JPH04330324A - Swirl chamber type combustion chamber for diesel engine - Google Patents

Swirl chamber type combustion chamber for diesel engine

Info

Publication number
JPH04330324A
JPH04330324A JP12498791A JP12498791A JPH04330324A JP H04330324 A JPH04330324 A JP H04330324A JP 12498791 A JP12498791 A JP 12498791A JP 12498791 A JP12498791 A JP 12498791A JP H04330324 A JPH04330324 A JP H04330324A
Authority
JP
Japan
Prior art keywords
main
nozzle
pair
grooves
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12498791A
Other languages
Japanese (ja)
Other versions
JP2564213B2 (en
Inventor
Shuichi Yamada
修一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3124987A priority Critical patent/JP2564213B2/en
Publication of JPH04330324A publication Critical patent/JPH04330324A/en
Application granted granted Critical
Publication of JP2564213B2 publication Critical patent/JP2564213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To reduce a throttle loss of an injection port by the use of a main injection portion and a pair of sub injection portions while sufficiently enhancing air-fuel mixing performance in a swirl chamber and a main combustion chamber. CONSTITUTION:A main vent groove 23 and a pair of sub vent grooves 24. 24 are formed in the end surface 14 of a main combustion chamber for a cylinder head 1. The main vent groove is connected to a main injection portion 13, and it is formed thinner as it is apart from a main injection port. A pair of edge lines 25, 25 between the grooves are formed between the main vent groove and the paired sub vent grooves. The edge lines between the grooves are continuous to edge lines 15, 15 inside the injection port. A main air introducing groove, a pair of sub air introducing grooves and a pair of edge lines between the air introducing grooves are formed on the upper surface of a piston head in facing to the vent grooves and the edge lines formed on the end surface of a main combustion chamber of the cylinder head. The air introducing grooves are formed thinner as they are apart from the main injection portion and sub injection portions.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、ディーゼルエンジン
のうず室式燃焼室に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a whirlpool combustion chamber for a diesel engine.

【0002】0002

【従来の技術】ディーゼルエンジンのうず室式燃焼室と
しては、従来より例えば本出願人の提案に係る、特公昭
57−59410号公報に開示されたものがある。この
ディーゼルエンジンのうず室式燃焼室の基本構造は図1
0〜図12で示すように構成されている。ここで、図1
0はうず室式燃焼室の要部縦断側面図、図11は主燃焼
室内のシリンダヘッド端面図、図12は上記うず室の作
用説明図である。
2. Description of the Related Art Conventionally, a swirl chamber type combustion chamber for a diesel engine has been disclosed, for example, in Japanese Patent Publication No. 57-59410, which was proposed by the present applicant. The basic structure of this diesel engine's spiral combustion chamber is shown in Figure 1.
0 to 12. Here, Figure 1
0 is a longitudinal sectional side view of a main part of the whirlpool type combustion chamber, FIG. 11 is an end view of the cylinder head inside the main combustion chamber, and FIG. 12 is an explanatory view of the function of the whirlpool chamber.

【0003】このうず室式燃焼室は、ディーゼルエンジ
ンの主燃焼室11に噴口12を介してうず室18を連通
させ、噴口12は、主噴口部13の左右の各側面に左右
一対の脇噴口部14・14の各横側面を連通させて成り
、両脇噴口部14・14の軸心Z・Zは主噴口部13の
軸心Xに対して、主燃焼室11側からうず室18側に進
むに連れて近づく方向に傾斜させ、主噴口部13と各脇
噴口部14・14とが連通する箇所の各連通壁面部分に
沿って各噴口内稜線15・15を縦走させて構成されて
いる。
In this whirlpool type combustion chamber, a whirlpool chamber 18 communicates with the main combustion chamber 11 of the diesel engine through a nozzle 12, and the nozzle 12 has a pair of left and right side nozzles on each side of the main nozzle part 13. The lateral sides of the parts 14 and 14 are connected to each other, and the axes Z and Z of the side nozzle parts 14 and 14 extend from the main combustion chamber 11 side to the whirlpool chamber 18 side with respect to the axis X of the main nozzle part 13. The main nozzle part 13 and each side nozzle part 14 are made to incline toward each other as they move closer to each other, and each nozzle internal ridge line 15 is made to run vertically along each communication wall surface portion at a place where the main nozzle part 13 and each side nozzle part 14 communicate with each other. There is.

【0004】この構成によれば、うず室内での空燃混合
性能を高めることができる。即ち、先ず主燃焼室11内
の空気が圧縮工程で圧縮されて、噴口12内を通過する
ときに、図12で示すように、各噴口内稜線15・15
に接触する部分で、微小うず流fを発生する。次に、そ
の空気が噴口12からうず室18に入った所では、主噴
口部13を通過した主噴流F1に、各脇噴口部14・1
4を通過した各脇噴流F2・F2が左右から衝突して、
そこで勢い良く撹拌混合されながら、離反して左右へ拡
散して行く。しかも、このとき上記微小うず流fも、そ
の撹拌混合に巻き込まれて拡散される。これにより、う
ず室18内での空気と燃料との混合性能が高められるの
である。
[0004] According to this configuration, the air-fuel mixing performance in the whirlpool chamber can be improved. That is, first, when the air in the main combustion chamber 11 is compressed in the compression process and passes through the nozzle 12, as shown in FIG.
A minute eddy flow f is generated at the part where it comes into contact with. Next, at the place where the air enters the whirlpool chamber 18 from the nozzle 12, the main jet F1 that has passed through the main nozzle 13 is joined to each side nozzle 14 and 1.
The side jets F2 and F2 that passed through 4 collide from left and right,
There, while stirring and mixing vigorously, they separate and spread to the left and right. Moreover, at this time, the minute eddy flow f is also caught up in the stirring and mixing and diffused. This improves the mixing performance of air and fuel within the swirl chamber 18.

【0005】[0005]

【発明が解決しようとする課題】上記従来例は、上記の
ようにうず室18内での空燃混合性能が高い点で優れて
いるが、この混合性能を一層強化するには、噴口12の
長さを十分長くする必要がある。それは噴口12を長く
するほど、各噴口内稜線15・15との接触による微小
うず流fの発生量が増えるうえ、主噴流F1と脇噴流F
2・F2との直進性が高まって、その衝突・離反の威力
がつよまるからである。しかし、噴口12を長くすると
、以下のような弊害が生じる。 イ.高速運転時に、燃焼気流がうず室18から主燃焼室
11内へ流れ込む際に、絞り損失が大きくなり、出力が
低下する。 ロ.始動運転時に、空気が主燃焼室11からうず室18
内へ流れ込む際に、長い噴口12の内壁面より圧縮熱が
多量に逃げるため、エンジンの冷始動性能が低下する。 本発明はこのような事情を考慮してなされたもので、空
燃混合性能を十分高く維持しながらも、上記イロの弊害
を解消することを技術課題とする。
[Problems to be Solved by the Invention] The above conventional example is excellent in that the air-fuel mixing performance in the swirl chamber 18 is high as described above, but in order to further enhance this mixing performance, it is necessary to It needs to be long enough. This is because the longer the nozzle 12 is, the more minute eddy flow f is generated due to contact with the inner ridge lines 15 and 15 of each nozzle, and the main jet F1 and side jet F
This is because the ability to travel straight with 2/F2 increases, increasing the power of collision and separation. However, if the nozzle 12 is lengthened, the following disadvantages arise. stomach. During high-speed operation, when the combustion airflow flows from the swirl chamber 18 into the main combustion chamber 11, throttling loss increases and the output decreases. B. During starting operation, air flows from the main combustion chamber 11 to the whirlpool chamber 18.
When flowing inward, a large amount of compression heat escapes from the inner wall surface of the long nozzle 12, resulting in a decrease in engine cold starting performance. The present invention has been made in consideration of these circumstances, and its technical objective is to eliminate the above-mentioned negative effects while maintaining sufficiently high air-fuel mixture performance.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するものとして、次のように構成される。以下実施例に
対応する図1〜図5を用いて説明する。即ち、請求項1
の発明は、前記従来例と同じ基本構造を有するディーゼ
ルエンジンのうず室式燃焼室において、シリンダヘッド
1の前記主燃焼室11に臨む主燃焼室端面1Aに主通気
溝23と左右一対の脇通気溝24・24とを形成し、こ
の主通気溝23は、前記主噴口部13から連続状に連出
させるとともに、この主噴口部13から遠ざかるにつれ
て次第に浅くなるように形成し、上記左右一対の各脇通
気溝24・24は、それぞれ前記左右一対の脇噴口部1
4・14から連続状に連出させるとともに、この脇噴口
部14・14から遠ざかるにつれて次第に浅くなる形に
形成し、上記主通気溝23とこれの左右両側に位置する
上記左右一対の脇通気溝24・24との間に左右一対の
各溝間稜線25・25を形成し、この各溝間稜線25・
25はそれぞれ前記各噴口内稜線15・15に連続させ
て構成したことを特徴とするものである。
[Means for Solving the Problems] The present invention is constructed as follows to solve the above problems. An explanation will be given below using FIGS. 1 to 5, which correspond to embodiments. That is, claim 1
In the invention, in a spiral combustion chamber of a diesel engine having the same basic structure as the conventional example, a main combustion chamber end face 1A facing the main combustion chamber 11 of the cylinder head 1 is provided with a main ventilation groove 23 and a pair of left and right side ventilations. The main ventilation groove 23 is formed so as to extend continuously from the main nozzle part 13 and become gradually shallower as it moves away from the main nozzle part 13. Each of the side ventilation grooves 24 and 24 respectively corresponds to the pair of left and right side nozzle ports 1.
The main ventilation groove 23 and the pair of left and right side ventilation grooves located on the left and right sides of the main ventilation groove 23 are formed so as to extend continuously from the side nozzle holes 14 and 14 and become gradually shallower as they move away from the side nozzle openings 14 and 14. 24, 24, a pair of left and right groove ridge lines 25, 25 are formed between each groove ridge line 25, 24.
25 is characterized in that it is constructed so as to be continuous with the ridge lines 15 within the nozzle openings, respectively.

【0007】そして請求項2の発明は、上記請求項1の
うず室式燃焼室において、ピストンヘッド4Aに主導気
溝33と左右一対の脇導気溝34・34とを形成し、こ
の主導気溝33は、前記主噴口部13及び前記主通気溝
23に対面させるとともに、この主噴口部13から遠ざ
かるにつれて次第に浅くなる形に形成し、上記左右一対
の各脇導気溝34・34は、それぞれ前記脇噴口部14
・14及び前記各脇通気溝24・24に対面させるとと
もに、この各脇噴口部14・14から遠ざかるにつれて
次第に浅くなる形に形成し、上記主導気溝33とこれの
左右両側に位置する上記左右一対の各脇導気溝34・3
4との間に左右一対の各導気溝間稜線35・35を形成
し、この各導気溝間稜線35・35は、それぞれ前記各
溝間稜線25・25に対向させて構成したことを特徴と
するものである。
[0007]The invention according to claim 2 is such that in the swirl chamber type combustion chamber according to claim 1, a main air groove 33 and a pair of left and right side air guide grooves 34 are formed in the piston head 4A, and the main air The groove 33 faces the main nozzle part 13 and the main ventilation groove 23, and is formed to become gradually shallower as it moves away from the main nozzle part 13. The side spout portion 14 respectively
14 and the side ventilation grooves 24, 24, and are formed in a shape that becomes gradually shallower as it moves away from the side nozzle holes 14, 14, and the left and right air grooves located on the left and right sides of the main air groove 33, A pair of side air guide grooves 34.3
4, a pair of left and right ridgelines 35, 35 between the air guide grooves are formed, and the ridge lines 35, 35 between the air guide grooves are configured to face the ridge lines 25, 25 between the grooves, respectively. This is a characteristic feature.

【0008】[0008]

【作    用】本発明は図7〜図8で示すように、次
のように作用する。請求項1の発明では、主燃焼室11
内の空気が、圧縮工程で圧縮されて、主通気溝23及び
各脇通気溝24・24から、主噴口部13及び各脇噴口
部14・14を経て、うず室18へ流れる。この空気は
、先ず各溝間稜線25・25と接触する部分及び各噴口
内稜線15・15と接触する部分の両方で、微小うず流
を多量に発生する。
[Operation] As shown in FIGS. 7 and 8, the present invention operates as follows. In the invention of claim 1, the main combustion chamber 11
The air inside is compressed in the compression process and flows from the main ventilation groove 23 and each side ventilation groove 24, 24, through the main nozzle part 13 and each side nozzle part 14, 14, to the swirl chamber 18. First, this air generates a large amount of minute eddy flow both in the portions where it contacts the respective inter-groove ridge lines 25 and the portions where it contacts with the respective nozzle internal ridge lines 15 and 15.

【0009】次に、主噴口部13を通過する主噴流F1
は、主通気溝23内を助走するので、勢いが強くなる。 各脇噴口部14・14を通過する各脇噴流F2・F2も
、各脇噴口部14・14内を助走するので、勢いが強く
なる。これにより、うず室18内では、主噴流F1と各
脇噴流F2・F2との衝突力が増大し、この衝突による
撹拌混合が増進されるうえ、その離反による左右への離
反拡散も促進される。
Next, the main jet flow F1 passing through the main nozzle part 13
As it runs up inside the main ventilation groove 23, the momentum becomes stronger. The side jets F2 and F2 passing through the side jet ports 14 and 14 also run up inside the side jet ports 14 and 14, so that their momentum becomes strong. As a result, within the swirl chamber 18, the collision force between the main jet F1 and each of the side jets F2 and F2 increases, and the agitation and mixing due to this collision is enhanced, and the separation and diffusion to the left and right due to their separation is also promoted. .

【0010】その結果、うず室18内での空気と燃料と
の混合性能が一層強化される。そして、この混合性能の
強化により、噴口12の長さを長くしなくて済む。これ
により、噴口12の絞り損失が小さくなり、出力が向上
する。そのうえエンジンの始動時には、噴口12内の表
面から逃げる空気の圧縮熱量が少なくなり、冷始動性能
も向上する。
As a result, the mixing performance of air and fuel within the swirl chamber 18 is further enhanced. This enhanced mixing performance eliminates the need to increase the length of the nozzle 12. This reduces the throttling loss of the nozzle 12 and improves the output. Moreover, when starting the engine, the amount of compression heat of the air escaping from the surface within the nozzle 12 is reduced, and cold starting performance is also improved.

【0011】請求項2の発明では、圧縮工程において、
主導気溝33及び各脇導気溝34・34及び各導気溝間
稜線35・35は、上記主通気溝23、各脇通気溝24
・24及び各溝間稜線25・25と一対となって、上記
作用を一層強力に推進する。その結果、うず室18内で
の空気と燃料との混合性能が、さらに一層強化され、冷
始動性能もさらに一層向上する。
[0011] In the invention of claim 2, in the compression step,
The main air groove 33 and the side air grooves 34, 34, and the ridge lines 35, 35 between the air grooves are connected to the main air groove 23, the side air grooves 24,
・It forms a pair with 24 and each groove ridge line 25, 25, and promotes the above action even more strongly. As a result, the performance of mixing air and fuel within the swirl chamber 18 is further enhanced, and the cold start performance is further improved.

【0012】0012

【実施例】以下本発明の実施例を図面に基づいてさらに
詳しく説明する。図1は本発明に係るうず室式燃焼室の
構成を示すシリンダヘッドの主燃焼室端面の平面図、図
2はうず室式燃焼室の構成を示す要部の縦断側面図、図
3は図2中の噴口12のA−A線矢視断面図、図4は図
1中のB−B線矢視断面図、図5はピストンヘッドの平
面図、図6は図1のC−C線矢視断面図、図9は本発明
に係るうず室式燃焼室が採用されているディーゼルエン
ジンの要部破断概要図である。なお、図9中の符号Eは
ディーゼルエンジン、1はシリンダヘッド、2はシリン
ダブロック、3はシリンダ、4はピストン、7は排気弁
、8はうず室口金、10は本発明のうず室式燃焼室全体
を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described in more detail below with reference to the drawings. Fig. 1 is a plan view of the end face of the main combustion chamber of a cylinder head showing the configuration of the whirlpool type combustion chamber according to the present invention, Fig. 2 is a longitudinal cross-sectional side view of main parts showing the configuration of the whirlpool type combustion chamber, and Fig. 3 is a diagram. 2, FIG. 4 is a sectional view taken along line B-B in FIG. 1, FIG. 5 is a plan view of the piston head, and FIG. 6 is taken along line C-C in FIG. 1. FIG. 9 is a cross-sectional view in the direction of arrows, and is a schematic fragmentary view of the main parts of a diesel engine in which the swirl chamber type combustion chamber according to the present invention is employed. In addition, the symbol E in FIG. 9 is a diesel engine, 1 is a cylinder head, 2 is a cylinder block, 3 is a cylinder, 4 is a piston, 7 is an exhaust valve, 8 is a swirl chamber mouthpiece, and 10 is a swirl chamber type combustion of the present invention. Showing the entire room.

【0013】このうず室式燃焼室10は、ディーゼルエ
ンジンEの主燃焼室11に噴口12を介してうず室18
を連通させて構成されている。主燃焼室11は、図9で
示すように、シリンダブロック2の中央にシリンダ3を
形成し、ピストン4をシリンダ3に上下摺動自在に内嵌
して形成される。うず室18は、シリンダヘッド1の肉
壁内に凹設したうず室上半球部18aと、その下部開口
端から嵌入された半割状のうず室口金8に形成されたう
ず室下半球部18bとで形成されている。
This swirl chamber type combustion chamber 10 is connected to a main combustion chamber 11 of a diesel engine E through a nozzle 12 to a swirl chamber 18.
It is configured by communicating. As shown in FIG. 9, the main combustion chamber 11 is formed by forming a cylinder 3 in the center of a cylinder block 2, and fitting a piston 4 into the cylinder 3 so as to be vertically slidable. The whirlpool chamber 18 includes a whirlpool upper hemisphere part 18a recessed in the wall of the cylinder head 1, and a whirlpool lower hemisphere part 18b formed in a half-split whirlpool mouthpiece 8 fitted from the lower open end of the whirlpool chamber upper hemisphere part 18a. It is formed by.

【0014】このうず室18の上半球部18aには、燃
料噴射ノズル5の噴射口5aが臨ませてあり、燃料を噴
射させるように構成されている。噴口12は、図1〜図
3で湿すように、主噴口部13の左右の各側面に左右一
対の脇噴口部14・14の各横側面を連通させて成り、
両脇噴口部14・14の軸心Z・Zは主噴口部13の軸
心Xに対して、主燃焼室11側からうず室18側に進む
に連れて近づく方向に傾斜させ、主噴口部13と各脇噴
口部14・14とが連通する箇所の各連通壁面部分に沿
って各噴口内稜線15・15を縦走させて構成されてい
る。
The injection port 5a of the fuel injection nozzle 5 faces the upper hemisphere 18a of the swirl chamber 18, and is configured to inject fuel. The nozzle 12 is formed by connecting the left and right side surfaces of the main nozzle 13 with the lateral sides of a pair of left and right side nozzles 14, 14 so as to moisten as shown in FIGS. 1 to 3.
The axes Z and Z of both side nozzle ports 14, 14 are inclined in a direction approaching the axis X of the main nozzle port 13 from the main combustion chamber 11 side to the whirlpool chamber 18 side. 13 and each of the side nozzle portions 14, 14 are configured such that each nozzle internal ridgeline 15, 15 runs longitudinally along each communication wall surface portion at a location where the nozzle nozzle 13 communicates with each side nozzle portion 14, 14.

【0015】以下本発明の特徴的な構成について説明す
る。本発明では、前記従来の噴口12を以下のように改
良したものである。即ち、図1、図2、図4で示すよう
に、シリンダヘッド1の主燃焼室11に臨む主燃焼室端
面1Aに主通気溝23と左右一対の脇通気溝24・24
とを形成する。この主通気溝23は、前記主噴口部13
から連続状に連出させるとともに、主噴口部13から遠
ざかるにつれて次第に浅く、かつテーパ状に拡がる形に
形成する。そして左右一対の各脇通気溝24・24は、
それぞれ前記左右一対の脇噴口部14・14から連続状
に連出させるとともに、この脇噴口部14・14から遠
ざかるにつれて次第に浅く、かつテーパ状に拡がる形に
形成する。また上記主通気溝23と上記左右一対の脇通
気溝24・24との間に左右一対の各溝間稜線25・2
5を形成し、この各溝間稜線25・25はそれぞれ前記
各噴口内稜線15・15に連続させる。なお、図1中の
符号6は吸気弁、26は吸気口、27は排気口である。
The characteristic structure of the present invention will be explained below. In the present invention, the conventional nozzle 12 is improved as follows. That is, as shown in FIGS. 1, 2, and 4, a main ventilation groove 23 and a pair of left and right side ventilation grooves 24 are provided on the main combustion chamber end surface 1A facing the main combustion chamber 11 of the cylinder head 1.
to form. This main ventilation groove 23 is connected to the main nozzle part 13.
It is formed in a shape that extends continuously from the main nozzle part 13 and gradually becomes shallower and widens in a tapered shape as it goes away from the main nozzle part 13. The left and right pair of side ventilation grooves 24, 24 are
They extend continuously from the pair of left and right side nozzle ports 14, 14, respectively, and are formed in a shape that gradually becomes shallower and widens in a tapered shape as it moves away from the side nozzle ports 14, 14. Further, between the main ventilation groove 23 and the pair of left and right side ventilation grooves 24, there are a pair of left and right groove ridge lines 25, 2.
5, and these inter-groove ridgelines 25, 25 are respectively continuous with the respective nozzle inner ridgelines 15, 15. In addition, the reference numeral 6 in FIG. 1 is an intake valve, 26 is an intake port, and 27 is an exhaust port.

【0016】上記構成によれば図7〜図8で示すように
、圧縮工程において圧縮空気が、主通気溝23と左右一
対の脇通気溝24・24から主噴口部13及び各脇噴口
部14・14を経て、うず室18へ流れる。この空気は
、先ず各溝間稜線25・25と接触する部分及び各噴口
内稜線15・15と接触する部分の両方で、微小うず流
を多量に発生する。次に、主噴口部13を通過する主噴
流F1は、主通気溝23内を助走して勢いが強くなる。 他方の各脇噴口部14・14を通過する各脇噴流F2・
F2も、各脇噴口部14・14内を助走して勢いが強く
なる。左右の脇噴口14・14を流通した空気噴流F2
・F2は、図7〜図8で示すように、主噴口13を流通
した空気噴流F1の下側で交差するとともに、うず室1
8内では、主噴流F1と各脇噴流F2・F2との衝突力
が増大し、この衝突により撹拌混合が増進され、その離
反による左右への離反拡散も促進される。この混合性能
の強化により、噴口12の長さを長くしなくても済み、
噴口12の絞り損失が小さくなり、出力が向上する。し
かも、エンジンの始動時には、噴口12内の表面から逃
げる空気の圧縮熱量が少なくなり、冷始動性能も向上す
る。
According to the above configuration, as shown in FIGS. 7 and 8, compressed air flows from the main ventilation groove 23 and the pair of left and right side ventilation grooves 24, 24 to the main nozzle part 13 and each side nozzle part 14, as shown in FIGS.・Flows to the whirlpool chamber 18 via 14. First, this air generates a large amount of minute eddy flow both in the portions where it contacts the respective inter-groove ridge lines 25 and the portions where it contacts with the respective nozzle internal ridge lines 15 and 15. Next, the main jet flow F1 passing through the main nozzle part 13 runs up inside the main ventilation groove 23 and becomes stronger. Each side jet flow F2 passing through the other side jet port 14.
F2 also runs up inside each side nozzle part 14, 14, and its momentum becomes stronger. Air jet F2 flowing through the left and right side nozzles 14 and 14
・As shown in FIGS. 7 and 8, F2 intersects below the air jet F1 that has passed through the main nozzle 13, and
8, the collision force between the main jet F1 and each of the side jets F2 and F2 increases, and this collision promotes agitation and mixing, and their separation also promotes separation and diffusion to the left and right. This enhanced mixing performance eliminates the need to increase the length of the nozzle 12.
The throttling loss of the nozzle 12 is reduced, and the output is improved. Moreover, when starting the engine, the amount of compression heat of the air escaping from the surface within the nozzle 12 is reduced, and cold starting performance is also improved.

【0017】一方、ピストンヘッド4Aには図1及び図
5〜図6で示すように、前記シリンダヘッド1の主燃焼
室端面1Aに形成された前記主噴口部13及び主導気溝
23、各脇噴口部14・14及び各脇通気溝24・24
、各噴口内稜線15・15及び各溝間稜線25・25に
それぞれ対面するように、主導気溝33と左右一対の脇
導気溝34・34及び各導気溝間稜線35・35とがそ
れぞれ対向して形成されている。
On the other hand, as shown in FIGS. 1 and 5 to 6, the piston head 4A includes the main nozzle port 13 and the main air groove 23 formed on the end surface 1A of the main combustion chamber of the cylinder head 1, as well as the main air grooves 23 and Nozzle part 14, 14 and each side ventilation groove 24, 24
, the main air groove 33, the left and right pair of side air grooves 34, 34, and the ridge lines 35, 35 between the air guide grooves are arranged so as to face the inner ridge lines 15, 15 of the nozzle and the ridge lines 25, 25 between the grooves, respectively. They are formed facing each other.

【0018】即ち、上記主導気溝33は、前記主噴口部
13及び前記主導気溝23に対面させるとともに、主噴
口部13から遠ざかるにつれて次第に浅く、かつテーパ
状に拡がる形に形成する。また上記左右一対の各脇導気
溝34・34は、それぞれ前記脇噴口部14・14及び
前記各脇通気溝24・24に対面させるとともに、この
各脇噴口部14・14から遠ざかるにつれて次第に浅く
、かつ拡がる形に形成する。そして上記主導気溝33と
、左右両側に位置する一対の各脇導気溝34・34との
間に左右一対の各導気溝間稜線35・35を形成する。 この各導気溝間稜線35・35は、それぞれ前記各溝間
稜線25・25に対向させて形成する。なお図1及び図
3において、符号26aは吸気バルブリセス、27aは
排気バルブリセスであり、上記主導気溝33及び上記左
右一対の各脇導気溝34・34は、それぞれ吸・排気バ
ルブリセス26a・27aに一部ラップしている。
That is, the main air groove 33 is formed so as to face the main air nozzle part 13 and the main air groove 23, and is gradually shallower and wider in a tapered shape as it moves away from the main nozzle part 13. The pair of left and right side air guide grooves 34 are made to face the side nozzle holes 14 and the side ventilation grooves 24 and 24, respectively, and are gradually shallower as they move away from the side nozzle holes 14 and 14. , and form it into an expanding shape. A pair of left and right air guide groove ridge lines 35 are formed between the main air groove 33 and a pair of side air guide grooves 34 located on both sides. The air-conducting groove-to-groove ridgelines 35 are formed to face the groove-to-groove ridgelines 25, 25, respectively. In FIGS. 1 and 3, reference numeral 26a indicates an intake valve recess, and 27a indicates an exhaust valve recess, and the main air groove 33 and the pair of left and right side air guide grooves 34, 34 are connected to the intake and exhaust valve recesses 26a, 27a, respectively. Some rap.

【0019】上記構成によれば、圧縮工程において、前
記主通気溝23、各脇通気溝24・24、主通気溝23
、各脇通気溝24・24と一対となって、前記主噴流F
1、各脇噴流F2をの助走を一層強力に推進する。その
結果、うず室18内での空気と燃料との混合性能が、さ
らに一層強化され、冷始動性能もさらに一層向上する。 また、一方では噴口12はピストンヘッド4Aに形成し
た吸・排気バルブリセス26a・27aに向けて開かれ
、燃焼気流を案内する状態になるので、燃焼気流が主燃
焼室11へ流れ込む際に、適度に分散して燃焼効率が高
まる。
According to the above structure, in the compression process, the main ventilation groove 23, each of the side ventilation grooves 24, 24, the main ventilation groove 23
, are paired with each side ventilation groove 24, 24, and the main jet flow F
1. Promote the run-up of each side jet F2 even more powerfully. As a result, the performance of mixing air and fuel within the swirl chamber 18 is further enhanced, and the cold start performance is further improved. On the other hand, the nozzle 12 is opened toward the intake/exhaust valve recesses 26a and 27a formed in the piston head 4A, and is in a condition to guide the combustion airflow, so that when the combustion airflow flows into the main combustion chamber 11, it is properly controlled. Dispersion increases combustion efficiency.

【0020】[0020]

【発明の効果】本発明は前記のように構成され作用する
ことから、次の効果を奏する。 イ.主燃焼室11とうず室18間の噴口12の距離が短
くても、強力な3つの空気噴流を発生させ、空気と燃料
との混合性能を高める。 ロ.また、主燃焼室11とうず室18間の噴口12の距
離が短く形成されているので、高速運転時における噴口
12の絞り損失が小さくなり、出力が高まる。 ハ.しかも噴口12の距離が短く形成されている分だけ
、始動時における圧縮熱の逃げを防止できるので、冷始
動性能も高まる。 ニ.特に請求項2の発明では、ピストンヘッド4Aに形
成した主導気溝33と左右一対の脇導気溝34・34及
び各導気溝間稜線35・35がシリンダヘッド1の主燃
焼室端面1Aに形成された上記主通気溝23、各脇通気
溝24・24、主通気溝23、各脇通気溝24・24等
と共同して、強力な3つの空気噴流を発生させるので、
空気と燃料との混合性能を一層強力に高め、一方では燃
焼気流が主燃焼室11へ流れ込む際に、上記の逆作用に
より燃焼気流の分散性能が向上して、一層燃焼効率を高
めることができる。
Effects of the Invention Since the present invention is constructed and operates as described above, it has the following effects. stomach. Even if the distance of the nozzle 12 between the main combustion chamber 11 and the whirlpool chamber 18 is short, three powerful air jets are generated to improve the mixing performance of air and fuel. B. Furthermore, since the distance between the main combustion chamber 11 and the whirl chamber 18 between the nozzle 12 is short, the throttling loss of the nozzle 12 during high-speed operation is reduced and the output is increased. C. Furthermore, since the distance between the nozzle holes 12 is short, it is possible to prevent compression heat from escaping at the time of starting, thereby improving cold starting performance. D. In particular, in the invention of claim 2, the main air groove 33 formed in the piston head 4A, the pair of left and right side air guide grooves 34, 34, and the ridge lines 35, 35 between the respective air guide grooves are formed on the main combustion chamber end surface 1A of the cylinder head 1. Since the main ventilation groove 23, each of the side ventilation grooves 24, 24, the main ventilation groove 23, each of the side ventilation grooves 24, 24, etc. formed work together to generate three powerful air jets,
The mixing performance of air and fuel is further enhanced, and on the other hand, when the combustion airflow flows into the main combustion chamber 11, the dispersion performance of the combustion airflow is improved due to the above-mentioned reverse effect, thereby further increasing the combustion efficiency. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係るうず室式燃焼室の構成を示すシリ
ンダヘッドの主燃焼室端面の平面図である。
FIG. 1 is a plan view of an end surface of a main combustion chamber of a cylinder head showing the configuration of a swirl chamber type combustion chamber according to the present invention.

【図2】本発明に係るうず室式燃焼室の構成を示す要部
の縦断面図である。
FIG. 2 is a longitudinal cross-sectional view of essential parts showing the configuration of the swirl chamber type combustion chamber according to the present invention.

【図3】図2中の噴口のA−A線矢視断面図である。FIG. 3 is a sectional view taken along line A-A of the nozzle in FIG. 2;

【図4】図1中のB−B線矢視断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 1;

【図5】ピストンヘッドの平面図である。FIG. 5 is a plan view of the piston head.

【図6】図2のC−C線矢視断面図である。6 is a sectional view taken along the line CC in FIG. 2; FIG.

【図7】本発明の作用説明図である。FIG. 7 is an explanatory diagram of the operation of the present invention.

【図8】本発明の作用説明図である。FIG. 8 is an explanatory diagram of the operation of the present invention.

【図9】本発明に係るうず室式燃焼室が採用されている
ディーゼルエンジンの要部破断概要図である。
FIG. 9 is a schematic cutaway view of essential parts of a diesel engine employing the swirl chamber type combustion chamber according to the present invention.

【図10】従来例のうず室式燃焼室の構成を示す要部の
縦断面図である。
FIG. 10 is a vertical cross-sectional view of essential parts showing the configuration of a conventional swirl chamber type combustion chamber.

【図11】従来例の図1相当図である。FIG. 11 is a diagram corresponding to FIG. 1 of a conventional example.

【図12】従来例の作用説明図である。FIG. 12 is an explanatory diagram of the operation of a conventional example.

【符号の説明】[Explanation of symbols]

E…ディーゼルエンジン、            1
…シリンダヘッド、 1A…シリンダヘッドの主燃焼室端面、4A…ピストン
ヘッド、 11…主燃焼室、                 
   12…噴口、13…主噴口部、        
            X…主噴口部の軸心、 14…脇噴口部、                 
   Z…脇噴口部の軸心、 15…噴口内稜線、                
  18…うず室、23…主通気室、        
            24…脇通気室、 25…溝間稜線、                 
   33…主導気溝、 34…脇導気溝、                 
   35…導気溝間稜線。
E...Diesel engine, 1
... Cylinder head, 1A... Main combustion chamber end face of cylinder head, 4A... Piston head, 11... Main combustion chamber,
12... Nozzle port, 13... Main nozzle part,
X... Axis center of main nozzle part, 14... Side nozzle part,
Z...axis of side nozzle, 15...nozzle inner ridgeline,
18... vortex chamber, 23... main ventilation chamber,
24... Side ventilation chamber, 25... Groove ridgeline,
33...Main air groove, 34...Side air groove,
35...Ridge line between air conduction grooves.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ディーゼルエンジンEの主燃焼室(1
1)に噴口(12)を介してうず室(18)を連通させ
、噴口(12)は、主噴口部(13)の左右の各側面に
左右一対の脇噴口部(14)(14)の各横側面を連通
させて成り、両脇噴口部(14)(14)の軸心(Z)
(Z)は主噴口部(13)の軸心(X)に対して、主燃
焼室(11)側からうず室(18)側に進むにつれて近
づく方向に傾斜させ、主噴口部(13)と各脇噴口部(
14)(14)とが連通する箇所の各連通壁面部分に沿
って各噴口内稜線(15)(15)を縦走させて構成し
たディーゼルエンジンのうず室式燃焼室において、シリ
ンダヘッド(1)の前記主燃焼室(11)に臨む主燃焼
室端面(1A)に主通気溝(23)と左右一対の脇通気
溝(24)(24)とを形成し、この主通気溝(23)
は、前記主噴口部(13)から連続状に連出させるとと
もに、この主噴口部(13)から遠ざかるにつれて次第
に浅くなるように形成し、上記左右一対の各脇通気溝(
24)(24)は、それぞれ前記左右一対の脇噴口部(
14)(14)から連続状に連出させるとともに、この
脇噴口部(14)(14)から遠ざかるにつれて次第に
浅くなる形に形成し、上記主通気溝(23)とこれの左
右両側に位置する上記左右一対の脇通気溝(24)(2
4)との間に左右一対の各溝間稜線(25)(25)を
形成し、この各溝間稜線(25)(25)はそれぞれ前
記各噴口内稜線(15)(15)に連続させて構成した
ことを特徴とするディーゼルエンジンのうず室式燃焼室
[Claim 1] Main combustion chamber (1
1) is communicated with the swirl chamber (18) through the nozzle (12), and the nozzle (12) has a pair of left and right side nozzles (14) on each left and right side of the main nozzle (13). The axial center (Z) of both side nozzle portions (14) (14)
(Z) is inclined in a direction approaching the axis (X) of the main nozzle part (13) as it progresses from the main combustion chamber (11) side to the whirlpool chamber (18) side. Each side spout (
14) In a diesel engine whirlpool-type combustion chamber configured by vertically running each nozzle internal ridgeline (15) (15) along each communication wall surface portion of the part where the (14) communicates with the cylinder head (1). A main ventilation groove (23) and a pair of left and right side ventilation grooves (24) (24) are formed in the main combustion chamber end face (1A) facing the main combustion chamber (11), and the main ventilation groove (23)
are formed so as to extend continuously from the main nozzle part (13) and become gradually shallower as they move away from the main nozzle part (13), and each of the pair of left and right side ventilation grooves (
24) (24) respectively represent the pair of left and right side nozzle ports (
14) It extends continuously from (14), and is formed in a shape that becomes gradually shallower as it goes away from the side nozzle part (14) (14), and is located on the left and right sides of the main ventilation groove (23). The above pair of left and right side ventilation grooves (24) (2)
A pair of left and right groove ridge lines (25) (25) are formed between the grooves 4), and the groove ridge lines (25) (25) are connected to the respective nozzle inner ridge lines (15) (15), respectively. A swirl chamber type combustion chamber for a diesel engine is characterized by being configured.
【請求項2】  ピストンヘッド(4A)に主導気溝(
33)と左右一対の脇導気溝(34)(34)とを形成
し、この主導気溝(33)は、前記主噴口部(13)及
び前記主通気溝(23)に対面させるとともに、この主
噴口部(13)から遠ざかるにつれて次第に浅くなる形
に形成し、上記左右一対の各脇導気溝(34)(34)
は、それぞれ前記脇噴口部(14)(14)及び前記各
脇通気溝(24)(24)に対面させるとともに、この
各脇噴口部(14)(14)から遠ざかるにつれて次第
に浅くなる形に形成し、上記主導気溝(33)とこれの
左右両側に位置する上記左右一対の各脇導気溝(34)
(34)との間に左右一対の各導気溝間稜線(35)(
35)を形成し、この各導気溝間稜線(35)(35)
は、それぞれ前記溝間稜線(25)(25)に対向させ
て構成したことを特徴とする請求項1に記載のディーゼ
ルエンジンのうず室式燃焼室。
[Claim 2] A leading air groove (
33) and a pair of left and right side air guide grooves (34), the main air grooves (33) facing the main nozzle part (13) and the main ventilation groove (23), Formed in a shape that gradually becomes shallower as it moves away from the main nozzle part (13), each of the pair of left and right side air guide grooves (34) (34)
are formed to face the side nozzle portions (14) (14) and the side ventilation grooves (24) (24), respectively, and to become gradually shallower as they move away from the side nozzle portions (14) (14). The main air groove (33) and the pair of left and right side air grooves (34) located on both sides of the main air groove (33).
(34) and the left and right pair of air conduction groove ridge lines (35) (
35), and the ridge lines (35) (35) between the respective air conduction grooves
The whirlpool combustion chamber for a diesel engine according to claim 1, wherein said groove ridge lines (25) and (25) are opposed to each other.
JP3124987A 1991-04-26 1991-04-26 Diesel engine swirl chamber Expired - Fee Related JP2564213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3124987A JP2564213B2 (en) 1991-04-26 1991-04-26 Diesel engine swirl chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3124987A JP2564213B2 (en) 1991-04-26 1991-04-26 Diesel engine swirl chamber

Publications (2)

Publication Number Publication Date
JPH04330324A true JPH04330324A (en) 1992-11-18
JP2564213B2 JP2564213B2 (en) 1996-12-18

Family

ID=14899116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3124987A Expired - Fee Related JP2564213B2 (en) 1991-04-26 1991-04-26 Diesel engine swirl chamber

Country Status (1)

Country Link
JP (1) JP2564213B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257440A (en) * 1993-03-05 1994-09-13 Kubota Corp Sub chamber type combustion chamber for diesel engine
KR100439317B1 (en) * 1996-09-06 2004-09-04 가부시끼 가이샤 구보다 A sub-chamber combustion chamber of a diesel engine
WO2019045314A1 (en) * 2017-08-30 2019-03-07 엘에스엠트론 주식회사 Swirl chamber-type diesel engine
US11085360B2 (en) 2017-08-30 2021-08-10 Ls Mtron Ltd. Swirl chamber-type diesel engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257440A (en) * 1993-03-05 1994-09-13 Kubota Corp Sub chamber type combustion chamber for diesel engine
KR100439317B1 (en) * 1996-09-06 2004-09-04 가부시끼 가이샤 구보다 A sub-chamber combustion chamber of a diesel engine
WO2019045314A1 (en) * 2017-08-30 2019-03-07 엘에스엠트론 주식회사 Swirl chamber-type diesel engine
US11085360B2 (en) 2017-08-30 2021-08-10 Ls Mtron Ltd. Swirl chamber-type diesel engine
US11085359B2 (en) 2017-08-30 2021-08-10 Ls Mtron Ltd. Swirl chamber-type diesel engine

Also Published As

Publication number Publication date
JP2564213B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
CA1329900C (en) Swirl chamber type combustion chamber for diesel engine
JPH04330324A (en) Swirl chamber type combustion chamber for diesel engine
JPS58170820A (en) Two cycle internal-combustion engine
JPH0826769B2 (en) The nozzle of the swirl chamber combustion chamber of the diesel engine
TWI755614B (en) Spark ignition engine unit and vehicle
KR910002897B1 (en) Swirl chamber type combustion chamber diesel engine
JPH084535A (en) Piston of direct injection type diesel engine
JP3541597B2 (en) Engine intake port
JPH01104914A (en) Piston for swirl-chamber type diesel engine
JP2658407B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP3523498B2 (en) Engine swirl intake port
JP2545357Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH0768898B2 (en) The nozzle of the swirl chamber combustion chamber of the diesel engine
JPS6350426Y2 (en)
JP3013573B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2853421B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2797794B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP3013570B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2566173Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH0842390A (en) Suction port structure for internal combustion engine
JP3013572B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP3013571B2 (en) Combustion chamber of a swirl chamber type diesel engine
JP3277067B2 (en) Whirlpool engine
JP3057394B2 (en) Combustion chamber of sub-combustion chamber diesel engine
JP3027926B2 (en) Intake system structure of internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees