22)側にあった高温部分を
周期的に伝熱管(20)側に反転でき、蓄冷材(W)を
均一かつ効率的に冷却することができる。なお、螺旋突
条(22)を複数本形成すれば、蓄冷材(W)を数本の
旋回流に分けて冷却でき、冷却効果が向上する。
The spiral protrusion (22) may be of any type as long as it can form a spiral swirling flow in the flow of the cold storage material (W). In particular, the spiral protrusion (22) in FIG. 3 is formed into a helical twisting blade with a curved surface similar to the screw blade of a screw conveyor. When the twisted blades are used, the flow of the cool storage material (W) can be reversed without causing any disturbance. In other words, the high temperature part that was on the spiral protrusion (22) side can be periodically transferred to the heat exchanger tube (20) side. It can be reversed, and the cool storage material (W) can be cooled uniformly and efficiently. In addition, if a plurality of spiral protrusions (22) are formed, the cool storage material (W) can be cooled by dividing into several swirling flows, and the cooling effect is improved.

【0022】流路形成体(21)および螺旋突条(22
)の材料としては、蓄冷材(W)により腐食しにくい素
材を用いることが好ましい。具体的には、合成樹脂また
はステンレスのごとき耐蝕性の金属を用いる。
[0022] The channel forming body (21) and the spiral protrusion (22)
) is preferably a material that is less likely to corrode due to the cold storage material (W). Specifically, a synthetic resin or a corrosion-resistant metal such as stainless steel is used.

【0023】次に、上記氷蓄熱装置(1)の作動につい
て説明する。蓄冷熱運転を行ない、蓄氷槽(2)に冷熱
を蓄えるには、蓄冷材(W)を蓄氷槽(2)と熱交換器
(3)との間で循環させると共に、熱交換器(3)によ
り蓄氷槽(2)の蓄冷材(W)を過冷却する。過冷却さ
れた蓄冷材(W)は過冷却解消部(6)で再冷却等され
、その過冷却状態が解消されて、スラリ―状の氷化物が
生成される。そして、この氷化物を含む蓄冷材(W)は
、流動可能なスラリ―状を保ったまま蓄氷槽(2)へ強
制循環して貯溜され、昼間の冷房運転時の冷熱として使
用される。
Next, the operation of the ice heat storage device (1) will be explained. To perform cold storage heat operation and store cold heat in the ice storage tank (2), the cold storage material (W) is circulated between the ice storage tank (2) and the heat exchanger (3), and the heat exchanger ( 3) supercools the cold storage material (W) in the ice storage tank (2). The supercooled cold storage material (W) is recooled in the supercooling elimination section (6), the supercooled state is eliminated, and a slurry-like frozen product is generated. The cold storage material (W) containing this frozen product is forcedly circulated and stored in the ice storage tank (2) while maintaining a flowable slurry state, and is used as cold energy during daytime cooling operation.

【0024】熱交換器(3)では、低温熱媒体(M)が
流入口(13)よりシェル(11)内に流入し、シェル
(11)内を上方に向かって流通し、流出口(14)よ
り機外に排出される。蓄冷材(W)は往流路(4A)よ
り下方の端室(12)に流入し、この下方の端室(12
)において各伝熱管(20)に蓄冷材(W)が分配供給
される。伝熱管(20)内に流入した蓄冷材(W)は上
昇し、上昇中に伝熱管(20)を介して低温熱媒体(M
)により冷却され、過冷却状態となって上方の端室(1
2)に達する。そして、過冷却された蓄冷材(W)は、
上方の端室(12)の流出ノズル(16)から復流路(
4B)に流出する。
In the heat exchanger (3), the low temperature heat medium (M) flows into the shell (11) from the inlet (13), flows upward in the shell (11), and flows through the outlet (14). ) is ejected from the aircraft. The cold storage material (W) flows into the lower end chamber (12) from the outgoing flow path (4A), and flows into the lower end chamber (12).
), the cold storage material (W) is distributed and supplied to each heat exchanger tube (20). The cold storage material (W) that has flowed into the heat transfer tube (20) rises, and during the rise, the low temperature heat medium (M) passes through the heat transfer tube (20).
), the upper end chamber (1
2) is reached. Then, the supercooled cold storage material (W) is
From the outflow nozzle (16) of the upper end chamber (12) to the return flow path (
4B).

【0025】さらに、熱交換器(3)の伝熱管(20)
内の構造と蓄冷材(W)の流れについて詳しく説明する
Furthermore, heat exchanger tubes (20) of the heat exchanger (3)
The internal structure and flow of the cold storage material (W) will be explained in detail.

【0026】伝熱管(20)内において蓄冷材(W)の
過冷却状態を解消させる最も大きな要因は激しい乱れが
発生することである。熱交換器の伝熱効率を向上させる
上で、ある程度乱れを生じさせることは、管壁近傍の流
体と主流の流体との間の熱交換による効率的な伝熱を行
うために必要である。しかしながら、過冷却用の熱交換
器には、乱れが激しくなると、過冷却された蓄冷材(W
)の過冷却状態が解消し、氷化の発生に引き続いて流路
の閉塞をおこすきっかけとなるという問題がある。
The most important factor in eliminating the supercooled state of the regenerator material (W) in the heat transfer tube (20) is the occurrence of severe turbulence. In order to improve the heat transfer efficiency of a heat exchanger, it is necessary to generate some degree of turbulence in order to perform efficient heat transfer through heat exchange between the fluid near the tube wall and the mainstream fluid. However, when the turbulence becomes severe in the supercooling heat exchanger, the supercooled regenerator material (W
), the problem arises in that the supercooled state of the water is eliminated, which leads to ice formation and subsequent blockage of the flow path.

【0027】そこで、本発明では、伝熱管(20)内に
流路形成体(21)を挿入することにより伝熱管(20
)内に筒状の流路を形成し、かつこの限定された流路に
おける蓄冷材(W)の流れを、螺旋突条(22)により
螺旋状の旋回流にする構成としている。すなわち、伝熱
管(20)内に挿入された流路形成体(21)の外周と
伝熱管(20)の管内周壁とが、伝熱管(20)内を流
れる蓄冷材(W)の流路を筒状に形成する。さらに、流
路形成体(21)の外周に形成された螺旋突条(22)
が蓄冷材(W)の流れを螺旋状の旋回流にする。
Therefore, in the present invention, the heat exchanger tube (20) is inserted by inserting the flow path forming body (21) into the heat exchanger tube (20).
), and the flow of the cold storage material (W) in this limited flow path is made into a spiral swirling flow by the spiral protrusions (22). That is, the outer periphery of the flow path forming body (21) inserted into the heat exchanger tube (20) and the tube inner peripheral wall of the heat exchanger tube (20) form the flow path of the regenerator material (W) flowing inside the heat exchanger tube (20). Form into a cylinder. Furthermore, a spiral protrusion (22) formed on the outer periphery of the flow path forming body (21)
makes the flow of the cold storage material (W) into a spiral swirling flow.

【0028】伝熱管(20)によって形成された筒状の
流路はある横断面でみれば環状であり、伝熱管(20)
の中心部分には蓄冷材(W)は流通しない。一方、流路
形成体(21)を伝熱管(20)内に挿入しない場合に
は、蓄冷材(W)は管壁のある点から管中心を通って対
向する管壁まで移動でき、蓄冷材(W)の流れには激し
い乱れが発生するおそれがある。これに対して、本発明
では蓄冷材(W)の流路が横断面が環状に形成されてい
るので、蓄冷材(W)が半径方向に移動できる領域は小
さく、乱れの程度を小さくすることができる。たとえ、
旋回流により蓄冷材(W)の流速がある程度増加しても
、乱れの増大を抑制することができる。しかも、旋回流
の遠心力が蓄冷材(W)を伝熱管(20)の管内周壁に
押し付けることと相俟って、乱れを抑制し、蓄冷材(W
)の流れを安定化させることができる。その結果、伝熱
管(20)内において過冷却状態が解消しにくくなり、
流路の閉塞を防止することができる。
[0028] The cylindrical flow path formed by the heat transfer tube (20) is annular when viewed in a certain cross section, and the heat transfer tube (20)
The cold storage material (W) does not flow through the center of the area. On the other hand, when the flow path forming body (21) is not inserted into the heat exchanger tube (20), the cold storage material (W) can move from a certain point on the tube wall to the opposing tube wall through the center of the tube, and the cold storage material (W) can move from a certain point on the tube wall to the opposing tube wall. There is a risk that severe turbulence will occur in the flow of (W). In contrast, in the present invention, since the flow path of the cold storage material (W) is formed with an annular cross section, the area in which the cold storage material (W) can move in the radial direction is small, and the degree of turbulence can be reduced. Can be done. parable,
Even if the flow velocity of the cool storage material (W) increases to some extent due to the swirling flow, an increase in turbulence can be suppressed. Moreover, the centrifugal force of the swirling flow presses the regenerator material (W) against the inner circumferential wall of the heat transfer tube (20), suppressing turbulence and suppressing the regenerator material (W).
) flow can be stabilized. As a result, it becomes difficult to eliminate the supercooled state within the heat exchanger tube (20),
Blockage of the flow path can be prevented.

【0029】また、従来は、蓄冷材(W)流速の変動は
ある程度避けることできず、流速の変動によって過冷却
状態が解消されるという事態を避けるため、過冷却度を
小さめに設定することによって安全率を大きくとってい
た。しかしながら、伝熱管(20)内での過冷却状態を
解消しにくくできるようになり、過冷却度を大きく設定
することができる。そして、一循環あたりの製氷量を増
大させることができ、製氷能力を向上することが可能と
なる。
Conventionally, fluctuations in the flow velocity of the cool storage material (W) cannot be avoided to some extent, and in order to avoid the situation where the supercooling state is eliminated due to fluctuations in the flow velocity, the degree of supercooling is set to a small value. The safety factor was large. However, it becomes difficult to eliminate the supercooled state within the heat exchanger tube (20), and the degree of supercooling can be set large. In addition, the amount of ice made per cycle can be increased, and the ice making capacity can be improved.

【0030】また、蓄冷材(W)の流れを旋回流にする
ことは、蓄冷材(W)の滞留時間を長くすることにもな
り、伝熱量を増加させることになるので、この面からも
製氷能力を向上することができる。
[0030] Furthermore, making the flow of the cold storage material (W) a swirling flow also lengthens the residence time of the cold storage material (W) and increases the amount of heat transfer, so from this point of view as well. Ice making capacity can be improved.

【0031】なお、熱交換器(3)の構造としては、低
温熱媒体および蓄冷材(W)の流量が少ない場合には流
速を確保するために二重管型(Double−tube
  type)熱交換器を用いてもよい。また、熱管の
管外側(低温熱媒体側)の境膜伝熱係数が管内側(蓄冷
材側)のそれよりずっと小さい場合には、伝熱管にロー
フィンチューブを用い、管外側の伝熱面積を拡げること
により単位管長あたりの伝熱量を増加させてもよい。ま
た、多管型熱交換器における管内側流体の往復回数につ
いては、ワンパス、マルチパスのいずれであってもよい
The structure of the heat exchanger (3) is a double-tube type in order to ensure the flow velocity when the flow rate of the low-temperature heat medium and the cold storage material (W) is low.
type) heat exchanger may be used. In addition, if the film heat transfer coefficient on the outside of the heat tube (low-temperature heat medium side) is much smaller than that on the inside of the tube (cool storage material side), use a low-fin tube as the heat transfer tube, and use the heat transfer area on the outside of the tube. The amount of heat transfer per unit pipe length may be increased by widening the pipe length. Furthermore, the number of reciprocations of the fluid inside the tubes in the multi-tubular heat exchanger may be either one-pass or multi-pass.

【0032】次に、本発明の過冷却について実験例に基
づいて説明する。
Next, the supercooling of the present invention will be explained based on experimental examples.

【0033】図4(a),(b)は熱交換器として二重
管型の熱交換器を採用した本発明例1を示している。二
重管の内管である伝熱管(20)には内径14.0mm
の直管を使用した。流路形成体(21)は、外径10.
0mmの棒材に合成樹脂被覆の線材を巻回することによ
り、螺旋突条(22)を形成した。線材の径δおよび巻
線のピッチpを変えた流路形成体(21)を2種類用意
した。流路形成体(21)を伝熱管(20)内に挿入す
ることにより、二重管型の熱交換器を製作した。伝熱管
(20)内に、流速3〜4l/minで蓄冷材(W)を
流通し、過冷却状態の解消が開始される限界の過冷却度
△Tscを測定した。
FIGS. 4(a) and 4(b) show Example 1 of the present invention in which a double-tube type heat exchanger is used as the heat exchanger. The heat transfer tube (20), which is the inner tube of the double tube, has an inner diameter of 14.0 mm.
A straight pipe was used. The flow path forming body (21) has an outer diameter of 10.
A spiral protrusion (22) was formed by winding a synthetic resin-coated wire around a 0 mm bar. Two types of channel forming bodies (21) were prepared in which the wire diameter δ and the winding pitch p were changed. A double-tube heat exchanger was manufactured by inserting the flow path forming body (21) into the heat transfer tube (20). A cool storage material (W) was passed through the heat transfer tube (20) at a flow rate of 3 to 4 l/min, and the critical degree of supercooling ΔTsc at which the supercooling state started to be eliminated was measured.

【0034】過冷却度△Tscの測定としては、熱交換
器の伝熱管の終端付近に熱電対を取り付け、伝熱管温度
あるいは蓄冷材(W)の温度を測定した。そして、測定
した温度記録に基づき、過冷却状態が解消されると温度
曲線が急激に0℃に上昇することから、変曲点を求める
ことによって解消時点の温度Tがわかり、過冷却度△T
scを決定した。
To measure the degree of supercooling ΔTsc, a thermocouple was attached near the end of the heat exchanger tube, and the temperature of the heat exchanger tube or the temperature of the regenerator material (W) was measured. Then, based on the measured temperature records, the temperature curve rapidly rises to 0℃ when the supercooling state is eliminated, so by finding the inflection point, the temperature T at the time of elimination can be found, and the degree of supercooling △T
sc was determined.

【0035】本発明例1は、螺旋突条(22)の線径δ
を1.2mm、ピッチpを8.0mmとした。図5(a
),(b)に示す本発明例2は、螺旋突条(22)の線
径δを2.0mm、ピッチpを48.0mmとした。
In Example 1 of the present invention, the wire diameter δ of the spiral protrusion (22)
was set to 1.2 mm, and pitch p was set to 8.0 mm. Figure 5 (a
In Example 2 of the present invention shown in ) and (b), the wire diameter δ of the spiral protrusion (22) was 2.0 mm, and the pitch p was 48.0 mm.

【0036】また、図6(a),(b)に示す流路形成
体(21)および螺旋突条(22)を挿入しない場合を
比較例1とし、図7(a),(b)に示す流路形成体(
21)に螺旋突条(22)を形成していない場合を比較
例2とし、同様にして過冷却度△Tscを測定した。そ
の結果を表1に示す。
Comparative Example 1 is a case in which the channel forming body (21) and the spiral protrusion (22) shown in FIGS. 6(a) and 6(b) are not inserted, and the case shown in FIGS. 7(a) and (b) is The flow path forming body shown (
Comparative Example 2 was a case in which the spiral protrusion (22) was not formed in 21), and the degree of supercooling ΔTsc was measured in the same manner. The results are shown in Table 1.

【0037】[0037]

【表1】[Table 1]

【0038】表1に示すように、流路形成体(21)を
挿入しなかった比較例3および流路形成体(21)に螺
旋突条(22)を形成しなかった比較例4に比べ、過冷
却状態の解消が開始される限界の過冷却度△Tscを増
大させることができることを確認しえた。また、螺旋突
条(22)を伝熱管(20)に密着した本発明例2は、
螺旋突条(22)と伝熱管(20)との間にすきまがあ
る本発明例1に比べ、限界過冷却度△Tscが大きい。 これは、隣り合う流路間で蓄冷材が流通しないので、旋
回流がより形よく形成されたためと考えられる。
As shown in Table 1, compared to Comparative Example 3 in which the channel forming body (21) was not inserted and Comparative Example 4 in which the spiral protrusion (22) was not formed in the channel forming body (21). It was confirmed that the critical degree of supercooling ΔTsc at which the supercooling state starts to disappear can be increased. In addition, Example 2 of the present invention in which the spiral protrusion (22) is closely attached to the heat exchanger tube (20),
The critical degree of supercooling ΔTsc is larger than that of Example 1 of the present invention in which there is a gap between the spiral protrusion (22) and the heat exchanger tube (20). This is considered to be because the regenerator material does not flow between adjacent flow paths, so that a swirling flow is formed in a better shape.

【0039】ところで、過冷却制御型の氷蓄熱装置では
、過冷却用の熱交換器内において過冷却状態を解消させ
ないことが重要であることは、上述の通りである。その
ためには、過冷却温度を制御しなければならないが、そ
れには、まず過冷却度、つまは過冷却された蓄冷材の温
度を正確に知らなければならない。
By the way, as mentioned above, in the supercooling control type ice heat storage device, it is important not to eliminate the supercooling state in the heat exchanger for supercooling. To do this, it is necessary to control the supercooling temperature, but to do so, it is first necessary to accurately know the degree of supercooling, or in other words, the temperature of the supercooled regenerator material.

【0040】蓄冷材を温度測定するには、接触式と非接
触式があるが、測定装置の抵抗によって過冷却状態を解
消することがない非接触式の測定装置を用いることが好
ましい。非接触式の測定装置としては、温度による屈折
率変化を利用する光学式の測定装置のほか、蓄冷材に感
温液晶を混入し、水の色が温度変化により変化すること
を利用した測定装置が用いられる。
[0040] There are contact and non-contact methods for measuring the temperature of the regenerator material, but it is preferable to use a non-contact measuring device that does not eliminate the supercooled state due to the resistance of the measuring device. Non-contact measuring devices include optical measuring devices that use changes in refractive index due to temperature, as well as measuring devices that mix temperature-sensitive liquid crystals into cold storage material and use the fact that the color of water changes with temperature changes. is used.

【0041】また、接触式の測定装置であっても、測定
装置がきっかけとなって発生した着氷を剥離する手段を
設けることにより蓄冷材の温度測定に使用することがで
きる。例えば、熱交換器の伝熱管の終端付近に断熱部を
設け、この断熱部に熱電対などの接触式の測定装置を取
り付け、伝熱管温度あるいは蓄冷材(W)の温度を測定
する。測定装置がきっかけとなって過冷却状態が解消さ
れた場合、測定温度が急激に0℃に上昇するため、氷の
発生を検知できる。そして、測定温度が急激に変化した
直後にデフロスト運転を行う。したがって、氷剥離手段
としては、急激な温度変化を検知するセンサーと、セン
サーからの氷発生信号によりデフロスト運転を行うデフ
ロスト制御手段とを設ければよい。こうすれば、測定装
置が過冷却状態の解消を誘発し管壁に着氷が生じても、
伝熱管の閉塞、さらには破損が生じるという事態を防止
することができる。なお、デフロスト運転中はデフロス
トを低下させないために蓄冷材(W)の流通を停止する
ことが望ましい。
Furthermore, even a contact-type measuring device can be used to measure the temperature of a cold storage material by providing a means for peeling off icing caused by the measuring device. For example, a heat insulating section is provided near the end of a heat transfer tube of a heat exchanger, and a contact measuring device such as a thermocouple is attached to this heat insulating section to measure the temperature of the heat transfer tube or the temperature of the cool storage material (W). When the supercooling state is resolved by the measurement device, the measured temperature rapidly rises to 0°C, making it possible to detect the formation of ice. Immediately after the measured temperature suddenly changes, defrost operation is performed. Therefore, the ice peeling means may be provided with a sensor that detects sudden temperature changes and a defrost control means that performs defrost operation based on an ice generation signal from the sensor. In this way, even if the measuring device induces the elimination of the supercooled state and ice builds up on the pipe wall,
It is possible to prevent clogging and further damage of the heat exchanger tubes. Note that during the defrost operation, it is desirable to stop the flow of the cold storage material (W) so as not to reduce the defrost performance.

【0042】また、特殊な測定方法として、伝熱管内の
流路形成体に温度測定機能を持たせる方法がある。具体
的には、温度条件が最も問題になる伝熱管終端の温度を
光ファイバーで行うものである。つまり、流路形成体の
胴部に光ファイバーを内臓して伝熱管内の蓄冷材を照射
できるようにする。一方、伝熱管終端とこの終端付近の
シェルとに透明窓を取り付け、蓄冷材を透過した光ある
いは管内壁の反射光を外部から検知して温度測定を行う
ものである。
[0042] Furthermore, as a special measurement method, there is a method in which a flow path forming member within a heat transfer tube is provided with a temperature measurement function. Specifically, the temperature at the end of the heat exchanger tube, where temperature conditions are the most important, is measured using an optical fiber. That is, an optical fiber is built into the body of the flow path forming body so that the cool storage material inside the heat transfer tube can be irradiated. On the other hand, a transparent window is attached to the end of the heat exchanger tube and the shell near the end, and the temperature is measured by detecting the light transmitted through the regenerator material or the light reflected from the inner wall of the tube from the outside.

【0043】[0043]

【発明の効果】以上のように、本発明によれば、伝熱管
内に流路形成体を挿入することにより伝熱管内に筒状の
流路を形成し、かつこの限定された流路における蓄冷材
の流れを、螺旋突条により螺旋状の旋回流にしている。
As described above, according to the present invention, a cylindrical flow path is formed in a heat transfer tube by inserting a flow path forming body into the heat transfer tube, and the cylindrical flow path in this limited flow path is The flow of the cold storage material is made into a spiral swirling flow by the spiral protrusions.

【0044】したがって、流路形成体が半径方向に移動
しうる領域を狭め、かつ螺旋突条がつくる螺旋状の旋回
流が蓄冷材(W)を伝熱管(10)の管内周壁に押し付
けることにより、乱れの程度を小さく維持し、蓄冷材(
W)の流れを安定化させることができる。その結果、伝
熱管(20)内における過冷却状態が解消しにくくする
ことができ、流路の閉塞を防止し、過冷却度を増大する
ことにより製氷能力の向上を図ることができる
[0044] Therefore, the area in which the flow path forming body can move in the radial direction is narrowed, and the spiral swirl flow created by the spiral protrusions presses the regenerator material (W) against the inner circumferential wall of the heat transfer tube (10). , the degree of turbulence is kept small, and the cold storage material (
The flow of W) can be stabilized. As a result, it is possible to make it difficult to eliminate the supercooled state within the heat transfer tube (20), prevent blockage of the flow path, and increase the degree of supercooling, thereby improving ice making capacity.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】氷蓄熱装置の構成を示す回路図である。FIG. 1 is a circuit diagram showing the configuration of an ice heat storage device.

【図2】熱交換器の全体構造を示す断面図である。FIG. 2 is a sectional view showing the overall structure of the heat exchanger.

【図3】熱交換器の伝熱管の構造を示す断面図である。FIG. 3 is a sectional view showing the structure of a heat exchanger tube of a heat exchanger.

【図4】本発明例1を示し、図4(a)は縦断面図であ
り、図4(b)は横断面図である。
4 shows Example 1 of the present invention, FIG. 4(a) is a longitudinal cross-sectional view, and FIG. 4(b) is a cross-sectional view.

【図5】本発明例2を示し、図5(a)は縦断面図であ
り、図5(b)は横断面図である。
FIG. 5 shows Example 2 of the present invention, in which FIG. 5(a) is a longitudinal cross-sectional view and FIG. 5(b) is a cross-sectional view.

【図6】比較例1を示し、図6(a)は縦断面図であり
、図6(b)は横断面図である。
6 shows Comparative Example 1, FIG. 6(a) is a longitudinal cross-sectional view, and FIG. 6(b) is a cross-sectional view.

【図7】比較例2を示し、図7(a)は縦断面図であり
、図7(b)は横断面図である。
7 shows Comparative Example 2, FIG. 7(a) is a longitudinal cross-sectional view, and FIG. 7(b) is a cross-sectional view.

【符号の説明】[Explanation of symbols]

3    熱交換器 11  シェル(外側流路) 20  伝熱管 21  流路形成体 22  螺旋突条 M    低温熱媒体 W    蓄冷材 3 Heat exchanger 11 Shell (outer channel) 20 Heat exchanger tube 21 Channel forming body 22 Spiral protrusion M Low temperature heat medium W Cold storage material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  低温熱媒体(M)が流通する外側流路
(11)と、該外側流路(11)内に配設され、蓄冷材
(W)が流通し、上記低温熱媒体(M)により蓄冷材(
W)を過冷却する伝熱管(20)とを備えた熱交換器に
おいて、上記伝熱管(20)内に流路形成体(21)が
挿入され、該流路形成体(21)の外周または伝熱管(
20)の管内周壁のいずれか一方には、伝熱管(20)
内における蓄冷材(W)の流れを螺旋状の旋回流にする
螺旋突条(22)が形成されていることを特徴とする熱
交換器。
1. An outer flow path (11) through which a low-temperature heat medium (M) flows; ), the cold storage material (
In a heat exchanger equipped with a heat transfer tube (20) for supercooling W), a flow path forming body (21) is inserted into the heat transfer tube (20), and the outer periphery of the flow path forming body (21) or Heat exchanger tube (
A heat transfer tube (20) is attached to either one of the inner peripheral walls of the tube (20).
A heat exchanger characterized in that a spiral protrusion (22) is formed to make the flow of a cold storage material (W) in a spiral spiral flow.
JP3017824A 1991-02-08 1991-02-08 Heat exchanger Expired - Fee Related JP2976538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017824A JP2976538B2 (en) 1991-02-08 1991-02-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017824A JP2976538B2 (en) 1991-02-08 1991-02-08 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH04332391A true JPH04332391A (en) 1992-11-19
JP2976538B2 JP2976538B2 (en) 1999-11-10

Family

ID=11954475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017824A Expired - Fee Related JP2976538B2 (en) 1991-02-08 1991-02-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2976538B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230762A (en) * 1999-02-08 2000-08-22 Taikisha Ltd Ice machine
JP2014515958A (en) * 2011-05-19 2014-07-07 ヴェー ウント ハー デンタルヴェルク ビュールモース ゲーエムベーハー Medical, in particular dental, instrument with temperature measuring means
EP2524666B1 (en) 2011-05-19 2017-05-10 W & H Dentalwerk Bürmoos GmbH Medical, in particular dental, handpiece with a temperature measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230762A (en) * 1999-02-08 2000-08-22 Taikisha Ltd Ice machine
JP2014515958A (en) * 2011-05-19 2014-07-07 ヴェー ウント ハー デンタルヴェルク ビュールモース ゲーエムベーハー Medical, in particular dental, instrument with temperature measuring means
US9526585B2 (en) 2011-05-19 2016-12-27 W&H Dentalwerk Bürmoos GmbH Medical or dental instrument with a temperature-measuring device
EP2524666B1 (en) 2011-05-19 2017-05-10 W & H Dentalwerk Bürmoos GmbH Medical, in particular dental, handpiece with a temperature measuring device
US10653399B2 (en) 2011-05-19 2020-05-19 W&H Dentalwerk Bürmoos GmbH Medical or dental instrument with a temperature-measuring device

Also Published As

Publication number Publication date
JP2976538B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
US3826304A (en) Advantageous configuration of tubing for internal boiling
US2488615A (en) Oil cooler tube
US5497824A (en) Method of improved heat transfer
RU2503899C2 (en) Drink cooling device, refrigerator with such device and drink cooling method
US4004634A (en) Automotive oil cooler
US4088183A (en) Thermal energy storage tank
CN105509523B (en) Using the LNG vaporization device of heat pipe
US5960870A (en) Heat transfer tube for absorber
KR200393464Y1 (en) Ice making system
CN210400120U (en) Spiral flat pipe with spiral T-shaped fins outside pipe
JPH04332391A (en) Heat exchanger
JP2012241910A (en) Dry type evaporator, and method for improving cop of existing dry type evaporator
US4790371A (en) Tube-type heat exchanger
Honda et al. Condensation of HCFC123 in bundles of horizontal finned tubes: effects of fin geometry and tube arrangement
US2519844A (en) Cooling tank
US1935412A (en) Fluid cooler
US6158236A (en) Refrigeration capacity accumulator
RU2502930C2 (en) Double-pipe stream heat exchanger
JPS5826519B2 (en) Red-bellied woodpecker
JP2003287385A (en) Heat transfer pipe for falling film evaporator
RU2814476C1 (en) Water cooling method and device for its implementation
SU918716A1 (en) Microrefrigerator
US20160146542A1 (en) Shell and tube heat exchanger
RU89680U1 (en) EVAPORATOR
US20120037347A1 (en) Method of controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees