JPH0433012A - Velocity controller - Google Patents

Velocity controller

Info

Publication number
JPH0433012A
JPH0433012A JP13436790A JP13436790A JPH0433012A JP H0433012 A JPH0433012 A JP H0433012A JP 13436790 A JP13436790 A JP 13436790A JP 13436790 A JP13436790 A JP 13436790A JP H0433012 A JPH0433012 A JP H0433012A
Authority
JP
Japan
Prior art keywords
speed
acceleration
path
maximum
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13436790A
Other languages
Japanese (ja)
Inventor
Juichi Maruyama
丸山 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13436790A priority Critical patent/JPH0433012A/en
Publication of JPH0433012A publication Critical patent/JPH0433012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Velocity Or Acceleration (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To shorten a time required for movement by calculating a linear path satisfying the limit condition of a driving system or the maximum velocity and maximum acceleration of each driving shaft for each command unit of the path, and executing control by using those results of the calculation. CONSTITUTION:A velocity calculation part 10 is provided to calculate the maximum path velocity based on a path command value and each shaft maximum allowable velocity set in advance, and an acceleration calculation part 11 is provided to calculate the maximum path acceleration based on the path command value and each shaft maximum allowable acceleration set in advance. Further, an acceleration/deceleration processing part 3 is provided to accelerate/ decelerate the calculated maximum path velocity based on the calculated maximum path acceleration, and a velocity distribution part 4 is provided to distribute the accelerated/decelerated maximum path velocity to the velocity in each axial direction. Then, the control is executed at the maximum velocity or acceleration to satisfy the allowable limit value of each driving shaft. Thus, the velocity controller can be obtained to be easily programmed and to be moved in the path at high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、工作機械の工具やロボットのハンドを移動
経路に沿って高速に駆動するための速度制御装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a speed control device for driving a tool of a machine tool or a hand of a robot at high speed along a movement path.

〔従来の技術] 工作機械やロボットなど複数の駆動軸を持つ機械を制御
する数値制御装置において、工具やハンドを直線経路に
沿って動かす場合、予め与えられた速度や加速度を満た
すようにサーボ指令値の速度波形を制御して駆動する方
法がとられる。
[Conventional technology] In numerical control devices that control machines with multiple drive axes, such as machine tools and robots, when moving a tool or hand along a straight path, servo commands are sent to satisfy pre-given speeds and accelerations. A method is adopted in which the speed waveform of the value is controlled and driven.

従来この種の技術としては、例えば特開昭63−146
105号公報に開示されている速度制御装置があり、そ
の構成を第7図に示す。同図において、(1)は移動経
路の指令値を入力する入力部、(2)は入力値に基づい
て経路の移動速度信号を発生する速度信号発生部、(3
)は速度信号発生部(2)の出力速度を、予め与えられ
た一定加速度で加減速する加減速処理部、(4)は加減
速された速度を各駆動軸のそれぞれの軸成分に分解して
出力する速度分配部である。
Conventionally, this type of technology includes, for example, Japanese Patent Application Laid-Open No. 63-146.
There is a speed control device disclosed in Japanese Patent No. 105, the configuration of which is shown in FIG. In the figure, (1) is an input section for inputting a command value for a moving route, (2) is a speed signal generating section for generating a moving speed signal for the route based on the input value, and (3) is a speed signal generating section for generating a moving speed signal for the route based on the input value.
) is an acceleration/deceleration processing unit that accelerates or decelerates the output speed of the speed signal generator (2) at a predetermined constant acceleration, and (4) decomposes the accelerated or decelerated speed into each axis component of each drive shaft. This is a speed distribution section that outputs the

このように構成された装置において、第8図に示すX−
Y平面の直線経路1(5)を移動する場合について動作
を第9図(a)〜(d)の各構成部の動作波形を参照し
て説明する。まず、入力部(1)は経路の指令値として
、X、Y各軸の移動量(X。
In the device configured in this way, the X-
The operation when moving along the straight path 1 (5) on the Y plane will be described with reference to the operation waveforms of each component shown in FIGS. 9(a) to 9(d). First, the input unit (1) inputs the amount of movement (X.

Y)と移動速度Fの値を入力する。速度信号発生部(2
)は、大きさF、時間幅Tのステップ状の速度信号S(
第9図(a))を発生するもので、時間[Tは、11路
−j%L (L=  X  +Y  ) ヲ速度Fで動
く時間(T=L/F)に相当する。加減速処理部(3)
は、このステップ状の速度信号Sの立上り、立下りを整
形して、予め設定された一定の加速度の速度変化をもつ
速度信号■(第9図(b))を出力する。速度分配部(
4)は、経路指令値(X、Y)と経路長りを用いて、加
減速処理部(3)から出力されたこの速度信号■のX軸
成分VX、 Y軸成分vYを次式により求めてそれぞれ
の軸の速度指令信号として出力する(第9図(C)。
Enter the values of Y) and moving speed F. Speed signal generator (2
) is a step-like speed signal S(
FIG. 9(a)) is generated, and the time [T corresponds to the time (T=L/F) for moving at the speed F of 11-j%L (L=X+Y). Acceleration/deceleration processing section (3)
shapes the rising and falling edges of this step-like speed signal S, and outputs a speed signal (2) (FIG. 9(b)) having a speed change of a preset constant acceleration. Speed distribution section (
4) Using the route command values (X, Y) and the route length, calculate the X-axis component VX and Y-axis component vY of this speed signal ■ output from the acceleration/deceleration processing unit (3) using the following formula. and outputs it as a speed command signal for each axis (Fig. 9(C)).

(d))。(d)).

X              Y vx=−・ v  −vY=−・ ■ L              L この一連の動作は、経路の指令単位ごとに実行され、経
路1(5)の移動が完了すると次の経路2(δ)の動作
に移る。
X Y vx=-・ v -vY=-・ ■ L L This series of operations is executed for each command unit of the route, and when the movement of route 1 (5) is completed, the operation of the next route 2 (δ) is started. Move.

一方、ここには図示していない各軸の駆動系においては
、駆動モータのパワー、駆動される機械軸のイナーシャ
や負荷などに応じて指令に追従できる速度や加速度に限
界があるため、この限界値である最大許容速度や最大許
容加速度を越えないようにそれぞれの軸の指令値VX、
VYを作成する必要がある。通常、速度はプログラム段
階で制約条件を考えて指令値を作成し、加速度は加減速
処理部(3)に設定する値を各駆動軸の最大許容加速度
の最小値に選ぶのが一般的であフた。
On the other hand, in the drive system of each axis (not shown here), there is a limit to the speed and acceleration that can follow the command depending on the power of the drive motor, the inertia and load of the driven mechanical axis, etc. The command value VX of each axis is set so as not to exceed the maximum allowable speed and maximum allowable acceleration.
It is necessary to create VY. Normally, for speed, the command value is created by considering constraints at the program stage, and for acceleration, the value set in the acceleration/deceleration processing section (3) is generally selected as the minimum value of the maximum allowable acceleration of each drive axis. Futa.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように従来の速度制御装置は、速度については予
め各軸の最大許容速度の制約条件を考慮して指令値を与
える必要があるためプログラムが面倒で、必ずしも最適
な価となっておらず、加速度についても各軸の最大許容
加速度の最小値などを固定値として設定し、この値で加
減速処理を行う構成となっているため、移動に要する時
間が長くなり高速化かで籾ない等の問題があった。
As mentioned above, with conventional speed control devices, it is necessary to give command values in advance by considering the maximum allowable speed constraints of each axis, which makes programming cumbersome and does not necessarily provide optimal values. As for acceleration, the minimum value of the maximum permissible acceleration of each axis is set as a fixed value, and acceleration/deceleration processing is performed using this value, so the time required for movement becomes longer and the rice is not harvested due to high speed. There was a problem.

この発明は、上記のような問題点を解決するためになさ
れたもので、各駆動軸の許容限界値を満たす最大の速度
あるいは加速度で制御を行い、プログラムが容易で高速
な経路移動を可能とする速度制御装置を得ることを目的
とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to control each drive shaft at the maximum speed or acceleration that satisfies the allowable limit value, and to easily program and enable high-speed path movement. The purpose is to obtain a speed control device that

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る速度側at装置は、移動体を一定経路に
沿って移動させる各駆動軸の移動量と移動速度からなる
経路指令値をもとに、上記各駆動軸の軸速度指令を演算
し、制御部へ出力するものにおいて、上記経路指令値と
予め設定した各軸設大許容速度に基づいて最大経路速度
を計算する速度計算部と、上記経路指令値と予め設定し
た各軸最大許容加速度に基づいて最大経路加速度を計算
する加速度計算部と、該計算された最大経路加速度に基
づき、上記計算された最大経路速度を加減速処理する加
減速処理部と、加減速処理された最大経路速度を各軸方
向の速度に配分する速度分配部とを備えたものである。
The speed-side AT device according to the present invention calculates the shaft speed command of each drive shaft based on the path command value consisting of the travel amount and travel speed of each drive shaft for moving the moving body along a fixed path. , in what is output to the control section, a speed calculation section that calculates the maximum path speed based on the above-mentioned path command value and the preset maximum allowable speed of each axis, and a speed calculation section that calculates the maximum path speed based on the above-mentioned path command value and the preset maximum allowable acceleration of each axis. an acceleration calculation unit that calculates a maximum path acceleration based on the calculated maximum path acceleration; an acceleration/deceleration processing unit that accelerates or decelerates the calculated maximum path speed based on the calculated maximum path acceleration; and a speed distribution section that distributes the speed to the speed in each axial direction.

また、上記速度計算部は速度計算部は、計算された最大
経路速度と経路指令値として入力された移動速度を比較
し、小さい速度の方を計算結果として出力するものであ
る。
Further, the speed calculating section compares the calculated maximum route speed with the moving speed input as the route command value, and outputs the smaller speed as the calculation result.

(作用) この発明において、速度計算部は、各軸の最大許容速度
と経路の指令値から動作可能な最大速度を求める。また
、この値と指令速度と比較し小さい方を出力するため、
制約条件を越えた指令値か入力されても自動的に許容さ
れる最大速度に修正される。また、加速度計算部は、各
軸の最大許容加速度と経路の指令値を用いて、動作可能
な最大加速度を求める。
(Operation) In the present invention, the speed calculation section calculates the maximum operable speed from the maximum allowable speed of each axis and the command value of the route. Also, since this value is compared with the command speed and the smaller one is output,
Even if a command value that exceeds the constraint conditions is input, the speed is automatically corrected to the maximum allowable speed. Further, the acceleration calculation unit calculates the maximum operable acceleration using the maximum allowable acceleration of each axis and the command value of the path.

〔実施例] この発明の一実施例の構成を第1図に示す。図において
、(10)は速度計算部、(11)は加速度計算部を示
す。その他の入力部(1)、速度信号発生部(2)、加
減速処理部(3)及び速度分配部(4)は従来と同一の
ものである。第2図は速度計算部(1o)及び加速度計
算部(11)を中心にした動作フローチャートを示す。
[Embodiment] FIG. 1 shows the configuration of an embodiment of the present invention. In the figure, (10) indicates a velocity calculation section, and (11) indicates an acceleration calculation section. The other input section (1), speed signal generation section (2), acceleration/deceleration processing section (3), and speed distribution section (4) are the same as the conventional one. FIG. 2 shows an operation flowchart centering on the velocity calculation section (1o) and the acceleration calculation section (11).

速度計算部(10)は、入力部(1)から経路指令値(
X、Y、F)と、予め設定されたX、Y各軸それぞれの
最大許容速度値Fx、Fyを入力しくステップ1)、こ
れらを用いて経路速度fを次式により求める(ステップ
2)。
The speed calculation unit (10) receives the route command value (
Input the maximum permissible speed values Fx and Fy for each of the X and Y axes set in advance (step 1), and use these to find the path speed f using the following equation (step 2).

ただし、L=へrPl−P−1:経路長:直線経路の最
短移動時間 例えば、第3図に示すような経路の場合、経路1(5)
の経路速度f、(20)はX軸方向速度がFxとなるよ
うに決まり、経路2(6)の経路速度f2(21)はY
軸方向速度がFYとなるように決まる。すなわち、(A
)式によって、経路速度fは、その全ての軸成分がその
軸の最大許容速度値より小さいという条件を満たす最大
の経路速度として求められる。
However, L=to rPl-P-1: Path length: Shortest travel time on a straight path For example, in the case of a path as shown in Figure 3, path 1 (5)
The path speed f, (20) is determined so that the speed in the X-axis direction is Fx, and the path speed f2 (21) of path 2 (6) is Y
The axial speed is determined to be FY. That is, (A
), the path speed f is determined as the maximum path speed that satisfies the condition that all of its axial components are smaller than the maximum allowable speed value for that axis.

この経路速度fと入力部(1)から入力した速度指令値
Fを比較し、小さい方を新たな速度指令値Vとして速度
信号発生部(2)に出力する(ステップ3)。
This route speed f is compared with the speed command value F input from the input section (1), and the smaller one is outputted to the speed signal generation section (2) as a new speed command value V (step 3).

V=MIN  (F、  f)    −(B)一方、
加速度計算部(11)は、予め設定されたX、Yそれぞ
れの軸の最大許容加速度Ax、AYと、経路指令値(x
、yンを入力し、これらを用いて経路の経路加速度Aを
次式により求め(ステップ4)、加減速処理部(3)の
加速度設定値として出力する。
V=MIN (F, f) − (B) On the other hand,
The acceleration calculation unit (11) calculates preset maximum allowable accelerations Ax and AY for each of the X and Y axes, and a route command value (x
.

ただし、x=Oならば右辺()の中の第1項を除く Y=Oならば右辺0の中の第2項を 除く 例えば、第4図に示すような経路の場合、経路1(5)
の経路加速度A、 (22)はX軸方向加速度かAxと
なるように決まり、経路2(6)の経路加速度A2(2
3)はY軸方向加速がAYとなるように決まる。すなわ
ち、(C)式によって、経路加速度Aは、その全ての軸
成分がその軸の最大許容加速度より小さいという条件を
満たす最大の経路加速度として求められる。
However, if x=O, the first term in the right-hand side () is excluded; if Y=O, the second term in the right-hand side 0 is excluded. )
The path acceleration A, (22) of path 2 (6) is determined to be the acceleration in the X-axis direction or Ax, and the path acceleration A2 (2
3) is determined so that the acceleration in the Y-axis direction is AY. That is, by equation (C), path acceleration A is determined as the maximum path acceleration that satisfies the condition that all axis components are smaller than the maximum allowable acceleration of that axis.

以下、従来と全く同様に、速度信号発生部(2)は、上
記の速度計算部(1o)の計算結果を受けて高さV、時
間幅T (T=L/V)のステップ状の速度信号Sを発
生し、加減速処理部(3)は、このステップ状の速度信
号Sの立上り、立ち下がりを上記加速度計算部(11)
の出力値Aに合せて波形整形し、速度分配部(4)はこ
の加減速処理された速度波形VのX軸成分vx、Y軸成
分vYを求める。これら一連の動作は、経路指令値のブ
ロック毎に繰り返し行われる。
Thereafter, as in the conventional case, the speed signal generating section (2) receives the calculation result of the speed calculation section (1o) and generates a step-like speed of height V and time width T (T=L/V). The acceleration/deceleration processing section (3) generates a signal S, and the acceleration/deceleration processing section (3) converts the rise and fall of this step-like speed signal S into the acceleration calculation section (11).
The velocity distribution unit (4) determines the X-axis component vx and Y-axis component vY of the accelerated/decelerated velocity waveform V. These series of operations are repeated for each block of route command values.

第5図は上記の動作に伴う各部の動作波形を示す。第5
図(a)〜(d)は速度信号発生部(2)の圧力波形S
で、ステップ状の速度波形の高さか速度計算部(lO)
の計算結果を受けて経路ごとに最大値に選ばれる状況を
示す。第5図(b)は加減速処理部(3)の出力波形V
で、速度変化の傾斜(加速度)が加速度計算部(11)
の計算結果を受けて経路に応じ最大値に選ばれる状況を
示す。第5図(C)(d)は、それぞれ速度分配部(4
)の出力する加減速処理された速度波形■のX軸成分v
×、Y軸成分!Yをポす。
FIG. 5 shows operational waveforms of each part associated with the above operation. Fifth
Figures (a) to (d) show the pressure waveform S of the speed signal generator (2).
Then, the height of the step-like velocity waveform or the velocity calculation section (lO)
This shows the situation in which the maximum value is selected for each route based on the calculation results. Figure 5(b) shows the output waveform V of the acceleration/deceleration processing section (3).
Then, the slope (acceleration) of the speed change is calculated by the acceleration calculation section (11)
This shows the situation in which the maximum value is selected according to the route based on the calculation results. Figures 5(C) and 5(d) show the velocity distribution section (4), respectively.
) is the X-axis component v of the accelerated/decelerated speed waveform ■ output by
×, Y-axis component! Post Y.

第6図は、本発明の速度制御装置の他の実施例の構成を
示すブロック図である。図において、(30)は軸速度
計算部、(31)は軸速度計算部、(2a) 、 (2
b)はそれぞれX軸、Y軸の速度発生部、(3a) 、
 (3b)はそれぞれX軸、Y軸の加速度処理部である
FIG. 6 is a block diagram showing the configuration of another embodiment of the speed control device of the present invention. In the figure, (30) is the shaft speed calculation section, (31) is the shaft speed calculation section, (2a), (2
b) are the X-axis and Y-axis speed generators, respectively, (3a),
(3b) are X-axis and Y-axis acceleration processing units, respectively.

軸速度計算部(30)は、入力部(1)から入力した直
線経路の指令値(x、y)と、予め与えられたX、Y各
軸の最大許容速度FX、FYを用いて、経路の動作可能
な最大速度の各軸成分を次式により計算する。
The axis speed calculation unit (30) uses the command values (x, y) for the linear route input from the input unit (1) and the maximum allowable speeds FX, FY for each of the X and Y axes given in advance to calculate the route. Calculate each axis component of the maximum operable speed using the following formula.

X         Y fX=−・  fY=−・・・(D) U         U Y ただし、U=MAX(−・−) FX   FY ;直線経路の最短移動時間 軸方向計算部(31)は、上記の速度計算部(30)で
求めたf、、fY及び予め与えられた各軸の最大許容加
速度A、、AYを用いて、経路の動作可能な最大加速度
の各軸成分aX+aYを次式により計算する。
FX Using f, , fY obtained in section (30) and the maximum permissible accelerations A, , AY of each axis given in advance, each axis component aX+aY of the maximum operable acceleration of the route is calculated by the following equation.

fx  fY ただし、W=MAX(−・−) A×  ^Y ;経路速度fまでの最短加速時間 X軸の速度信号発生部(2a)は、速度計算部(30)
で求めたfXを受けて、大きさfx、時間幅T= (T
=x/fx)のステップ状の速度信号SXを発生し、X
軸動減速処理部(3a)に出力する。X軸の加減速処理
部(3a)は、加速度計算部(31)で求めたaxに合
せて、ステップ状の速度信号SXの立ち上がり、立ち下
がりを整形しX軸速度指令として出力する。
fx fY However, W=MAX(-・-) A× ^Y ; Shortest acceleration time to path speed f The X-axis speed signal generation section (2a) is the speed calculation section (30)
Receiving fX obtained in , size fx, time width T = (T
=x/fx), and generates a step-like speed signal SX of
It is output to the shaft motion deceleration processing section (3a). The X-axis acceleration/deceleration processing section (3a) shapes the rise and fall of the step-like speed signal SX in accordance with ax determined by the acceleration calculation section (31), and outputs it as an X-axis speed command.

Y軸についても同様に、Y軸の速度信号発生部(2b)
は、速度計算部(30)で求めたfYを受けて、大きさ
fY、時間幅T (T=Y/fY)のステップ状の速度
信号SYを発生し、Y軸動減速処理部(3b)に出力す
る。Y軸の加減速処理部(3b)は、加速度計算部(3
1)で求めたayに合せて、ステップ状の速度信号SY
の立ち上がり、立ち下がりを整形しY軸速度指令として
出力する。
Similarly for the Y-axis, the Y-axis speed signal generator (2b)
receives fY obtained by the speed calculation unit (30), generates a step-like speed signal SY of magnitude fY and time width T (T=Y/fY), and generates a Y-axis dynamic deceleration processing unit (3b). Output to. The Y-axis acceleration/deceleration processing unit (3b) is an acceleration calculation unit (3b).
In accordance with ay obtained in 1), the step-like speed signal SY is
The rising and falling edges are shaped and output as the Y-axis speed command.

〔発明の効果〕〔Effect of the invention〕

上記のように、この発明の速度制御装置では駆動系の制
約条件を満たす直線経路、あるいは各駆動軸の最大速度
及び最大加速度が経路の指令単位ごとに計算され、これ
らを用いて制御が行われるため、従来のように個別に速
度指令値を与えたり、一定の加速度で加減速をしていた
場合に比べ移動時間を大幅に短縮することができ、また
、過大な速度指令値が与えられても自動的に最大許容速
度に修正される効果も得られる。
As described above, in the speed control device of the present invention, the maximum velocity and maximum acceleration of each drive axis or the straight path that satisfies the constraints of the drive system are calculated for each command unit of the path, and control is performed using these. Therefore, the travel time can be significantly reduced compared to the conventional method of giving individual speed command values or accelerating/decelerating at a constant acceleration. You can also get the effect that the speed is automatically adjusted to the maximum allowable speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の速度制御装置の一実施例の構成を示
したブロック図、第2図はその動作を示すフロチャート
、第3図は本実施例の速度計算部の動作例を示す説明図
、第4図は本実施例の加速度計算部の動作例を示す説明
図、第5図(a)〜(d)は本実施例における速度制御
装置の動作波形の説明図、第6図はこの発明の速度制御
装置の他の実施例の構成を示したブロック図、第7図は
従来の速度制御装置の構成を示すブロック図、第8図は
従来の速度制御装置の動作例を示す説明図、第9図(a
)〜(d)は従来の速度制御装置の動作波形の説明図で
ある。 図において、(1)は入力部、(2)は速度信号発生部
、(3)は加減速処理部、(4)は速度分配部、(10
)は速度計算部、(11)は加速度計算部。 第 因 第 図 第 図 終躇、1 第 (a) (C) 図 時間 第 図 −入一一 第 図 手 続 補 正 書(自発) (a) 事件の表示 特願平2−134367号 発明の名称 速度制御装置 3゜ 補正をする者 事件との関係 特許出願人 住 所   東京都千代田区丸の内二丁目2番3号名 
称(601)三菱電機株式会社 代表者志岐守哉 (c) 4゜
FIG. 1 is a block diagram showing the configuration of an embodiment of the speed control device of the present invention, FIG. 2 is a flowchart showing its operation, and FIG. 3 is an explanation showing an example of the operation of the speed calculation section of this embodiment. 4 is an explanatory diagram showing an example of the operation of the acceleration calculation section of this embodiment, FIGS. 5(a) to (d) are explanatory diagrams of operation waveforms of the speed control device in this embodiment, and FIG. A block diagram showing the configuration of another embodiment of the speed control device of the present invention, FIG. 7 is a block diagram showing the configuration of a conventional speed control device, and FIG. 8 is an explanation showing an example of the operation of the conventional speed control device. Figure, Figure 9 (a
) to (d) are explanatory diagrams of operating waveforms of a conventional speed control device. In the figure, (1) is an input section, (2) is a speed signal generation section, (3) is an acceleration/deceleration processing section, (4) is a speed distribution section, and (10) is an acceleration/deceleration processing section.
) is a velocity calculation section, and (11) is an acceleration calculation section. No. 1 (a) (C) No. 1 (a) (C) No. 1 (spontaneous) amendment to the procedure of drawing No. 11 (spontaneous) Relationship with the Control Device 3° Amendment Case Patent Applicant Address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo
Name (601) Mitsubishi Electric Corporation Representative Moriya Shiki (c) 4゜

Claims (2)

【特許請求の範囲】[Claims] (1)移動体を一定経路に沿って移動させる各駆動軸の
移動量と移動速度からなる経路指令値をもとに、上記各
駆動軸の軸速度指令を演算し、制御部へ出力する速度制
御装置において、上記経路指令値と予め設定した各軸最
大許容速度に基づいて最大経路速度を計算する速度計算
部と、上記経路指令値と予め設定した各軸最大許容加速
度に基づいて最大経路加速度を計算する加速度計算部と
、該計算された最大経路加速度に基づき、上記計算され
た最大経路速度を加減速処理する加減速処理部と、加減
速処理された最大経路速度を各軸方向の速度に配分する
速度分配部とを備えたことを特徴とする速度制御装置。
(1) Based on the path command value consisting of the movement amount and movement speed of each drive axis that moves the moving body along a fixed path, calculate the axis speed command of each drive axis and output it to the control unit. The control device includes a speed calculation unit that calculates a maximum path speed based on the route command value and the preset maximum allowable speed of each axis, and a speed calculation unit that calculates the maximum path speed based on the route command value and the preset maximum allowable acceleration of each axis. an acceleration calculation unit that calculates the maximum path velocity, an acceleration/deceleration processing unit that accelerates and decelerates the calculated maximum path velocity based on the calculated maximum path acceleration, and an acceleration/deceleration processing unit that accelerates and decelerates the calculated maximum path speed based on the calculated maximum path acceleration; A speed control device comprising: a speed distribution section that distributes speed to
(2)速度計算部は、計算された最大経路速度と経路指
令値として入力された移動速度を比較し、小さい速度の
方を計算結果として出力することを特徴とする特許請求
の範囲第1項記載の速度制御装置。
(2) The speed calculation unit compares the calculated maximum route speed with the travel speed input as the route command value, and outputs the smaller speed as the calculation result. Speed control device as described.
JP13436790A 1990-05-24 1990-05-24 Velocity controller Pending JPH0433012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13436790A JPH0433012A (en) 1990-05-24 1990-05-24 Velocity controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13436790A JPH0433012A (en) 1990-05-24 1990-05-24 Velocity controller

Publications (1)

Publication Number Publication Date
JPH0433012A true JPH0433012A (en) 1992-02-04

Family

ID=15126722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13436790A Pending JPH0433012A (en) 1990-05-24 1990-05-24 Velocity controller

Country Status (1)

Country Link
JP (1) JPH0433012A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318257A (en) * 1992-05-22 1993-12-03 Okuma Mach Works Ltd Tool replacing device
JPH07200032A (en) * 1993-12-28 1995-08-04 Nec Corp Servo controller
US6539275B1 (en) 1998-05-28 2003-03-25 Fanuc Ltd. Machine controller and process with two-step interpolation
JP2009098982A (en) * 2007-10-18 2009-05-07 Sodick Co Ltd Working simulation device and its program
JP2013045332A (en) * 2011-08-25 2013-03-04 Fanuc Ltd Tool locus display device with display part of acceleration or jerk at tool tip point

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318257A (en) * 1992-05-22 1993-12-03 Okuma Mach Works Ltd Tool replacing device
JPH07200032A (en) * 1993-12-28 1995-08-04 Nec Corp Servo controller
US6539275B1 (en) 1998-05-28 2003-03-25 Fanuc Ltd. Machine controller and process with two-step interpolation
JP2009098982A (en) * 2007-10-18 2009-05-07 Sodick Co Ltd Working simulation device and its program
JP2013045332A (en) * 2011-08-25 2013-03-04 Fanuc Ltd Tool locus display device with display part of acceleration or jerk at tool tip point
CN102955449A (en) * 2011-08-25 2013-03-06 发那科株式会社 Tool path display apparatus
US9304507B2 (en) 2011-08-25 2016-04-05 Fanuc Corporation Tool path display apparatus having display unit for acceleration or jerk of tool tip point

Similar Documents

Publication Publication Date Title
US9678500B2 (en) Machining program creating device numerical control device, machining system, machining program creating method, numerical control method, and machining program
EP0599020B1 (en) Method and apparatus for controlling the positioning and reducing vibration in a machine tool system
US7902785B2 (en) Method and device for guiding the movement of a moveable machine element of a machine
JPWO2013140679A1 (en) Trajectory control device
JP2002132349A (en) Acceleration and deceleration control method
KR20010041353A (en) Synchronization controller
JP2679783B2 (en) Acceleration / deceleration control device
EP0357778B1 (en) Method of speed control for servomotor
WO2008053601A1 (en) Working control device, and its program
JP2935713B2 (en) Numerical control unit
JPH0433012A (en) Velocity controller
US5740327A (en) Method of and apparatus for robot tip trajectory control
WO2022158428A9 (en) Numerical control device
JP2009187521A (en) Position command creating method and position command creating device
JPH07110714A (en) Method for controlling position, speed, and torque by plural motors
JPS6228810A (en) Robot control device
JPH07210225A (en) Numerical controller
JPH07200034A (en) Device and method for controlling acceleration/ deceleration for working head
JPS60231207A (en) Command generating system of multi-axis servo system
KR20030093643A (en) Apparatus and method for motion control of robot
JPH0488510A (en) Locus controller
JP7487468B2 (en) Numerical control device, numerical control method, and storage medium
JPH0850504A (en) Numerical controller for performing speed control of polar coordinate interpolation
JPS63126008A (en) Circular arc locus controller for multi-axis servo mechanism
JP3353607B2 (en) Numerical control unit