JPH04330281A - Detection of base sequence of dna - Google Patents

Detection of base sequence of dna

Info

Publication number
JPH04330281A
JPH04330281A JP3098920A JP9892091A JPH04330281A JP H04330281 A JPH04330281 A JP H04330281A JP 3098920 A JP3098920 A JP 3098920A JP 9892091 A JP9892091 A JP 9892091A JP H04330281 A JPH04330281 A JP H04330281A
Authority
JP
Japan
Prior art keywords
dna
types
probe
base sequence
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3098920A
Other languages
Japanese (ja)
Other versions
JP2561396B2 (en
Inventor
Toru Nakagawa
徹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3098920A priority Critical patent/JP2561396B2/en
Priority to EP92107342A priority patent/EP0511662B1/en
Priority to DE69212062T priority patent/DE69212062T2/en
Priority to US07/875,694 priority patent/US5363697A/en
Publication of JPH04330281A publication Critical patent/JPH04330281A/en
Priority to US08/340,866 priority patent/US5730940A/en
Application granted granted Critical
Publication of JP2561396B2 publication Critical patent/JP2561396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • G01Q60/42Functionalisation

Abstract

PURPOSE:To provide a process for safely, easily and quickly detecting the base sequence of even a small amount of DNA. CONSTITUTION:Among four kinds of bases constituting a DNA, a molecule 2 containing adenine 8 is fixed on an exploratory needle 1 of an interatomic force microscope and the needle is brought close to a single-stranded DNA 3 fixed on a substrate 4 and scanned with an accuracy of atomic level while measuring the interatomic force. A strong force is applied to the needle 1 exclusively when the adenine 8 contained in the molecule 2 fixed to the exploratory needle 1 is brought close to the thymine base 6 in the DNA. The base sequence of the single-stranded DNA 3 can be determined by repeating the similar operation using molecules containing the other three kinds of bases.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、分子生物分野、医療分
野、法医学分野、農林水産業、製薬業などに於いて有用
な、DNAの塩基配列の検出方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for detecting DNA base sequences, which is useful in the fields of molecular biology, medicine, forensic medicine, agriculture, forestry and fisheries, and the pharmaceutical industry.

【0002】0002

【従来の技術】近年バイオテクノロジーとして、生物の
遺伝子を操作して、より優れた有用な特性を有する生物
体を産出させたり、有用な物質をより効率良く産出させ
る生物体にするなどの研究が盛んに行われている。これ
らのバイオテクノロジー分野においては、遺伝子の特性
を左右するDNA(デオキシリボ核酸)の塩基配列を知
ることが重要であり、従来、いくつかのDNAの塩基配
列の検出方法が提案されている。
[Prior Art] In recent years, research in biotechnology has focused on manipulating the genes of organisms to produce organisms with better and more useful properties, and to produce organisms that more efficiently produce useful substances. It is being actively carried out. In these biotechnology fields, it is important to know the base sequence of DNA (deoxyribonucleic acid), which influences the characteristics of genes, and several methods for detecting the base sequence of DNA have been proposed.

【0003】図2から図4にそって、近年よく使われて
いるDNAの塩基配列検出方法を説明する。図2は一本
鎖DNAから、DNAポリメラーゼとDNAを構成する
4種類のヌクレオチドを用いて、二本鎖DNAを合成す
る様子を示した概念図である。図2の(a)に示した如
く、調べたいDNA分子をアルカリ処理して一本鎖DN
A9にする。次に、図2の(b)に示した如く、この一
本鎖DNA9に、放射性32Pを含むプライマー10を
付ける。この溶液にDNAの構成分子である4種類のデ
オキシリボヌクレオシド三リン酸11(この分子の一般
名称をヌクレオチドといい、塩基としてアデニンを含む
もの(A)、チミンを含むもの(T)、シトシンを含む
もの(C)、グアニンを含むもの(G)がある)とDN
Aポリメラーゼを存在させておくと、図2の(c)に示
した如く、一本鎖DNA9上に相補的な塩基対(チミン
にはアデニンが、グアニンにはシトシンがそれぞれ特異
的に水素結合する)ができ、二本鎖のDNA12ができ
あがる。
A DNA base sequence detection method that has been frequently used in recent years will be explained with reference to FIGS. 2 to 4. FIG. 2 is a conceptual diagram showing how double-stranded DNA is synthesized from single-stranded DNA using DNA polymerase and four types of nucleotides that constitute DNA. As shown in Figure 2 (a), the DNA molecule to be investigated is treated with alkali to create single-stranded DNA.
Make it A9. Next, as shown in FIG. 2(b), a primer 10 containing radioactive 32P is attached to this single-stranded DNA 9. In this solution, four types of deoxyribonucleoside triphosphate 11, which are the constituent molecules of DNA (the general name of this molecule is nucleotide, contain adenine as a base (A), thymine (T), and cytosine) are added to this solution. (C), guanine-containing (G)) and DN
When A polymerase is present, complementary base pairs (adenine to thymine and cytosine to guanine form hydrogen bonds specifically on single-stranded DNA 9), as shown in Figure 2(c). ) and double-stranded DNA 12 is completed.

【0004】ところで、ヌクレオチドの構成分子である
デオキシリボースの3′位の水酸基を水素で置換したジ
デオキシリボヌクレオシド三リン酸が少量存在する場合
を考えてみる。このような修飾ヌクレオチドがDNAに
取り込まれると次のヌクレオチドの付加ができなくなり
、反応はここで止まる。従って、図3に示すように塩基
としてアデニンを持つ修飾ヌクレオチド13を少量混ぜ
て一定時間反応させると、このアデニンを持つ修飾ヌク
レオチド13は、ランダム重合体を合成する場合のモノ
マーの如く連鎖中にランダムに取り込まれるため、末端
の塩基がアデニンの長さの異なる種々の二本鎖DNAが
できる。図3はこの様子をモデル的に示した末端がアデ
ニンの種々の長さのDNAの作成方法を示したモデル図
である。
Now, let us consider the case where a small amount of dideoxyribonucleoside triphosphate, in which the hydroxyl group at the 3' position of deoxyribose, which is a constituent molecule of a nucleotide, is substituted with hydrogen is present. When such a modified nucleotide is incorporated into DNA, the next nucleotide cannot be added, and the reaction stops there. Therefore, as shown in Figure 3, when a small amount of modified nucleotide 13 having adenine as a base is mixed and reacted for a certain period of time, the modified nucleotide 13 having adenine will be randomly distributed in the chain like a monomer when synthesizing a random polymer. As a result, a variety of double-stranded DNAs with different lengths of terminal bases, such as adenine, are created. FIG. 3 is a model diagram illustrating a method for producing DNAs of various lengths with adenine ends, which illustrate this situation.

【0005】尚、図3中14、15、16、17はそれ
ぞれ一本鎖DNA9を構成する塩基と水素結合したヌク
レオチドを示し、図2と同一のものについては符号を図
2と同一にしたので説明を省略する。図3中(a)は反
応前の各成分を示し、(b)は反応して得られた末端の
塩基がアデニンの種々の二本鎖DNAのうちの1つをモ
デル的に示しており、(c)は末端の塩基がアデニンの
長さの異なる種々の二本鎖DNAを3種類モデル的に示
したものである。
[0005] In FIG. 3, 14, 15, 16, and 17 each represent a nucleotide hydrogen-bonded with a base constituting the single-stranded DNA 9, and the same reference numerals as in FIG. The explanation will be omitted. In FIG. 3, (a) shows each component before the reaction, and (b) shows a model of one of various double-stranded DNAs in which the terminal base obtained by the reaction is adenine, (c) shows three types of models of various double-stranded DNAs with different lengths of adenine bases at the ends.

【0006】同じように、他の3種類の塩基についても
同じ操作を繰り返して、それぞれアデニン、シトシン、
チミン、グアニンが末端のいろいろな長さのDNAがで
きあがる。図4に示すようにこのようにしてできた4種
類のDNA溶液18、19、20、21の溶液を4つの
レーンで電気泳動することによって、図4のようなパタ
ーン22がオートラジオグラフィーで観測できるので、
元のDNAの塩基配列を検出することができる。尚、図
4中矢印23は電気泳動の電界の向きを示す。
Similarly, the same operation was repeated for the other three types of bases to obtain adenine, cytosine, and
DNA of various lengths is created with thymine and guanine at the ends. As shown in Fig. 4, by electrophoresing the four types of DNA solutions 18, 19, 20, and 21 prepared in this way in four lanes, a pattern 22 as shown in Fig. 4 was observed by autoradiography. Because you can
The base sequence of the original DNA can be detected. Note that the arrow 23 in FIG. 4 indicates the direction of the electric field for electrophoresis.

【0007】[0007]

【発明が解決しようとする課題】上述した従来のDNA
の塩基配列の検出方法は広く使われており、一日で数千
の塩基配列を読み取る事ができる。しかし、以下に述べ
るような問題点を含んでいる。 (1)大量のDNAが必要である。 (2)放射性の32Pを用いるため、特殊な施設が必要
であり、また、被爆の危険性もある。 (3)32Pの半減期は14日と短く、常時試薬を調製
しなくてはならない。 (4)操作が何段階にも分かれているので、めんどうで
根気のいる仕事である。
[Problem to be solved by the invention] The above-mentioned conventional DNA
This method of detecting base sequences is widely used, and several thousand base sequences can be read in a day. However, it includes problems as described below. (1) A large amount of DNA is required. (2) Since radioactive 32P is used, special facilities are required and there is also a risk of exposure to radiation. (3) The half-life of 32P is as short as 14 days, and reagents must be constantly prepared. (4) Since the operation is divided into several stages, it is a tedious and patient job.

【0008】そこで、安全に、簡単に、迅速に、しかも
少量のDNAでも塩基配列を検出できる方法を提供する
ことは産業上重要な課題である。本発明は安全に、簡単
に、迅速に、しかも少量のDNAでもその塩基配列を検
出できる方法を提供することを目的とするものである。
[0008] Therefore, it is an industrially important issue to provide a method that can safely, simply, and quickly detect base sequences even with a small amount of DNA. An object of the present invention is to provide a method that can safely, simply, and quickly detect the base sequence of even a small amount of DNA.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
本発明のDNAの塩基配列検出方法はDNAを構成する
4種類の塩基に対しそれぞれ特異的に相互作用を及ぼす
4種類の分子のいずれか1種類が固定された3種類また
は4種類の探針を用意し、これらの探針を原子間力顕微
鏡の探針とし、前記原子間力顕微鏡によりそれぞれの探
針を基板上に固定された一本鎖DNA上に接近させて、
力を測定しながら原子レベルの精度で走査することから
なる。
[Means for Solving the Problems] In order to achieve the above object, the DNA base sequence detection method of the present invention uses any one of four types of molecules that interact specifically with each of the four types of bases that constitute DNA. Prepare three or four types of probes, one type of which is fixed, and use these probes as the probes of an atomic force microscope. be brought close to the double-stranded DNA,
It consists of scanning with atomic-level precision while measuring forces.

【0010】また、前記構成において、特異的に相互作
用を及ぼす4種類の分子が、DNAを構成する塩基を含
む分子である事が好ましい。また、前記構成において、
特異的に相互作用を及ぼす4種類の分子が、RNA(リ
ボ核酸)を構成する塩基を含む分子である事が好ましい
。本発明方法によれば、DNAを構成する4種類の塩基
を、化学的な相互作用によってそれぞれ直接識別する事
ができ、それにより、従来の問題を解決しようとするも
のである。以下に詳細を示す。
[0010] Furthermore, in the above structure, it is preferable that the four types of molecules that specifically interact with each other are molecules containing bases constituting DNA. Furthermore, in the configuration,
It is preferable that the four types of molecules that specifically interact are molecules containing bases that constitute RNA (ribonucleic acid). According to the method of the present invention, the four types of bases that make up DNA can be directly identified through chemical interaction, thereby solving the conventional problems. Details are shown below.

【0011】図1は本発明の検出方法の原理を示す模式
図である。図1に示すように、DNAを構成する4種類
の塩基のうち、塩基アデニン8を含む分子2を原子間力
顕微鏡(AFM)の探針1に固定して、この探針1を基
板4の上に固定された一本鎖DNA3上に接近させ、そ
の時の相互作用の結果生じる力を測定しながら原子レベ
ルの精度で走査する。尚、本発明は原子間力顕微鏡の探
針が、DNAを構成する4種類の塩基に対しそれぞれ特
異的に相互作用を及ぼす4種類の分子のいずれか1種類
が固定された3種類または4種類の探針を用いる点で特
異性があるが、他の点においては通常の原子間力顕微鏡
とその構造、動作原理などは基本的に同一であり、また
、原子間力顕微鏡はすでに知られているので、その構造
などの詳細な説明は省略する。
FIG. 1 is a schematic diagram showing the principle of the detection method of the present invention. As shown in FIG. 1, a molecule 2 containing the base adenine 8, among the four types of bases that make up DNA, is fixed on the probe 1 of an atomic force microscope (AFM), and the probe 1 is attached to a substrate 4. It approaches the single-stranded DNA 3 immobilized on top, and scans with atomic-level precision while measuring the force generated as a result of the interaction. In addition, the present invention uses three or four types of molecules in which the probe of an atomic force microscope has one of four types of molecules fixed thereon, each of which interacts specifically with the four types of bases that make up DNA. It is unique in that it uses a probe, but in other respects its structure and operating principles are basically the same as ordinary atomic force microscopes. Therefore, a detailed explanation of its structure etc. will be omitted.

【0012】探針1に固定された分子2中のアデニン8
がチミン6上に来た時、他の塩基アデニン8、グアニン
7、シトシン5の場合にはみられない、水素結合による
強い力が働く。この力の働く場所を調べることによって
、DNA3中のチミン6の位置が分かる。図中(a)の
探針1の位置はDNA3中のグアニン7上に探針1に固
定されたアデニン8が位置している場合で、この場合は
水素結合による強い力が働いていない位置を示している
。図中(b)の探針1の位置はDNA3中のチミン6上
に探針1に固定されたアデニン8が位置している場合で
、この場合は水素結合による強い力が働く位置に探針1
があることを示している。
Adenine 8 in molecule 2 fixed on probe 1
When on thymine 6, a strong force due to hydrogen bonding acts, which is not seen in the case of the other bases adenine 8, guanine 7, and cytosine 5. By examining the location where this force acts, the position of thymine 6 in DNA 3 can be determined. The position of probe 1 in (a) in the figure is when adenine 8 fixed on probe 1 is located on guanine 7 in DNA 3. It shows. The position of probe 1 in (b) in the figure is when adenine 8 fixed on probe 1 is located on thymine 6 in DNA 3. In this case, the probe is placed at a position where a strong force due to hydrogen bonding is exerted. 1
It shows that there is.

【0013】そして、チミンを含む分子、シトシンを含
む分子、グアニンを含む分子がそれぞれ固定された3種
類の探針を用いて、これらの操作を繰り返すことによっ
て、一本鎖DNA3中のアデニン、グアニン、シトシン
の位置がそれぞれ分かる。以上のことから、一本鎖DN
Aの塩基配列が検出できる。なお、一本鎖DNAの塩基
配列が分かるということは、アデニンはチミンと、また
、グアニンはシトシンとしか特異的に結合しないので、
元の2本鎖DNAの塩基配列が分かるということになる
[0013] Then, by repeating these operations using three types of probes to which molecules containing thymine, molecules containing cytosine, and molecules containing guanine are immobilized, adenine and guanine in the single-stranded DNA 3 are isolated. , the position of cytosine is known. From the above, single-stranded DN
The base sequence of A can be detected. Furthermore, knowing the base sequence of single-stranded DNA means that adenine only binds specifically to thymine, and guanine only binds specifically to cytosine.
This means that the base sequence of the original double-stranded DNA can be determined.

【0014】ところで、DNAはチミン、アデニン、シ
トシン、グアニンの4種類の塩基を含むので、原理的に
は、3種類の塩基の位置が検出できればDNAの塩基配
列は分かる。従って、上記では4種類の探針を用いてい
るが、チミン、アデニン、シトシン、グアニンを含む分
子のそれぞれいずれか1種類が固定された4種類の探針
のうちのいずれか3種類の探針を用いてもDNAの塩基
配列は検出される。
By the way, since DNA contains four types of bases: thymine, adenine, cytosine, and guanine, in principle, if the positions of these three types of bases can be detected, the DNA base sequence can be determined. Therefore, although four types of probes are used in the above, any three of the four types of probes each have one type of molecule containing thymine, adenine, cytosine, or guanine fixed thereon. DNA base sequences can also be detected using .

【0015】また、探針に固定するのはチミン、アデニ
ン、シトシン、グアニンを含む分子に限る必要はなく、
DNAを構成する塩基と特異的に相互作用を及ぼすもの
であれば何でも良い。特異的相互作用としては例えば、
水素結合やイオン間力などの原子間力などが挙げられる
がこれのみに限定されるものではない。たとえば、RN
Aを構成する塩基を含む分子、叉はこれらの誘導物質な
ど様々な分子を用いることができる。RNAの場合、R
NAを構成する4種類の塩基はウラシル、アデニン、シ
トシン、グアニンであり、ウラシルはDNAを構成する
塩基のうちアデニンと特異的に結合し、他の塩基につい
ては前述のDNAの場合と同様な特異的結合をする。
Furthermore, it is not necessary to limit molecules containing thymine, adenine, cytosine, and guanine to be fixed on the probe;
Any material may be used as long as it specifically interacts with the bases constituting DNA. For example, specific interactions include:
Examples include, but are not limited to, atomic forces such as hydrogen bonds and interionic forces. For example, R.N.
Various molecules such as molecules containing the bases constituting A or derivatives thereof can be used. For RNA, R
The four types of bases that make up NA are uracil, adenine, cytosine, and guanine. Of the bases that make up DNA, uracil specifically binds to adenine, and other bases have the same specificity as in the case of DNA described above. Make a target join.

【0016】本発明においては、DNAの塩基を含む位
置を上述のように分子1つ1つの単位で検出していくの
で、原子間力顕微鏡の探針を検出対象となる一本鎖DN
A試料の固定された基板上に原子レベルの精度で走査す
る。原子間力顕微鏡はこの様な操作が出来るようになっ
ているが、例えば本発明方法においては、長さ約1μm
、根元部の幅約4μm程度の先細りの探針などを用いて
1μm角の領域を0.01〜0.1オングストローム程
度の精度で3次元のX軸、Y軸、Z軸方向に動かして走
査し原子間力などの相互作用を記録する。
[0016] In the present invention, since positions containing DNA bases are detected on a molecule-by-molecule basis as described above, the probe of the atomic force microscope is positioned on the single-stranded DNA to be detected.
A: Scan the substrate on which the sample is fixed with atomic-level precision. Atomic force microscopes are capable of such operations, but for example, in the method of the present invention,
Using a tapered probe with a width of about 4 μm at the root, a 1 μm square area is scanned in three-dimensional X-, Y-, and Z-axis directions with an accuracy of about 0.01 to 0.1 angstroms. and record interactions such as atomic forces.

【0017】この様な精度で走査するには、通常原子間
力顕微鏡においては、試料を載せる台がピエゾ素子など
の電圧をかけることによりその長さが伸縮する圧電素子
などで構成されており、この圧電素子を3次元方向にコ
ントロールして動かすことで走査を行っているのが通常
である。そして原子間力の測定は、センサーで原子間力
をキャッチして、原子間力が常に一定になるように例え
ば強く原子間力が作用する位置では原子間力が当初の一
定値になるように試料と探針の位置を遠ざけるなど、試
料と探針の距離を近づけたり、離したりして原子間力が
常に一定値になるようにし、この動きを電気信号にして
記録することにより検知するシステムとなっている。
In order to scan with such precision, normally in an atomic force microscope, the stage on which the sample is placed is composed of a piezoelectric element whose length can be expanded or contracted by applying a voltage. Scanning is normally performed by controlling and moving this piezoelectric element in three-dimensional directions. The measurement of the atomic force uses a sensor to detect the atomic force, so that the atomic force is always constant. A system that detects by moving the sample and probe closer or farther apart, such as by moving the sample and probe farther apart, so that the atomic force always remains at a constant value, and recording this movement as an electrical signal. It becomes.

【0018】なお、以下に、一本鎖DNA分子の基板上
への固定方法と、DNAを構成する4種類の塩基とそれ
ぞれ特異的に相互作用を及ぼす分子のAFMの探針への
固定方法の例を説明する。
[0018] Below, we will explain how to immobilize a single-stranded DNA molecule onto a substrate and how to immobilize molecules that interact specifically with the four types of bases that make up DNA onto the AFM tip. Explain an example.

【0019】1:一本鎖DNAの基板上への固定方法1
−1:物理吸着法 一本鎖DNA溶液(10〜50μg/ml)をよく洗浄
された平面度の高いグラファイト、ガラス基板、金でコ
ーテイングされたガラス基板もしくは雲母上に滴下する
か、もしくはこれらの基板をこのDNA溶液中に浸して
、一本鎖DNAをこれらの基板に固定する。その後、こ
れらの基板を純水でよく洗浄して測定用の基板とする。
1: Method for immobilizing single-stranded DNA on a substrate 1
-1: Physical adsorption method A single-stranded DNA solution (10 to 50 μg/ml) is dropped onto a well-washed highly flat graphite, glass substrate, gold-coated glass substrate, or mica, or Substrates are immersed in this DNA solution to immobilize single-stranded DNA to these substrates. Thereafter, these substrates are thoroughly washed with pure water and used as measurement substrates.

【0020】1−2:化学結合法 基板としては、酸化膜の付いたシリコン基板、表面が酸
化されたグラファイト基板、雲母からなる基板もしくは
ガラス基板など水酸基のある比較的表面が平坦な基板が
用いられる。
1-2: Chemical bonding method As the substrate, a substrate with a relatively flat surface with hydroxyl groups, such as a silicon substrate with an oxide film, a graphite substrate with an oxidized surface, a substrate made of mica, or a glass substrate, is used. It will be done.

【0021】まず、塩酸溶液(5〜50%)50mlに
約10μgの一本鎖DNAを加える。次に、この溶液に
基板を入れ、室温付近で数時間反応させ、一本鎖DNA
をこれらの基板に固定する。その後、これらの基板を蒸
留水でよくすすぎ、再びきれいな蒸留水に浸し洗浄して
測定用の基板とする。
First, approximately 10 μg of single-stranded DNA is added to 50 ml of hydrochloric acid solution (5-50%). Next, the substrate was placed in this solution and allowed to react at around room temperature for several hours, resulting in the formation of single-stranded DNA.
are fixed to these boards. Thereafter, these substrates are thoroughly rinsed with distilled water, and then immersed in clean distilled water again to be cleaned and used as measurement substrates.

【0022】1−3:化学結合法 基板としては、酸化膜の付いたシリコン基板、表面が酸
化されたグラファイト基板、雲母からなる基板もしくは
ガラス基板など水酸基のある比較的表面が平坦な基板が
用いられる。
1-3: Chemical bonding method As the substrate, a substrate with a relatively flat surface containing hydroxyl groups, such as a silicon substrate with an oxide film, a graphite substrate with an oxidized surface, a substrate made of mica, or a glass substrate, is used. It will be done.

【0023】まず、末端がトルエンカルボン酸でエステ
ル化されたシランカップリング剤[CH3 −C6 H
4 −OOC−(CH2 )n−SiCl3 ]を有機
溶剤(ヘキサデカン80%、クロロホルム12%、四塩
化炭素8%)に重量にして1%溶解して反応溶液とし、
この反応溶液に基板を入れ、窒素雰囲気中で約2時間反
応を行わせる。
First, a silane coupling agent [CH3 -C6 H
4-OOC-(CH2)n-SiCl3] was dissolved at 1% by weight in an organic solvent (hexadecane 80%, chloroform 12%, carbon tetrachloride 8%) to prepare a reaction solution,
A substrate is placed in this reaction solution, and the reaction is allowed to proceed for about 2 hours in a nitrogen atmosphere.

【0024】次にこの基板を2つの糟のクロロホルム溶
液に15分ずつ浸水した後、水洗を行う。なお、この反
応においては、シランカップリング剤の化学式のnの値
は0〜25で可能であるが、10〜20の場合がDNA
等を構成する塩基の反応性などが立体障害などにより影
響を受けるのを防止できるので好ましい。ひき続いて、
この基板を数%のリチウムアルミニウムハイドライド(
LiAlH4 )を含むエーテル溶液中で室温下で20
分反応さる。
Next, this substrate is immersed in two chloroform solutions for 15 minutes each, and then washed with water. In addition, in this reaction, the value of n in the chemical formula of the silane coupling agent can be from 0 to 25, but if it is from 10 to 20, the DNA
This is preferable because it can prevent the reactivity of the bases constituting the compounds from being affected by steric hindrance or the like. In succession,
This substrate is made of several percent lithium aluminum hydride (
20 at room temperature in an ether solution containing LiAlH4).
Minute reaction monkey.

【0025】最後に、この基板を、約10μgの一本鎖
DNAが溶けた塩酸溶液(5〜50%)50mlに入れ
、室温付近で数時間反応させた後、蒸留水でよく洗浄し
、一本鎖DNAを固定する。
Finally, this substrate was placed in 50 ml of hydrochloric acid solution (5-50%) in which about 10 μg of single-stranded DNA was dissolved, and after reacting for several hours at around room temperature, it was thoroughly washed with distilled water and Fix the double-stranded DNA.

【0026】1−4:化学結合法 基板としては、酸化膜の付いたシリコン基板、表面が酸
化されたグラファイト基板、雲母からなる基板もしくは
ガラス基板など水酸基のある比較的表面が平坦な基板が
用いられる。
1-4: Chemical bonding method As the substrate, a substrate with a relatively flat surface containing hydroxyl groups, such as a silicon substrate with an oxide film, a graphite substrate with an oxidized surface, a substrate made of mica, or a glass substrate, is used. It will be done.

【0027】まず、末端がビニル基(−CH=CH2 
)のトリクロロシランカップリング剤(CH2 =CH
−(CH2 )n−SiCl3 )を有機溶剤(ヘキサ
デカン80%、クロロホルム12%、四塩化炭素8%)
に重量にして1%溶解して反応溶液とし、この反応溶液
に基板を入れ、窒素雰囲気中で約2時間反応を行わせる
。次にこの基板を2つの糟のクロロホルム溶液に15分
ずつ浸水した後、水洗を行う。なお、この反応において
は、シランカップリング剤の化学式のnの値は0〜25
で可能であるが、前述の場合と同様に10〜20の場合
が好都合である。
First, the terminal has a vinyl group (-CH=CH2
) trichlorosilane coupling agent (CH2 = CH
-(CH2)n-SiCl3) in an organic solvent (hexadecane 80%, chloroform 12%, carbon tetrachloride 8%)
A reaction solution is obtained by dissolving 1% by weight in the solution, a substrate is placed in this reaction solution, and the reaction is carried out in a nitrogen atmosphere for about 2 hours. Next, this substrate is immersed in two chloroform solutions for 15 minutes each, and then washed with water. In addition, in this reaction, the value of n in the chemical formula of the silane coupling agent is 0 to 25.
However, as in the case described above, the case of 10 to 20 is convenient.

【0028】次に、この基板をジボランの溶解したテト
ラヒドロフラン溶液(1M)にアルゴン雰囲気中室温で
1分間反応させた後、過酸化水素と水酸化ナトリウムの
混合溶液(過酸化水素30%、水酸化ナトリウム0.1
M)中で1分間反応させる。最後に、この基板を、約1
0μgの一本鎖DNAが溶けた塩酸溶液(5〜50%)
50mlに入れ、室温付近で数時間反応させた後、蒸留
水でよく洗浄し、一本鎖DNAを固定する。
Next, this substrate was reacted with a tetrahydrofuran solution (1M) in which diborane was dissolved for 1 minute at room temperature in an argon atmosphere, and then a mixed solution of hydrogen peroxide and sodium hydroxide (hydrogen peroxide 30%, hydroxide Sodium 0.1
M) for 1 minute. Finally, add this board to approximately 1
Hydrochloric acid solution containing 0 μg of single-stranded DNA (5-50%)
After pouring into 50 ml and reacting at around room temperature for several hours, the single-stranded DNA is fixed by washing thoroughly with distilled water.

【0029】2:AFMの探針への分子の固定法2−1
:AFMの探針上への、DNAを構成する4種類の塩基
の固定方法 用いるAFMの探針は窒化シリコンもしくは酸化シリコ
ンでできたものである。窒化シリコンの場合は、水酸化
ナトリウムによるアルカリ処理、熱硝酸による処理、熱
硫酸による処理、酸素雰囲気中での熱処理のいずれかに
よって探針を酸化して、表面に水酸基を付加する。
2: Method of fixing molecules to AFM probe 2-1
: Method of fixing the four types of bases that make up DNA onto the AFM probe The AFM probe used is made of silicon nitride or silicon oxide. In the case of silicon nitride, the probe is oxidized by any one of alkali treatment with sodium hydroxide, treatment with hot nitric acid, treatment with hot sulfuric acid, and heat treatment in an oxygen atmosphere to add hydroxyl groups to the surface.

【0030】DNAを構成する塩基を含む分子としては
、DNAを構成する4種類のヌクレオチドを用いる。 1−2〜1−4のいずれかと同じ方法でヌクレオチドを
探針に固定する事ができる。但し、基板の代わりに上述
のAFMの探針を、一本鎖DNAの代わりにヌクレオチ
ドをそれぞれ用いる。
[0030] As molecules containing bases that make up DNA, four types of nucleotides that make up DNA are used. Nucleotides can be immobilized on the probe using the same method as in any of 1-2 to 1-4. However, the above-mentioned AFM probe is used instead of the substrate, and nucleotides are used instead of single-stranded DNA.

【0031】2−2:AFMの探針上への、RNAを構
成する4種類の塩基の固定方法 用いるAFMの探針は窒化シリコンもしくは酸化シリコ
ンでできたものである。窒化シリコンの場合は、水酸化
ナトリウムによるアルカリ処理、熱硝酸による処理、熱
硫酸による処理、酸素雰囲気中での熱処理のいずれかに
よって探針を酸化して、表面に水酸基を付加する。
2-2: Method of fixing four types of bases constituting RNA onto the AFM probe The AFM probe used is made of silicon nitride or silicon oxide. In the case of silicon nitride, the probe is oxidized by any one of alkali treatment with sodium hydroxide, treatment with hot nitric acid, treatment with hot sulfuric acid, and heat treatment in an oxygen atmosphere to add hydroxyl groups to the surface.

【0032】RNAを構成する塩基を含む分子としては
、RNAを構成する4種類のヌクレオチドを用いる。 1−2〜1−4と同じ方法でヌクレオチドを探針に固定
する事ができる。但し、基板の代わりに上述のAFMの
探針を、一本鎖DNAの代わりにRNAを構成するヌク
レオチドをそれぞれ用いる。
[0032] As molecules containing bases constituting RNA, four types of nucleotides constituting RNA are used. Nucleotides can be immobilized on the probe using the same method as in 1-2 to 1-4. However, the above-mentioned AFM probe is used instead of the substrate, and nucleotides constituting RNA are used instead of single-stranded DNA.

【0033】[0033]

【作用】本発明のDNAの塩基配列検出方法はDNAを
構成する4種類の塩基に対しそれぞれ特異的に相互作用
を及ぼす4種類の分子のいずれか1種類が固定された3
種類または4種類の探針を用意し、これらの探針を原子
間力顕微鏡の探針とし、前記原子間力顕微鏡によりそれ
ぞれの探針を基板上に固定された一本鎖DNA上に接近
させて、力を測定しながら原子レベルの精度で走査する
ので、放射性元素を用いる必要がないため安全で、工程
が簡単で、迅速に、しかもまた、原理的には、一個のD
NAがあれば測定できるので従来法に比べてDNAの量
は格段に少ない量のDNAでもその塩基配列を検出でき
る方法を提供出来る。さらに、3種類、ないしは4種類
の微小探針を用いて同様の操作でルーチンワーク的にD
NAの塩基配列を検出できるので、従来法より手間はか
からず、簡単、迅速にDNAの塩基配列を決定できる。
[Operation] The method for detecting DNA base sequences of the present invention is based on the method for detecting DNA base sequences in which one of the four types of molecules that interact specifically with each of the four types of bases constituting DNA is immobilized.
Prepare one or four types of probes, use these probes as probes for an atomic force microscope, and bring each probe close to the single-stranded DNA fixed on the substrate using the atomic force microscope. Since it scans with atomic level precision while measuring force, it is safe, the process is simple and quick, and there is no need to use radioactive elements.In addition, in principle, one D
Since the measurement can be performed as long as there is NA, it is possible to provide a method that can detect the base sequence even with a much smaller amount of DNA than conventional methods. Furthermore, using three or four types of microprobes, similar operations can be used to perform routine work.
Since the base sequence of NA can be detected, the base sequence of DNA can be determined easily and quickly with less effort than conventional methods.

【0034】また、本発明において、特異的に相互作用
を及ぼす4種類の分子が、DNAを構成する塩基を含む
分子である好ましい態様にすることにより、基板への試
料の固定と、探針への分子の固定がほぼ同様の操作で出
来、また、相互作用も予め分っているのでより容易にD
NAの塩基配列を決定できる。また、本発明において、
特異的に相互作用を及ぼす4種類の分子が、RNAを構
成する塩基を含む分子である好ましい態様にすることに
より、基板への試料の固定と、探針への分子の固定がほ
ぼ同様の操作で出来、また、相互作用も予め分っている
のでより容易にDNAの塩基配列を決定できる。
In addition, in the present invention, by adopting a preferred embodiment in which the four types of molecules that interact specifically are molecules containing bases that constitute DNA, it is possible to fix the sample to the substrate and attach it to the probe. D molecules can be immobilized using almost the same procedure, and since the interactions are known in advance, D
The base sequence of NA can be determined. Furthermore, in the present invention,
By adopting a preferred embodiment in which the four types of molecules that specifically interact are molecules containing bases that constitute RNA, the immobilization of the sample on the substrate and the immobilization of the molecules on the probe are almost the same operations. Furthermore, since the interactions are known in advance, the DNA base sequence can be determined more easily.

【0035】[0035]

【実施例】【Example】

実施例1 30塩基対分だけ切断し取り出された大腸菌DNAの塩
基配列を本発明の方法で検出した。以下に詳細を示す。 まず、30塩基対からなる大腸菌DNAを20μ/mg
以下の濃度となるように15mMの塩化ナトリウムと1
.5mMのクエン酸ナトリウムの混合溶液に溶かした。 そして、この溶液を沸騰した湯浴に10分間つけた後、
氷水で急冷して、大腸菌DNAを一本鎖DNAにした。
Example 1 The base sequence of Escherichia coli DNA that had been cut and extracted by 30 base pairs was detected by the method of the present invention. Details are shown below. First, 20μ/mg of E. coli DNA consisting of 30 base pairs
15mM sodium chloride and 1
.. It was dissolved in a mixed solution of 5mM sodium citrate. After soaking this solution in a boiling water bath for 10 minutes,
The E. coli DNA was quenched with ice water to turn it into single-stranded DNA.

【0036】この一本鎖DNAを、前述の1−1の方法
を用いて、グラファイト基板上に分散して固定した。ま
た、前述の2−1の方法(この中でも特に、1−3の方
法を応用)を用いて、DNAを構成するヌクレオチドを
AFMの探針に固定した。まず、アデニンを含むヌクレ
オチドが固定された探針を一本鎖DNAの固定された基
板表面に接近させ、探針と基板表面間に働く力が一定に
なるように、探針と基板表面の間の距離を調製しながら
、原子レベルの精度(0.1オングストロームの精度)
でこの探針を走査した。ここで、探針の走査範囲は10
0×100nm2 とし、この時探針の軌跡が描く曲線
群の形状を調べた。
[0036] This single-stranded DNA was dispersed and immobilized on a graphite substrate using the method 1-1 described above. Further, the nucleotides constituting the DNA were immobilized on the tip of the AFM using the method 2-1 described above (among them, the method 1-3 was particularly applied). First, a probe on which a nucleotide containing adenine is immobilized is brought close to the substrate surface on which single-stranded DNA is immobilized, and the force between the probe and the substrate surface is kept constant. Atomic level precision (accuracy of 0.1 angstroms) while adjusting the distance of
This probe was scanned. Here, the scanning range of the probe is 10
0x100 nm2, and the shape of the group of curves drawn by the locus of the probe was examined.

【0037】基板表面の様々な場所における曲線群の形
状を調べたところ、数箇所において、平面の上に半径が
数ナノメーターの棒状の物がのっているような形状が観
測された。しかも、この棒は7ヶ所に突起を持っていた
。これらは、以下のように解釈された。まず、上に示し
た基板表面の観察方法は、基本的には、従来のAFMに
よる固体表面の形状の観察方法と同じである。従って、
探針の軌跡の描く曲線群の形状は、基板表面の形状を表
すので、棒状の物は一本鎖DNAを示していると解釈さ
れた。
When the shapes of the curve groups at various locations on the substrate surface were investigated, shapes resembling rod-shaped objects with a radius of several nanometers were observed at several locations on a plane. Moreover, this rod had protrusions in seven places. These were interpreted as follows. First, the method for observing the substrate surface described above is basically the same as the method for observing the shape of a solid surface using conventional AFM. Therefore,
Since the shape of the group of curves drawn by the trajectory of the probe represents the shape of the substrate surface, the rod-shaped objects were interpreted to represent single-stranded DNA.

【0038】しかし、チミンが存在する部分のDNAの
見かけの形状は、従来のAFMで示される形状と少し様
子が違ってくる。すなわち、探針に固定されたアデニン
とDNA中のチミン間には水素結合による力が働き、こ
の力は、この探針と他の塩基や基板表面間に働く力より
も充分大きく、そのため、探針は、DNA中のチミン上
にきたとき、原子間力を一定にするためにDNAから大
きく離れようとする。従って、従来のAFMでは見られ
ない突起がDNAを表す曲線群上に観測される。そこで
、この突起の位置にチミンがあると判断された。以上の
ことより、DNA上にある7箇所のチミンの位置が判っ
た。
However, the apparent shape of the DNA in the portion where thymine is present is slightly different from the shape shown by conventional AFM. In other words, a force due to hydrogen bonding acts between the adenine fixed on the tip and thymine in DNA, and this force is sufficiently larger than the force acting between the tip and other bases or the substrate surface, so that the probe is When the needle reaches the thymine in the DNA, it tries to move far away from the DNA in order to keep the interatomic force constant. Therefore, protrusions that cannot be seen with conventional AFM are observed on the curve group representing DNA. Therefore, it was determined that thymine was located at this protrusion. From the above, the positions of seven thymines on DNA were determined.

【0039】次に、チミン、グアニン、シトシンのいず
れかを含むヌクレオチドがそれぞれ固定された3種類の
探針を用いて、同様な操作をして、DNA上のアデニン
、シトシン、グアニンの位置がそれぞれ調べられた。 以上の4種類の探針を用いて調べたDNA中の塩基の位
置から、30塩基対からなる大腸菌DNAの塩基配列が
検出された。
Next, using three types of probes to which nucleotides containing either thymine, guanine, or cytosine were fixed, similar operations were performed to determine the positions of adenine, cytosine, and guanine on the DNA, respectively. It was investigated. A base sequence of E. coli DNA consisting of 30 base pairs was detected from the base positions in the DNA investigated using the above four types of probes.

【0040】なお、チミン、グアニン、シトシンのいず
れかを含むヌクレオチドがそれぞれ固定された3種類の
探針だけを用いても、DNAの塩基配列の検出をするこ
とができた。すなわち、これらの3種類の探針をそれぞ
れ用いて一本鎖DNAを調べたところ、DNAを示す曲
線群上に多数の突起が観測され、これによって、アデニ
ン、シトシン、グアニンのDNA上の位置が分かった。 ところで、上記のどの探針を用いた場合にも、突起の現
れない場所がDNAを示す曲線群上にあった。そこで、
この場所にチミンが存在すると判断された。しかも、こ
の場所の広さから、ここに存在しているチミンの数が分
かった。以上のことから、30塩基対からなる大腸菌D
NAの塩基配列か検出できた。
[0040] It was also possible to detect the base sequence of DNA using only three types of probes to which nucleotides containing either thymine, guanine, or cytosine were fixed. In other words, when single-stranded DNA was examined using each of these three types of probes, many protrusions were observed on the curve group representing the DNA, and this revealed the positions of adenine, cytosine, and guanine on the DNA. Do you get it. By the way, no matter which of the above-mentioned probes were used, there were locations where no protrusions appeared on the group of curves representing DNA. Therefore,
It was determined that thymine was present at this location. Moreover, based on the size of this place, it was possible to determine how many thymines existed here. From the above, E. coli D consisting of 30 base pairs
I was able to detect the NA base sequence.

【0041】実施例2 前述の1−3の方法を用いて一本鎖DNAを雲母基板上
へ固定し、それ以外は実施例1と同じ方法によって、3
0塩基対からなる大腸菌DNAの塩基配列が検出できた
Example 2 Single-stranded DNA was immobilized on a mica substrate using the method 1-3 described above, and 3.
A base sequence of E. coli DNA consisting of 0 base pairs could be detected.

【0042】実施例3 前述の1−3の方法を用いて一本鎖DNAを雲母基板上
に固定し、また、前述の2−1の方法(この中でも特に
、1−2の方法を応用)を用いて、DNAを構成するヌ
クレオチドをAFMの探針に固定した。
Example 3 Single-stranded DNA was immobilized on a mica substrate using the method 1-3 described above, and the method 2-1 described above (in particular, method 1-2 was applied). The nucleotides constituting the DNA were immobilized on the tip of the AFM.

【0043】それ以外は実施例1と同じ方法によって、
30塩基対からなる大腸菌DNAの塩基配列が検出でき
た。
Other than that, the same method as in Example 1 was used,
A base sequence of E. coli DNA consisting of 30 base pairs could be detected.

【0044】実施例4 前述の2−2の方法(この中でも特に、1−3の方法を
応用)を用いてRNAを構成するヌクレオチドをAFM
の探針に固定し、それ以外は実施例1と同じ方法によっ
て、30塩基対からなる大腸菌のDNAの塩基配列が検
出できた。
Example 4 Nucleotides constituting RNA were subjected to AFM using the method 2-2 described above (particularly applying method 1-3).
The base sequence of Escherichia coli DNA consisting of 30 base pairs could be detected using the same method as in Example 1 except for fixing it on the probe.

【0045】実施例5 前述の1−3の方法を用いて一本鎖DNAを雲母基板上
へ固定し、また、前述の2−2の方法(この中でも特に
、1−3の方法を応用)を用いてRNAを構成するヌク
レオチドをAFMの探針に固定した。それ以外は実施例
1と同じ方法によって、30塩基対からなる大腸菌DN
Aの塩基配列が検出できた。
Example 5 Single-stranded DNA was immobilized on a mica substrate using the method 1-3 described above, and method 2-2 described above (among them, method 1-3 was particularly applied). The nucleotides constituting the RNA were immobilized on the AFM tip. Otherwise, E. coli DNA consisting of 30 base pairs was prepared by the same method as in Example 1.
The base sequence of A could be detected.

【0046】実施例6 前述の1−3の方法を用いて一本鎖DNAを雲母基板上
に固定し、また、前述の2−2の方法(この中でも特に
、1−2の方法を応用)を用いて、RNAを構成するヌ
クレオチドをAFMの探針に固定した。
Example 6 Single-stranded DNA was immobilized on a mica substrate using the method 1-3 described above, and the method 2-2 described above (among them, method 1-2 was particularly applied). The nucleotides constituting the RNA were immobilized on the tip of the AFM.

【0047】それ以外は実施例1と同じ方法によって、
30塩基対からなる大腸菌DNAの塩基配列が検出でき
た。DNAの塩基配列を迅速に決めることは、分子生物
分野、医療分野、法医学分野、農林水産業、製薬業の分
野でたいへん重要である。特に、遺伝病の治療や、DN
A操作による植物等の品種改良、有用物質の生物による
生産を行う場合、DNAの塩基配列を読みとることは、
これらを実施するための基礎技術として今後ますます重
要になってくると考えられる。本発明は、今までの方法
に比べて簡便で少量のDNAしか必要としないので、こ
れらの分野に有効に適用できる。
Other than that, the same method as in Example 1 was used,
A base sequence of E. coli DNA consisting of 30 base pairs could be detected. Rapid determination of DNA base sequences is extremely important in the fields of molecular biology, medicine, forensic medicine, agriculture, forestry and fisheries, and the pharmaceutical industry. In particular, treatment of genetic diseases and
When conducting breeding of plants and producing useful substances using A operations, reading the DNA base sequence is necessary.
It is thought that this technology will become increasingly important in the future as a basic technology for implementing these methods. The present invention is simpler than conventional methods and requires only a small amount of DNA, so it can be effectively applied to these fields.

【0048】さらに、現在、人のDNA配列をすべて決
めてしまおうとする“人ゲノム解析計画”が計画されて
いる。この場合読みとるべきヒトDNAの塩基対の数は
28億と非常に多く、迅速にしかも正確に塩基配列を読
みとる手段の開発が強く望まれている。本発明は、この
ゲノム解析の有力な手段としても期待できる。なお、実
施例においては、DNAもしくはRNAを構成する4種
類のヌクレヲチドをAFMの探針に固定したが、これら
の分子に限る必要はなく、前述した如くDNA上の塩基
と特異的に相互作用を及ぼすものであればなんでも良い
ことは言うまでもない。
Furthermore, a "human genome analysis project" is currently being planned to determine the entire human DNA sequence. In this case, the number of human DNA base pairs to be read is extremely large, 2.8 billion, and there is a strong desire to develop a means to read the base sequence quickly and accurately. The present invention can be expected to be a powerful means for this genome analysis. In the examples, four types of nucleotides constituting DNA or RNA were immobilized on the AFM probe, but it is not necessary to limit them to these molecules. Needless to say, anything is good as long as it has a positive effect.

【0049】[0049]

【発明の効果】本発明のDNAの塩基配列検出方法は安
全で、工程が簡単で、迅速に、しかもまた、少ない量の
DNAでもその塩基配列を検出できる方法を提供出来る
。また、本発明において、特異的に相互作用を及ぼす4
種類の分子が、DNAを構成する塩基を含む分子である
好ましい態様にすることにより、基板への試料の固定と
、探針への分子の固定がほぼ同様の操作で出来、また、
相互作用も予め分っているのでより容易にDNAの塩基
配列を検出できる。
Effects of the Invention The DNA base sequence detection method of the present invention is safe, has simple steps, and can quickly detect the base sequence even with a small amount of DNA. In addition, in the present invention, 4 that specifically interacts with
By adopting a preferable embodiment in which the type of molecule is a molecule containing a base constituting DNA, it is possible to immobilize a sample on a substrate and immobilize a molecule on a probe using almost the same operation, and
Since the interaction is known in advance, the DNA base sequence can be detected more easily.

【0050】また、本発明において、特異的に相互作用
を及ぼす4種類の分子が、RNAを構成する塩基を含む
分子である好ましい態様にすることにより、基板への試
料の固定と、探針への分子の固定が同様の操作で出来、
また、相互作用も予め分っているのでより容易にDNA
の塩基配列を決定できる。
[0050] In addition, in a preferred embodiment of the present invention, the four types of molecules that interact specifically are molecules containing bases constituting RNA, so that the sample can be immobilized on the substrate and attached to the probe. The molecules of can be immobilized by the same operation,
Also, since the interactions are known in advance, it is easier to interact with DNA.
It is possible to determine the nucleotide sequence of

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によって一本鎖DNAの塩基配列を検出
する原理を示した模式図。
FIG. 1 is a schematic diagram showing the principle of detecting the base sequence of single-stranded DNA according to the present invention.

【図2】一本鎖DNAから、2本鎖DNAを合成する様
子を示した概念図である。
FIG. 2 is a conceptual diagram showing how double-stranded DNA is synthesized from single-stranded DNA.

【図3】末端がアデニンの種々の長さのDNAの作成方
法を示したモデル図である。
FIG. 3 is a model diagram showing methods for producing DNAs of various lengths with adenine at the end.

【図4】オートラジオグラフィーによって観測された4
種類のDNAの混合溶液の電気泳動パターンを示す図で
ある。
[Figure 4] 4 observed by autoradiography
It is a figure which shows the electrophoresis pattern of the mixed solution of different types of DNA.

【符号の説明】[Explanation of symbols]

1    AFMの探針 2    DNAを構成する塩基を含む分子3    
一本鎖DNA 4    基板 5    シトシン 6    チミン 7    グアニン 8    アデニン 9    塩基配列を調べようとする一本鎖DNA10
  プライマー 11  DNAを構成する4種類のヌクレオチド12 
 二本鎖DNA 13  アデニンを塩基とするジデオキシヌクレオシド
三リン酸 14  一本鎖DNA9を構成する塩基と水素結合した
ヌクレオチド 15  一本鎖DNA9を構成する塩基と水素結合した
ヌクレオチド 16  一本鎖DNA9を構成する塩基と水素結合した
ヌクレオチド。 17  一本鎖DNA9を構成する塩基と水素結合した
ヌクレオチド。 18  末端がアデニンである種々の長さのDNA19
  末端がチミンである種々の長さのDNA20  末
端がシトシンである種々の長さのDNA21  末端が
グアニンである種々の長さのDNA22  オートラジ
オグラフィーで観測した4種類の混合溶液18、19、
20、21の電気泳動パターン23  電気泳動の電界
の向き
1 AFM probe 2 Molecules containing bases that make up DNA 3
Single-stranded DNA 4 Substrate 5 Cytosine 6 Thymine 7 Guanine 8 Adenine 9 Single-stranded DNA whose base sequence is to be investigated 10
Primer 11 Four types of nucleotides that make up DNA 12
Double-stranded DNA 13 Dideoxynucleoside triphosphate with adenine as a base 14 Nucleotides hydrogen-bonded with bases constituting single-stranded DNA 9 15 Nucleotides hydrogen-bonded with bases constituting single-stranded DNA 9 16 Constituting single-stranded DNA 9 A nucleotide that is hydrogen-bonded with a base. 17 A nucleotide hydrogen-bonded with a base that constitutes single-stranded DNA9. 18 DNA of various lengths with adenine at the end19
DNA of various lengths with thymine at the end 20 DNA of various lengths with cytosine at the end 21 DNA of various lengths with guanine at the end 22 Four types of mixed solutions observed by autoradiography 18, 19,
Electrophoresis patterns 20 and 21 23 Direction of electrophoresis electric field

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  DNAを構成する4種類の塩基に対し
それぞれ特異的に相互作用を及ぼす4種類の分子のいず
れか1種類が固定された3種類または4種類の探針を用
意し、これらの探針を原子間力顕微鏡の探針とし、前記
原子間力顕微鏡によりそれぞれの探針を基板上に固定さ
れた一本鎖DNA上に接近させて、力を測定しながら原
子レベルの精度で走査することからなるDNAの塩基配
列検出方法。
[Claim 1] Three or four types of probes are prepared on which any one of four types of molecules that interact specifically with the four types of bases constituting DNA are immobilized, and these probes are immobilized. The probe is the probe of an atomic force microscope, and each probe is brought close to the single-stranded DNA fixed on the substrate by the atomic force microscope, and the probe is scanned with atomic-level precision while measuring the force. A DNA base sequence detection method comprising the steps of:
【請求項2】  特異的に相互作用を及ぼす4種類の分
子が、DNAを構成する塩基を含む分子である請求項1
記載のDNAの塩基配列検出方法。
Claim 2: Claim 1, wherein the four types of molecules that specifically interact are molecules containing bases that constitute DNA.
The DNA base sequence detection method described above.
【請求項3】  特異的に相互作用を及ぼす4種類の分
子が、RNAを構成する塩基を含む分子である請求項1
記載のDNAの塩基配列検出方法。
Claim 3: Claim 1, wherein the four types of molecules that specifically interact are molecules containing bases constituting RNA.
The DNA base sequence detection method described above.
JP3098920A 1991-04-30 1991-04-30 Method for detecting DNA base sequence Expired - Fee Related JP2561396B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3098920A JP2561396B2 (en) 1991-04-30 1991-04-30 Method for detecting DNA base sequence
EP92107342A EP0511662B1 (en) 1991-04-30 1992-04-29 Scanning probe microscope, molecular processing method using the scanning probe microscope and DNA base arrangement detecting method
DE69212062T DE69212062T2 (en) 1991-04-30 1992-04-29 Scanning scanning microscope, molecular processing method using the microscope and method for perceiving the DNA base arrangement
US07/875,694 US5363697A (en) 1991-04-30 1992-04-29 Scanning probe microscope, molecular processing method using the scanning probe microscope and DNA base arrangement detecting method
US08/340,866 US5730940A (en) 1991-04-30 1994-11-15 Scanning probe microscope and molecular processing method using the scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098920A JP2561396B2 (en) 1991-04-30 1991-04-30 Method for detecting DNA base sequence

Publications (2)

Publication Number Publication Date
JPH04330281A true JPH04330281A (en) 1992-11-18
JP2561396B2 JP2561396B2 (en) 1996-12-04

Family

ID=14232568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098920A Expired - Fee Related JP2561396B2 (en) 1991-04-30 1991-04-30 Method for detecting DNA base sequence

Country Status (1)

Country Link
JP (1) JP2561396B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070946A1 (en) * 2004-12-28 2006-07-06 Japan Science And Technology Agency A method for analyzing nucleobases on a single molecular basis
JP2009222390A (en) * 2008-03-13 2009-10-01 Shimadzu Corp Method of discriminating nucleic acid base species and base sequence determination method
JP2010515072A (en) * 2007-01-05 2010-05-06 テクニシエ ユニベルシテイト ミュンヘン Apparatus and method for detecting forces in the sub-micronewton range
JP2013167626A (en) * 2012-01-16 2013-08-29 National Institute Of Advanced Industrial & Technology Activation method for silicon nitride film chip
US9610203B2 (en) 2013-03-22 2017-04-04 The Procter & Gamble Company Disposable absorbent articles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101355019B1 (en) 2013-03-04 2014-01-27 한국과학기술연구원 Cantilever sensor for atomic force microscopy and the manufacturing mothod of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2235049A (en) * 1989-06-20 1991-02-20 Rosser Roy J Chemical bond microscopy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2235049A (en) * 1989-06-20 1991-02-20 Rosser Roy J Chemical bond microscopy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070946A1 (en) * 2004-12-28 2006-07-06 Japan Science And Technology Agency A method for analyzing nucleobases on a single molecular basis
JP2008525792A (en) * 2004-12-28 2008-07-17 独立行政法人科学技術振興機構 Single molecule nucleobase analysis method
JP2010515072A (en) * 2007-01-05 2010-05-06 テクニシエ ユニベルシテイト ミュンヘン Apparatus and method for detecting forces in the sub-micronewton range
JP2009222390A (en) * 2008-03-13 2009-10-01 Shimadzu Corp Method of discriminating nucleic acid base species and base sequence determination method
JP2013167626A (en) * 2012-01-16 2013-08-29 National Institute Of Advanced Industrial & Technology Activation method for silicon nitride film chip
US9610203B2 (en) 2013-03-22 2017-04-04 The Procter & Gamble Company Disposable absorbent articles

Also Published As

Publication number Publication date
JP2561396B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
US5363697A (en) Scanning probe microscope, molecular processing method using the scanning probe microscope and DNA base arrangement detecting method
CN104703700B (en) Method and kit for nucleic acid sequencing
US5601982A (en) Method and apparatus for determining the sequence of polynucleotides
JP3813818B2 (en) Method for determining the nucleotide sequence of oligonucleotides and DNA molecules
US7799903B2 (en) Nucleic acid-engineered materials
EP1159453B1 (en) A method for direct nucleic acid sequencing
EP1117831B1 (en) Method for dna- or rna-sequencing
US5958701A (en) Method for measuring intramolecular forces by atomic force
WO1996024689A9 (en) Method and apparatus for determining the sequence of polynucleotides
WO2005021786A1 (en) A method of sequencing nucleic acids by ligation of labelled oligonucleotides
JPH10215899A (en) Detection of nucleic acid using scanning type probe microscope
JPH04330281A (en) Detection of base sequence of dna
KR100482718B1 (en) Nucleic Acid Probe-Immobilized Substrate and Method of Detecting the Presence of Target Nucleic Acid by Using the Same
JP4706074B2 (en) Tripod-type functional interface molecules for immobilization of biomolecules and gene detection devices using them
Souteyrand et al. Use of microtechnology for DNA chips implementation
KR20150071876A (en) Method for sequencing nucleic acids using atomic force microscope
JP4309942B2 (en) Electrode and detection device
Okano et al. Position-specific release of DNA from a chip by using photothermal denaturation
Strobel et al. An electron paramagnetic resonance probe to detect local Z-DNA conformations
JP3790194B2 (en) Nucleic acid probe immobilization substrate
JP3843134B2 (en) Method and apparatus for processing by combining liquid media
JP2022524982A (en) Devices and methods for biopolymer identification
Gu Single Molecule Manipulation and Visualization of DNA Biosensor Surface
CN104630346A (en) Sequencing method of single DNA molecule based on high-resolution transmission electron microscopy
Henke Measurement of the refractive index of covalently immobilised oligonucleotide films on fused silica optical fibres for optimisation of a nucleic acid biosensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees