JPH04329888A - Electrode consisting of titanium boride and high-potential electrolysis utilizing this electrode - Google Patents

Electrode consisting of titanium boride and high-potential electrolysis utilizing this electrode

Info

Publication number
JPH04329888A
JPH04329888A JP3099986A JP9998691A JPH04329888A JP H04329888 A JPH04329888 A JP H04329888A JP 3099986 A JP3099986 A JP 3099986A JP 9998691 A JP9998691 A JP 9998691A JP H04329888 A JPH04329888 A JP H04329888A
Authority
JP
Japan
Prior art keywords
electrode
titanium boride
materials
carbon dioxide
reductional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3099986A
Other languages
Japanese (ja)
Inventor
Seiichiro Nakabayashi
誠一郎 中林
So Kira
吉良 爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP3099986A priority Critical patent/JPH04329888A/en
Publication of JPH04329888A publication Critical patent/JPH04329888A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply and easily electrolyze hardly reductional materials requiring a high potential by using a titanium boride electrode as a cathode at the time of electrolyzing the hardly reductional materials. CONSTITUTION:The titanium boride electrode obtd. by kneading, molding and sintering titanium boride particles together with a binder is used as the cathode at the time of electrolyzing the materials particularly requiring the high potential, such as hardly reductional materials including carbon dioxide, oxygen, base metal ions, azo benzene, etc., in an aq. soln., by which the hardly reductional materials are easily electrolyzed and the conversion reaction to methanol in the case of, for example, carbon dioxide is easily effected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、硼化チタンからなる電
極及びこれを利用した水溶液中の還元性電気分解に係わ
り、特に高電位を要する難還元性の物質を、特別な触媒
毒を用いる事なく電気分解する方法に関する。
[Industrial Application Field] The present invention relates to an electrode made of titanium boride and reductive electrolysis in an aqueous solution using the same. Concerning how to perform electrolysis without any problems.

【0002】0002

【従来の技術】従来、水溶液中の高電位電気分解還元反
応の電極、特に陰極としては水銀が多く用いられてきた
。最近、より困難な反応として二酸化炭素の電気分解還
元反応が注目されているが、この目的のため、水銀も含
め30種近くの金属元素の電極について電気分解還元反
応の研究がおこなわれ、例えば銅電極がこの目的に適す
る等の報告がある(伊藤  要、「電気化学および工業
物理化学」、第58巻、第11号、948頁及び堀  
善夫、  同上、996頁)。
BACKGROUND OF THE INVENTION Conventionally, mercury has been widely used as an electrode, particularly a cathode, for high-potential electrolytic reduction reactions in aqueous solutions. Recently, the electrolytic reduction reaction of carbon dioxide has been attracting attention as a more difficult reaction.For this purpose, research has been conducted on the electrolytic reduction reaction using electrodes made of nearly 30 metal elements, including mercury. There are reports that electrodes are suitable for this purpose (Kaname Ito, "Electrochemistry and Industrial Physical Chemistry", Vol. 58, No. 11, p. 948 and Hori
Yoshio, ibid., p. 996).

【0003】金属電極は比較的低い水素過電圧を持ち、
二酸化炭素の存在しない系では、二酸化炭素の分解電圧
よりはるかに低い電極電圧で、水を分解して水素を発生
せしめる。二酸化炭素が存在する場合には、なんらかの
機構(おそらく電気分解還元により生成した一酸化炭素
の電極面への吸着)により、水素発生に対する触媒毒が
生成し、水素発生が妨げられてより高電位の電気分解反
応が可能になる。しかし、触媒毒またはその先駆体を特
別に添加しなくても、高電位の電気分解還元反応を可能
ならしめる電極があれば、極めて有益である。
Metal electrodes have relatively low hydrogen overpotentials;
In a system without carbon dioxide, water is decomposed to generate hydrogen at an electrode voltage that is much lower than the decomposition voltage of carbon dioxide. In the presence of carbon dioxide, some mechanism (probably adsorption of carbon monoxide produced by electrolytic reduction to the electrode surface) forms a catalyst poison for hydrogen evolution, preventing hydrogen evolution and forcing it to reach higher potentials. Electrolytic reactions become possible. However, it would be extremely beneficial to have an electrode that allows high potential electrolytic reduction reactions without the specific addition of catalyst poisons or their precursors.

【0004】0004

【発明が解決しようとする課題】従って本発明の目的は
、高い水素過電圧を有し、触媒毒またはその先駆体を特
別に添加しなくても、高電位の電気分解還元反応を可能
ならしめる電極、並びにそれを使用して難還元性物質を
電気分解還元する方法を提供することである。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide an electrode which has a high hydrogen overvoltage and which enables a high potential electrolytic reduction reaction without the special addition of a catalyst poison or its precursor. , and a method of electrolytically reducing a refractory substance using the same.

【0005】[0005]

【課題を解決するための手段】本発明者は上記目的を達
成するために種々検討した結果、高硬度材料として知ら
れている硼化チタンが例外的に高い水素過電圧を持つ事
を発見した。本発明はこの発見に基づいてなされたもの
である。すなわち本発明は、硼化チタンからなる電極を
提供するものである。この電極は、高電位電気分解用の
電極として有用であり、特に高電位電気分解用の陰極と
して有用である。
[Means for Solving the Problems] As a result of various studies to achieve the above object, the present inventor discovered that titanium boride, which is known as a highly hard material, has an exceptionally high hydrogen overvoltage. The present invention has been made based on this discovery. That is, the present invention provides an electrode made of titanium boride. This electrode is useful as an electrode for high potential electrolysis, and particularly useful as a cathode for high potential electrolysis.

【0006】本発明はさらに、硼化チタンからなる電極
を陰極として使用し、水溶液中の難還元性物質を電気分
解することを特徴とする難還元性物質の還元方法を提供
するものである。この際、陰極電圧としては、+0.5
〜−3.0Vが適当である。本発明方法が適用される難
還元性物質としては、二酸化炭素、酸素、卑金属イオン
(例えば、ニッケル、コバルト、スズ、カドミウム等)
、各種有機化合物(例えば、アゾベンゼン、ベンゾフェ
ノン、キノン、ニトロベンゼン等)等が挙げられる。
The present invention further provides a method for reducing a refractory substance, which comprises electrolyzing the refractory substance in an aqueous solution using an electrode made of titanium boride as a cathode. At this time, the cathode voltage is +0.5
~-3.0V is appropriate. Examples of refractory substances to which the method of the present invention is applied include carbon dioxide, oxygen, and base metal ions (e.g., nickel, cobalt, tin, cadmium, etc.)
, various organic compounds (for example, azobenzene, benzophenone, quinone, nitrobenzene, etc.).

【0007】本発明の硼化チタン電極は、硼化チタン粒
子に適当なバインダーを適当量混合し、適当な形状に成
形後、焼結することにより容易に作製することができる
。また、市販されている硼化チタン焼結体(日本鋼管製
  TiB2焼結体)も有利に使用することができる。
The titanium boride electrode of the present invention can be easily produced by mixing titanium boride particles with an appropriate amount of a suitable binder, shaping the mixture into a suitable shape, and then sintering the mixture. In addition, a commercially available titanium boride sintered body (TiB2 sintered body manufactured by Nippon Kokan Co., Ltd.) can also be advantageously used.

【0008】[0008]

【発明の効果】本発明の電極を用いることにより、非常
に簡単に高電位の還元性電気分解が可能になる。電極自
身が高い水素過電圧を持っているため、これを特定の反
応、例えば二酸化炭素のメタノールへの変換、のための
触媒などと組み合わせる場合の自由度が、非常に大きい
。また、本発明の電極は、通常の電気分解条件下で極め
て安定であり、毒性もないので環境破壊や公害発生等の
問題がない。
[Effects of the Invention] By using the electrode of the present invention, high-potential reductive electrolysis becomes possible very easily. The high hydrogen overpotential of the electrode itself provides great flexibility in combining it with catalysts for specific reactions, such as the conversion of carbon dioxide to methanol. Further, the electrode of the present invention is extremely stable under normal electrolysis conditions and is non-toxic, so there are no problems such as environmental destruction or pollution.

【0009】[0009]

【実施例】硼化チタンを陰極、銀を参照電極として1M
過塩素酸ナトリウムの水溶液に漬け、その電流・電圧特
性をサイクリック・ボルタンメトリー法で測定した。ま
ず、窒素を流した場合の電流値を測定し、次いで二酸化
炭素を加えて流した場合の電流値を測定した。それぞれ
の電位で、二酸化炭素を加えて流した場合の電流値から
窒素を流した場合の電流値を差し引き、電位と差し引い
た電流値をプロットしたのが図1である。この図から明
らかなように、−0.7V付近から電流値の増加が見ら
れ、−1.0V付近で定常値に達する。これらの事実は
、二酸化炭素が還元されたことを示すものである。これ
に対して従来の電極、例えば、プラチナ電極では−0.
6V付近から、水の分解による電流値の急峻な増加が見
られる。このことは、本発明の硼化チタン電極では、−
1.5V程度まで水の分解が事実上起こらないことを示
している。
[Example] 1M using titanium boride as a cathode and silver as a reference electrode
It was immersed in an aqueous solution of sodium perchlorate, and its current and voltage characteristics were measured using cyclic voltammetry. First, the current value when nitrogen was flowed was measured, and then the current value when carbon dioxide was added and flowed was measured. At each potential, the current value when nitrogen is flowed is subtracted from the current value when carbon dioxide is added and flowed, and the potential and the subtracted current value are plotted in FIG. As is clear from this figure, the current value increases from around -0.7V and reaches a steady value around -1.0V. These facts indicate that carbon dioxide has been reduced. In contrast, conventional electrodes, for example platinum electrodes, have a -0.
A sharp increase in current value due to water decomposition can be seen from around 6V. This means that in the titanium boride electrode of the present invention, -
This shows that virtually no water decomposition occurs up to about 1.5V.

【0010】次に二酸化炭素還元生成物について調べた
。電気分解後の気相を検知管により分析し、一酸化炭素
が生成していることを確認した。また、電気分解後の液
相を13C−NMRで分析し、ギ酸が生成していること
を確認した。結果を図2に示す。これらの事実は、二酸
化炭素が還元されたことを明確に示すものである。
Next, carbon dioxide reduction products were investigated. The gas phase after electrolysis was analyzed using a detection tube, and it was confirmed that carbon monoxide was produced. Furthermore, the liquid phase after electrolysis was analyzed by 13C-NMR, and it was confirmed that formic acid was produced. The results are shown in Figure 2. These facts clearly indicate that carbon dioxide has been reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例の電気分解セルを用いて、二酸化炭素を
流した場合の電流・電圧特性をサイクリック・ボルタン
メトリー法で測定した結果を示す図面である。
FIG. 1 is a drawing showing the results of measuring current and voltage characteristics by cyclic voltammetry when carbon dioxide is passed through an electrolytic cell according to an example.

【図2】実施例の電気分解後の液相の13C−NMRス
ペクトルを示す図面である。
FIG. 2 is a diagram showing a 13C-NMR spectrum of a liquid phase after electrolysis in an example.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】硼化チタンからなる電極。1. An electrode made of titanium boride. 【請求項2】硼化チタンからなる高電位電気分解用電極
2. A high potential electrolysis electrode made of titanium boride.
【請求項3】硼化チタンからなる高電位電気分解用陰極
3. A cathode for high potential electrolysis made of titanium boride.
【請求項4】硼化チタンからなる電極を陰極として使用
し、水溶液中の難還元性物質を電気分解することを特徴
とする難還元性物質の還元方法。
4. A method for reducing a refractory substance, which comprises electrolyzing a refractory substance in an aqueous solution using an electrode made of titanium boride as a cathode.
【請求項5】難還元性物質が二酸化炭素である請求項4
記載の方法。
Claim 5: Claim 4 wherein the refractory substance is carbon dioxide.
Method described.
JP3099986A 1991-05-01 1991-05-01 Electrode consisting of titanium boride and high-potential electrolysis utilizing this electrode Pending JPH04329888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3099986A JPH04329888A (en) 1991-05-01 1991-05-01 Electrode consisting of titanium boride and high-potential electrolysis utilizing this electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3099986A JPH04329888A (en) 1991-05-01 1991-05-01 Electrode consisting of titanium boride and high-potential electrolysis utilizing this electrode

Publications (1)

Publication Number Publication Date
JPH04329888A true JPH04329888A (en) 1992-11-18

Family

ID=14261979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3099986A Pending JPH04329888A (en) 1991-05-01 1991-05-01 Electrode consisting of titanium boride and high-potential electrolysis utilizing this electrode

Country Status (1)

Country Link
JP (1) JPH04329888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135781A1 (en) * 2010-04-26 2011-11-03 パナソニック株式会社 Method for reducing carbon dioxide
WO2012011209A1 (en) * 2010-07-23 2012-01-26 パナソニック株式会社 Method for reducing carbon dioxide
US8597488B2 (en) 2010-04-26 2013-12-03 Panasonic Corporation Method for reducing carbon dioxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135781A1 (en) * 2010-04-26 2011-11-03 パナソニック株式会社 Method for reducing carbon dioxide
US8597488B2 (en) 2010-04-26 2013-12-03 Panasonic Corporation Method for reducing carbon dioxide
WO2012011209A1 (en) * 2010-07-23 2012-01-26 パナソニック株式会社 Method for reducing carbon dioxide
JP4907748B2 (en) * 2010-07-23 2012-04-04 パナソニック株式会社 How to reduce carbon dioxide

Similar Documents

Publication Publication Date Title
Peover et al. Electrolytic reduction of oxygen in aprotic solvents: the superoxide ion
Ogumi et al. Application of the spe method to organic electrochemistry—II. Electrochemical hydrogenation of olefinic double bonds
Atwan et al. Evaluation of colloidal Os and Os-Alloys (Os–Sn, Os–Mo and Os–V) for electrocatalysis of methanol and borohydride oxidation
Qu et al. Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode
US9062382B2 (en) Electrolytic cells and methods for the production of ammonia and hydrogen
EP0004169B1 (en) Electrochemical cell with an electrode having deposited thereon an electrocatalyst; preparation of said cell
Mori et al. Aqueous electrochemistry of tellurium at glassy carbon and gold: A combined voltammetry-oscillating quartz crystal microgravimetry study
Watanabe et al. Electrocatalysis by ad-atoms: Part XXIII. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the IVth and the Vth groups
Espinoza-Montero et al. Electrochemical production of hydrogen peroxide on Boron-Doped diamond (BDD) electrode
Qian et al. Highly efficient electroreduction of CO2 to formate by nanorod@ 2D nanosheets SnO
JPS6312147B2 (en)
Chang et al. Kinetics of oxygen reduction at RuO2-coated titanium electrode in alkaline solution
EP0246957B1 (en) A method for treating organic waste material and a catalyst/cocatalyst composition useful therefor
JPH03111586A (en) Electrolytic bath for reduction of carbon dioxide
GB2081307A (en) Use of electrocatalytic anodes in photolysis
CN109534463B (en) Preparation method and application of amorphous composite electrode for electro-catalytic dechlorination
Hara et al. Electrocatalytic reduction of NO on metal electrodes and gas diffusion electrodes in an aqueous electrolyte
Puglisi et al. Electrohydrodimerization Reactions: III. Rotating Ring‐Disk Electrode, Voltammetric and Coulometric Studies of Mixed Reductive Coupling of Dimethyl Fumarate in the Presence of Cinnamonitrile and Acrylonitrile in Dimethylformamide Solution
Yin et al. Electrocatalytic oxidation of coal on Ti-supported metal oxides coupled with liquid catalysts for H2 production
McIntyre et al. Electrocatalytic properties of a nickel–tantalum–carbon alloy in an acidic electrolyte
JPH04329888A (en) Electrode consisting of titanium boride and high-potential electrolysis utilizing this electrode
Jokic et al. Simultaneous electrolytic production of xylitol and xylonic acid from xylose
Shibata et al. Reduction of nitrogen monoxide to nitrogen at gas diffusion electrodes with noble metal catalysts
US4306950A (en) Process for forming sulfuric acid
JPS62120489A (en) Indirect electrochemical reduction of carbon dioxide at ordinary temperature and pressure