JPH04332202A - Distribution factor type bisected dielectric resonance unit - Google Patents

Distribution factor type bisected dielectric resonance unit

Info

Publication number
JPH04332202A
JPH04332202A JP10268291A JP10268291A JPH04332202A JP H04332202 A JPH04332202 A JP H04332202A JP 10268291 A JP10268291 A JP 10268291A JP 10268291 A JP10268291 A JP 10268291A JP H04332202 A JPH04332202 A JP H04332202A
Authority
JP
Japan
Prior art keywords
dielectric block
dielectric
length
resonator
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10268291A
Other languages
Japanese (ja)
Inventor
Muneo Iida
宗夫 飯田
Tetsuya Kojima
哲也 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10268291A priority Critical patent/JPH04332202A/en
Publication of JPH04332202A publication Critical patent/JPH04332202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To shorten a resonator length by using a distribution factor type filter by cascade-connecting resonators formed an electric conductor layer as an electrode on a dielectric block in which the length of a resonator is divided into two. CONSTITUTION:A first dielectric block 10 comprises a surface all of which is a grounding side open end face, an exposed open end face located opposite to the former surface, and a surface, on which an original dielectric surface is left slightly connectrically with a through-hole 40, including an outer peripheral surface covered entirely with an electric conductor layer 11. A second dielectric block 20, which overlaps with the above-mentioned through-hole, has an electric conductor layer connected successively to the exposed open end face and the inner peripheral wall of the through-hole. Resonator length is derived from the ratio of (length L of 1st dielectric block 10+length H of 2nd dielectric block 20) to the length K of lambda/4 coaxial hollow resonator.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は2分割した誘電体ブロッ
クに導電体層を施して電極とする共振器を縦続接続して
なる高周波用の分布定数形フィルタとして最適な共振器
単位体に関し、誘電体長を縮小し得る2分割方式の構成
を提案するものである。
[Industrial Application Field] The present invention relates to a resonator unit optimal as a distributed parameter filter for high frequencies, which is made by cascade-connecting resonators each having a conductive layer formed on a dielectric block divided into two as electrodes. This paper proposes a two-part structure that can reduce the dielectric length.

【0002】0002

【従来の技術】UHF帯以上の超高周波領域において実
用されている分布定数形フィルタは、その組込まれる通
信機器特に携帯型電話機自体の更なる小型化の要求に伴
って、内蔵部品としてのフィルタもその寸法を一層縮小
することが求められている。
[Prior Art] Distributed constant filters, which have been put into practical use in the ultra-high frequency region above the UHF band, are being used as built-in components due to the demand for further miniaturization of communication devices, particularly mobile phones, in which they are incorporated. There is a need to further reduce its dimensions.

【0003】一般に上記定数分布形フィルタの外形寸法
を縮小するために、図3のように共振器を構成している
誘電体ブロック1の寸法を小さくする必要があるが、そ
の寸法の縮小分に応じた周波数の補正を伴い、中心導体
部の電極間容量を増すために容量電極2の間隔tを狭く
している。しかしこの結果、温度変化、機械的振動等に
よって上記の電極間隔の変化率が大きくなって、共振器
の共振周波数の変動を招来するという欠陥を内在してい
る。
Generally, in order to reduce the external dimensions of the above-mentioned constant distribution type filter, it is necessary to reduce the dimensions of the dielectric block 1 constituting the resonator as shown in FIG. With corresponding frequency correction, the interval t between the capacitive electrodes 2 is narrowed in order to increase the capacitance between the electrodes in the center conductor section. However, as a result, the rate of change in the electrode spacing increases due to temperature changes, mechanical vibrations, etc., resulting in a drawback that the resonant frequency of the resonator fluctuates.

【0004】上記欠点の防止策として誘電率の低下を抑
制するために、誘電体ブロックの外部に導電体層4を設
けることにより誘電体中に電気力線を閉じ込める構想が
あるが、外部導体を誘電体の全表面に形成したのでは、
縦続接続される共振器同志の段間結合が得られず、誘電
体間の距離を変化させようとすると、狭隘な空間での組
立て、調整作業に難渋し、製造、試験工数が矢鱈に増え
る欠点があり、周波数特性上、不安定になることが避け
られない。
[0004] As a preventive measure against the above-mentioned drawbacks, there is an idea to confine the lines of electric force in the dielectric by providing a conductor layer 4 outside the dielectric block in order to suppress the decrease in dielectric constant. If it is formed on the entire surface of the dielectric,
If interstage coupling between cascaded resonators cannot be achieved and the distance between the dielectrics is changed, assembly and adjustment work in a narrow space becomes difficult, and the man-hours for manufacturing and testing increase dramatically. There are drawbacks, such as unavoidable instability due to frequency characteristics.

【0005】[0005]

【従来技術の課題】前記従来の技術は何れも誘電体に形
成した導電体による電極容量を増大させる方法や、誘電
体の外部電極によって電気力線を閉じ込める構成を採用
しているので、小型化を指向する要求と製造、試験上の
工数とが互いに背反し、共振特性として尖鋭度Qを劣化
させるだけでなく、共振器長を減らすことができないと
いう問題があった。
[Problems with the Prior Art] All of the above-mentioned conventional technologies employ a method of increasing electrode capacitance using a conductor formed on a dielectric material, or a structure in which electric lines of force are confined by external electrodes of the dielectric material, so they can be miniaturized. The demand for directional characteristics and the man-hours required for manufacturing and testing conflict with each other, and there is a problem in that not only the sharpness Q of the resonance characteristic deteriorates, but also the resonator length cannot be reduced.

【0006】[0006]

【課題を解決するための手段】しかるに本発明は上記従
来の欠点を解消するために、低い共振周波数が得られて
短縮率を大きくするように、誘電体ブロックをその共振
器長方向に2分割することによって、夫々の導電体層を
容量電極として共振器全体を小型化しようとするもので
ある。
[Means for Solving the Problems] However, in order to solve the above-mentioned conventional drawbacks, the present invention divides a dielectric block into two in the resonator length direction so as to obtain a low resonant frequency and increase the shortening ratio. By doing so, each conductor layer is used as a capacitive electrode to reduce the size of the entire resonator.

【0007】[0007]

【実施例】以下に図面により本発明の一実施例について
詳説する。図1は本発明の誘電体共振器単位体の分解斜
視図で、同図(A)は第2の誘電体ブロック20を、(
B)は第1の誘電体ブロック10を夫々表し、各ブロッ
クとも中央に貫通孔40が穿たれており、第1の誘電体
はその貫通孔の内周壁に導電体層12が、そして外周壁
面と底面及び露出開放端面における貫通孔と同心的に誘
電体の生地を残した全域に導電体層11が夫々形成され
ている。そして第2の誘電体ブロックは露出端面と貫通
孔とに導電体層を形成して、その長さ(厚み)Lと上記
第1の誘電体ブロックの共振器長Hとの全長の共振周波
数fに対する通常一般のλ/4同軸空洞共振器による共
振器長Kとの比即ち短縮率α=(L+H)/Kが最小に
なるような長さに選ばれる。尚、上記αは伝送線路の構
造、電磁界の分布等で変化する値であり、略、実効誘電
率の平方根に逆比例するとみなすことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be explained below in detail with reference to the drawings. FIG. 1 is an exploded perspective view of a dielectric resonator unit according to the present invention, and (A) of the same figure shows the second dielectric block 20 (
B) represents the first dielectric blocks 10, each block has a through hole 40 in the center, and the first dielectric has a conductive layer 12 on the inner circumferential wall of the through hole and the outer circumferential wall surface. A conductor layer 11 is formed concentrically with the through hole on the bottom surface and the exposed open end surface, and over the entire area where the dielectric material remains. The second dielectric block has a conductive layer formed on the exposed end face and the through hole, and has a resonant frequency f of the entire length (thickness) L of the conductive layer and the resonator length H of the first dielectric block. The length is selected such that the ratio of the resonator length K of a general λ/4 coaxial cavity resonator to the resonator length K, that is, the shortening rate α=(L+H)/K is minimized. Note that α is a value that changes depending on the structure of the transmission line, the distribution of the electromagnetic field, etc., and can be considered to be approximately inversely proportional to the square root of the effective dielectric constant.

【0008】図2は図1の貫通孔の中心線に沿う共振器
長方向への縦断面図であり、第1の誘電体ブロックの共
振器長Hと第2の誘電体ブロック長Lとの比は前記αが
最小になる点で決定される。また前記の各誘電体ブロッ
クの誘電率を変えることによっても例えば高調波を抑制
した共振器を造ることができる。
FIG. 2 is a longitudinal cross-sectional view in the resonator length direction along the center line of the through hole in FIG. The ratio is determined at the point where α is the minimum. Furthermore, by changing the dielectric constant of each of the dielectric blocks described above, a resonator with suppressed harmonics can be manufactured, for example.

【0009】次に表1は誘電率1.0の空気を誘電体と
して在来一般のλ/4同軸空洞共振器の共振器長Kに対
して、本発明における第1及び第2の誘電体ブロックの
各長H、Lの総計長の短縮率αについて、帯域周波数(
MHz)毎に計測して得たデータであり、第2の誘電体
ブロック長は導電体層(金属電極)のみで第1の誘電体
ブロックの露出開放端面に空気を挟んで対向させて測定
したものである。
Next, Table 1 shows the resonator length K of a conventional general λ/4 coaxial cavity resonator using air with a dielectric constant of 1.0 as the dielectric material, and the resonator length K of the first and second dielectric materials of the present invention. Regarding the reduction rate α of the total length of each block length H and L, the band frequency (
The second dielectric block length was measured with only the conductor layer (metal electrode) facing the exposed open end surface of the first dielectric block with air in between. It is something.

【0010】上記各誘電体ブロックとしてセラミックス
を用いる場合、この誘電率が9〜10であるので、第2
の誘電体ブロックの長さLの値は表記値の9〜10倍と
なって、誘電体物質を含む接着剤による層によって等価
な誘電体ブロックを構成すれば、第1の誘電体ブロック
の外面に設けられた導電体層を一方の電極とした静電容
量素子を形成することができる。
[0010] When ceramics are used as each dielectric block, since the dielectric constant is 9 to 10, the second
The value of the length L of the dielectric block is 9 to 10 times the stated value, and if an equivalent dielectric block is constructed with an adhesive layer containing a dielectric substance, the outer surface of the first dielectric block A capacitive element can be formed using the conductive layer provided on the substrate as one electrode.

【0011】従ってセラミックスを誘電体とする共振器
の場合、上記表1における誘電率が1の時のαの最低値
44.4は若干変わっても少なくとも50%を越えるこ
とはなく、表1は誘電率の違いに基ずく短縮率に対して
も全体の傾向は何等変わるところがない。
Therefore, in the case of a resonator using ceramic as a dielectric, the minimum value of α of 44.4 when the permittivity is 1 in Table 1 above does not exceed at least 50% even if it changes slightly; There is no change in the overall trend with respect to the shortening rate based on the difference in dielectric constant.

【0012】0012

【表1】[Table 1]

【0013】[0013]

【発明の効果】前記したように本発明は、容量性共振作
用を共振器長方向に対して2分割した第1と第2の誘電
体ブロックの外表面に形成した導電体層を対向電極とし
て容量的に結合させており、共振器長を使用されるフィ
ルタの帯域周波数に対して通常のλ/4同軸空洞共振器
長との比から求めることによって、最大の共振容量で共
振させることができ、全体として共振器長の減縮率を少
なくとも50〜75%にまで短小化させることができて
小型化に大いに寄与するものである。
Effects of the Invention As described above, the present invention uses a conductive layer formed on the outer surface of the first and second dielectric blocks that divide the capacitive resonance action into two in the resonator length direction, as a counter electrode. They are coupled capacitively, and by determining the resonator length from the ratio of the normal λ/4 coaxial cavity resonator length to the band frequency of the filter used, resonance can be achieved with the maximum resonant capacity. As a whole, the reduction rate of the resonator length can be reduced to at least 50 to 75%, which greatly contributes to miniaturization.

【0014】又、電極間調整等のための手段を要せず、
設計が容易となり、殆ど無調整で装置を完成することが
できて、量産及び測定上の工数が大幅に削減され、経済
性をも満足するものである。
[0014] Furthermore, there is no need for means for inter-electrode adjustment, etc.
The design becomes easy, the device can be completed with almost no adjustment, the man-hours for mass production and measurement are significantly reduced, and economical efficiency is also satisfied.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(A)は第1の誘電体ブロックの、(B)は第
2の誘電体ブロックの分解斜視図。
FIG. 1 (A) is an exploded perspective view of a first dielectric block and (B) is an exploded perspective view of a second dielectric block.

【図2】図1の(A)、(B)夫々の縦断側面図。FIG. 2 is a vertical sectional side view of FIGS. 1A and 1B.

【図3】従来の誘電体共振器の縦断側面図。FIG. 3 is a longitudinal side view of a conventional dielectric resonator.

【符号の説明】[Explanation of symbols]

10            第1の誘電体ブロック2
0            第2の誘電体ブロック30
            誘電体 40            貫通孔 11、12      導電体層
10 First dielectric block 2
0 second dielectric block 30
Dielectric 40 Through holes 11, 12 Conductor layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中心に貫通孔を備えるλ/4長の柱状誘電
体ブロックの一部を除く少なくとも外周面全域と上記貫
通孔の内周壁とに導電体層を設けて成る複数段に縦続接
続して接地された共振器による分布定数形フィルタにお
いて、上記誘電体ブロックの接地側開放端面全域と対向
する露出開放端面の貫通孔と同心的に僅かの誘電体の生
地を残して外周面を含めて導電体層を形成した第1の誘
電体ブロックと、該第1の誘電体ブロック上に上記貫通
孔が重なり、その露出開放端面全域とこの貫通孔の内周
壁とに連接する導電体層を形成した第2の誘電体ブロッ
クとを備え、上記各誘電体ブロック長との全長を共振周
波数に対する通常のλ/4同軸空洞共振器長との比より
求まる長さに設定することを特徴とする分布定数型2分
割方式の誘電体共振単位体。
Claim 1: A cascade connection in multiple stages, comprising a λ/4 length columnar dielectric block having a through hole in the center, and a conductive layer provided on at least the entire outer circumferential surface of the block, excluding a part thereof, and on the inner circumferential wall of the through hole. In a distributed constant type filter using a resonator grounded as a resonator, the entire ground side open end face of the dielectric block and the outer peripheral surface are included, leaving a small amount of dielectric material concentric with the through hole of the exposed open end face facing the dielectric block. a first dielectric block having a conductive layer formed thereon; and a conductive layer that overlaps the first dielectric block with the through hole and is connected to the entire exposed open end surface of the first dielectric block and the inner circumferential wall of the through hole. and a second dielectric block formed, and the total length of each dielectric block is set to a length determined by the ratio of the normal λ/4 coaxial cavity resonator length to the resonant frequency. Dielectric resonant unit of distributed constant type two-division method.
JP10268291A 1991-05-08 1991-05-08 Distribution factor type bisected dielectric resonance unit Pending JPH04332202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10268291A JPH04332202A (en) 1991-05-08 1991-05-08 Distribution factor type bisected dielectric resonance unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10268291A JPH04332202A (en) 1991-05-08 1991-05-08 Distribution factor type bisected dielectric resonance unit

Publications (1)

Publication Number Publication Date
JPH04332202A true JPH04332202A (en) 1992-11-19

Family

ID=14334008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10268291A Pending JPH04332202A (en) 1991-05-08 1991-05-08 Distribution factor type bisected dielectric resonance unit

Country Status (1)

Country Link
JP (1) JPH04332202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086275A1 (en) * 2004-03-04 2005-09-15 Kathrein-Werke Kg High frequency filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086275A1 (en) * 2004-03-04 2005-09-15 Kathrein-Werke Kg High frequency filter

Similar Documents

Publication Publication Date Title
US5892415A (en) Laminated resonator and laminated band pass filter using same
US6621381B1 (en) TEM-mode dielectric resonator and bandpass filter using the resonator
JPH041521B2 (en)
US7099645B2 (en) Multilayer LC filter
JPH0369202B2 (en)
JPH0153521B2 (en)
US20080211603A1 (en) Filter Coupled by Conductive Plates Having Curved Surface
US6628180B2 (en) Dielectric filter having coaxial resonators and a notch pattern
JPH0255402A (en) Dielectric filter
JPH04332202A (en) Distribution factor type bisected dielectric resonance unit
JPS5826842B2 (en) interdigital filter
JP2957041B2 (en) Multilayer dielectric filter
JP2715350B2 (en) Dielectric filter
US6304159B1 (en) Dielectric filter with adjustable frequency bandwidth
JPH0328561Y2 (en)
CA1041619A (en) Adjustable interdigital microwave filter
JPH0865007A (en) High frequency filter
JPS5989002A (en) Comb-line type band-pass filter
KR100564105B1 (en) Tunable filter using ferroelectric resonator
JP2666092B2 (en) Dielectric filter
JPH07183705A (en) Dielectric filter
JPH0451603A (en) Dielectric filter
KR100290292B1 (en) Dielectric ceramic resonators and dielectric filters using same 8
JPH032964Y2 (en)
JPS6311761Y2 (en)