JPH0432985B2 - - Google Patents

Info

Publication number
JPH0432985B2
JPH0432985B2 JP59268095A JP26809584A JPH0432985B2 JP H0432985 B2 JPH0432985 B2 JP H0432985B2 JP 59268095 A JP59268095 A JP 59268095A JP 26809584 A JP26809584 A JP 26809584A JP H0432985 B2 JPH0432985 B2 JP H0432985B2
Authority
JP
Japan
Prior art keywords
sensor
gas
hollow fiber
porous hollow
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59268095A
Other languages
Japanese (ja)
Other versions
JPS61144562A (en
Inventor
Michihiro Nakamura
Makoto Yano
Hidehiko Iketani
Kazunobu Kitano
Takehiko Okamoto
Akio Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP59268095A priority Critical patent/JPS61144562A/en
Publication of JPS61144562A publication Critical patent/JPS61144562A/en
Publication of JPH0432985B2 publication Critical patent/JPH0432985B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4925Blood measuring blood gas content, e.g. O2, CO2, HCO3

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は先端にゲート部と、他端に電極部を有
する細長状のゲート絶縁型電界効果トランジスタ
構造を有するイオンセンサー(以下ISFETとい
う)を用いたガスセンサーに関するものである。 (従来の技術) 炭酸ガス、アンモニアガスをはじめとするガス
濃度測定は工業用途において重要な事はいうまで
もないが、近年医学、生理学分野においても、生
体中のガス濃度を測定することが重要視されはじ
めている。例えば生理学においては、一細胞中の
ガス濃度の測定が重要な知見を与え、又医学にお
いては、麻酔患者や、重症患者、回復室の患者の
血中ガス濃度の継続的な測定が緊急事態の発見に
役立つている。かかる目的には細胞中、又は血管
中に挿入して用いることのできる極めて小さいガ
スセンサーが必要とされている。 上記目的には従来微小なガラス電極を用いたガ
スセンサーが提案されている。 しかしながら医学、生理学分野において使用さ
れるガスセンサーは生体内、例えば血管に挿入さ
れて使用されるため、その生体挿入部を直径2mm
以下とする必要があるが、ガラス電極はそのサイ
ズに限界があるとともにこわれ易いため取扱いが
困難である。また、ガラス膜の電極抵抗が大きく
なるため別に高入力抵抗増巾器を設ける必要があ
り、さらに電極抵抗も大きいため絶縁が難しく不
要な雑音を誘導しやすいなど実用上解決すべき多
くの問題点を有していた。 本願出願人は、従来のガラス電極を使用したガ
スセンサーの欠点を解消するため、半導体の電界
効果を利用したISFETを用いたガスセンサーを
持開昭56−2546号および特開昭57−40641号に提
案した。かかるガスセンサーはガスを吸収するこ
とによりイオン濃度(例えばPH)が変化するガス
吸収液にそのイオンに感応するISFETのゲート
部を接触させ、該ガス吸収液の外側をガス透過性
膜で被覆することにより製作することができる。
上記ガスセンサーに用いるISFETはIC技術を用
いて作製された絶縁ゲート型電界効果トランジス
タ構造を有しており、該トランジスタのゲート部
に、イオン交換物質、酵素等を含む化学選択性の
膜を形成した極めて小形なもので、この化学選択
性の膜表面における電解質との界面電位の変化を
検出して電解質中の特定イオン濃度や酵素に働く
特定物質等を測定するものである。このようなイ
オンセンサーの具体的構造に関して、本願出願人
は既に特公昭57−43863号に提案した。 かゝる公知のガスセンサーの特徴は、ゲート絶
縁型電界効果トランジスタ構造を有するイオンセ
ンサーのゲート部と比較電極とをガス吸収液を含
有する親水性ポリマーで被覆することにある。そ
の基本的な構造を第1図に示した。ゲート絶縁型
電界効果トランジスタ構造を有するイオンセンサ
ー1と比較電極2およびそれらに電極部3におい
て連結されたリード線4が管体5の中に絶縁樹脂
6によつて埋め込まれている。イオンセンサーの
ゲート部7と比較電極2の一部をガス吸収液を含
有する親水性ポリマー溶液8で被覆し、さらにそ
れらをガス透過性膜9によつて被覆してある。 (発明が解決しようとする問題点) しかし、かゝる公知のガスセンサーには次のよ
うな問題点のあることが判明した。(1)ガスセンサ
ーの特性、特に応答速度が親水性ポリマー層8の
形状や厚みによつて変動するために、一定性能の
センサーを製作するためには親水性ポリマー層の
形状や厚みを一定にする必要があるが、微量の親
水性ポリマーを定量的に一定の形状でISFETの
ゲート表面に被覆することが極めて困難である。
(2)親水性ポリマー8は流動性を有するために使用
中にセンサーが外力を受けた時、例えば第1図a
に示す形状が第1図bのように変形することがあ
る。そのために使用中にセンサーの特性が変化し
てしまう。(3)一般にイオンセンサー1は細く堅い
のに対し、ガス透過性膜9は例えば薄いシリコー
ンゴムのように脆弱なものを用いる場合が多い。
表面に脆弱な膜を被覆したガスセンサーを筋肉組
織に挿入すると筋肉組織への挿入時イオンセンサ
ーの先端でガス透過膜をつき破り、第1図cのよ
うにゲート部が露出して、ガスセンサーとしての
機能を失うことがある。 (問題点を解決するための手段) 本願出願人は、従来のガスセンサーにおけるこ
のような欠点を解消するために、鋭意研究の結
果、ガス吸収液保持体として従来のように親水性
ポリマーの溶液を用いる代りに、あらかじめ成型
された多孔性中空糸を用い、これをイオンセンサ
ーの先端部全体に被覆すればよいことを見出し本
発明に到達した。 次に本発明のガスセンサーの一実施例を図面に
て説明する。第2図は本発明のガスセンサーの基
本的な構成を示しており、第2図aにおいて、イ
オンセンサー1と比較電極2およびイオンセンサ
ーの電極部3に連結されたリード線4は管体5の
中に絶縁樹脂6により埋め込まれている。イオン
センサーのイオン感応部(ゲート部)7と比較電
極の一部は1本の多孔性中空糸8の中空部に挿入
されてこの多孔性中空糸8によつて被覆され、多
孔性中空糸および該中空糸とイオンセンサーの空
隙部はガス吸収液9によつて満たされている。該
多孔性中空糸はさらにガス透過性の均質膜10に
よつて被覆されている。第2図bにおいては比較
電極2は多孔性中空糸8の外部に設けられ、その
外側にガス透過性膜10が被覆されている。 本発明のガスセンサーに用いられる多孔性中空
糸の素材としてはポリビニルアルコール、エチレ
ン−ビニルアルコール共重合体、等の親水性ポリ
マー、ポリアクリロニトリル、ポリエチレン、ポ
リプロピレン、ポリスルフオン、ポリテトロフロ
ロエチレン等の疎水性ポリマーが用いられる。疎
水性ポリマーはガス吸収液(一般的に水溶液)の
保持体としては一見不適切の印象を与えるが、ア
ルコールやアセトン等の水溶性有機溶媒をこれら
疎水性ポリマーからなる多孔性中空糸の細孔内に
充液し、その後これらの有機溶媒を水と置換する
ことによつて、容易にガス吸収液を保持させるこ
とができる。これらの素材は化学的に安定でなけ
ればならない。ガス吸収液は一般にアルカリもし
くは酸性の溶液であるので、そのような雰囲気中
で長期間化学的に安定な素材でなければ、ガスセ
ンサーの特性が経時的に変化してしまう。多孔性
中空糸の内径としてはイオンセンサーもしくはイ
オンセンサーと比較電極にかぶせるのに適したサ
イズが好ましい。多孔性中空糸の肉厚としては10
ないし200μmが好ましい。肉厚がこれより薄く
なると中空糸の紡糸が難しく、かつ機械的強度も
小さくなるので、イオンセンサー上に中空糸をか
ぶせる作業が困難となる。肉厚が200μm以上に
なるとガスセンサーの応答が遅くなる。またセン
サー全体の外径も太くなるので生体留置に際して
侵襲度が大となる。多孔性中空糸としては限外
過あるいは精密過に用いられる膜であり、通常
精密過膜が用いられる。またこの膜はスキン層
を有する膜でも、均質膜でもよい。本発明に用い
る多孔性中空糸のポロシテイーとして20ないし80
%が好ましい。また細孔径としては0.03μmない
し5μmが好ましい。細孔容積や細孔径が上記範
囲より小さくなると、多孔性中空糸中のガスの拡
散速度が低下し、ガスセンサーの応答が遅くな
る。一方の細孔容積や細孔径が上記範囲より大き
くなると中空糸の機械的強度が低下し、中空糸自
身の紡糸や、センサーへの取り付けが難しくな
る。多孔性中空糸は少くともイオンセンサーのゲ
ート部を被覆していることが必要であるが、前述
のイオンセンサーによるガス透過膜のつき破りを
防ぐために、イオンセンサーの先端が中空糸内に
完全に収納される程度に被覆することが望まし
い。前述のように比較電極は多孔性中空糸の内側
にイオンセンサーと共に収納されてもよいし、多
孔性中空糸とガス透過膜の間に置かれてもよい。
一般的に比較電極はISFETのゲート部に近接し
ている方が誘導ノズルが小さいので前者の方が好
ましい。 (実施例) 特公昭57−43863号に記載された、ゲート部全
周が酸化ケイ素および窒化ケイ素で被覆されたPH
感応性の電界効果トランジスター(長さ5mm、巾
400μm)と銀線を塩素化して作成したAg−AgCl
比較電極をナイロンカテーテル(直径0.6mm)に
引き込み、トランジスターのPH感応部と比較電極
の先端のみを露出させてナイロンカテーテル巾に
シリコーン樹脂で固定した。 一方ポリスルフオンの多孔性中空糸を特開昭58
−91822号に記載されている方法で紡糸した。す
なわち多孔性中空糸は、微孔形成剤を含む紡糸原
液を環状ノズルより押し出した後、微孔形成剤を
抽出除去することにより成型される。従つて多孔
性中空糸の形状は環状ノズルの開口部の形状と微
孔形成剤の微粉体の粒径によつて決定される。該
中空糸の内径は325μm、外径380μmで外表面に
平均細孔1.2μmの微孔が70%の開孔率で存在し、
内表面は0.1μ以上の微孔を多数有する微細多孔構
造であつた。該中空糸を第2図aのごとくPH感応
性電界効果トランジスタと比較電極の露出部にか
ぶせ、トランジスターの先端より0.2mmほどの先
のところで中空糸をカツトした。この形のセンサ
ーの中空糸部をエチルアルコール中に浸漬し、中
空糸の細孔内にエタノールを浸み込ませた後、該
センサー中空糸部を流水中に浸漬し、細孔中のエ
チルアルコールを水と置換した。その後該センサ
ー中空糸部を0.1MのNaHCO3と0.05MのNaClを
含む水溶液中に浸漬し細孔内にNaHCO3とNaCl
を拡散させた。これに先端を封じたシリコーンゴ
ムチユーブをかぶせた。このようにして第2図a
に示したような炭酸ガスセンサーを作つた。 この炭酸ガスセンサーを犬の心臓筋組織中に留
置し2時間鼓動時の心筋中の炭酸ガス分圧をモニ
タリングした。この動物実験使用前後のセンサー
の感度と応答時間を測定した。その結果を表−1
に示した。表−1から明らかなように、本方法で
作つた炭酸ガスセンサーの感度と応答時間は心筋
運動にさらされた後でもほとんど変化していな
い。
(Industrial Application Field) The present invention relates to a gas sensor using an ion sensor (hereinafter referred to as ISFET) having an elongated gate insulated field effect transistor structure having a gate portion at one end and an electrode portion at the other end. be. (Prior art) It goes without saying that measuring the concentration of gases such as carbon dioxide and ammonia gas is important in industrial applications, but in recent years it has also become important to measure gas concentrations in living organisms in the fields of medicine and physiology. It is starting to be seen. For example, in physiology, the measurement of gas concentrations in a single cell provides important knowledge, and in medicine, continuous measurement of blood gas concentrations in anesthesia patients, critically ill patients, and patients in recovery rooms is essential in emergency situations. Helpful for discovery. For such purposes, extremely small gas sensors that can be inserted into cells or blood vessels are needed. Gas sensors using minute glass electrodes have been proposed for the above purpose. However, gas sensors used in the medical and physiological fields are inserted into a living body, for example, a blood vessel, so the diameter of the inserted part of the living body is 2 mm.
However, glass electrodes are difficult to handle because their size is limited and they are easily broken. In addition, since the electrode resistance of the glass membrane becomes large, it is necessary to separately install a high input resistance amplifier, and since the electrode resistance is also large, it is difficult to insulate and easily induces unnecessary noise.There are many problems that need to be solved in practice. It had In order to eliminate the drawbacks of conventional gas sensors using glass electrodes, the applicant has developed a gas sensor using ISFET that utilizes the field effect of semiconductors, which has been published in Japanese Patent Application Laid-open No. 56-2546 and Japanese Patent Application Laid-open No. 57-40641. proposed. In such a gas sensor, the gate part of an ISFET that is sensitive to ions is brought into contact with a gas absorption liquid whose ion concentration (for example, PH) changes as it absorbs gas, and the outside of the gas absorption liquid is covered with a gas permeable membrane. It can be manufactured by
The ISFET used in the above gas sensor has an insulated gate field effect transistor structure fabricated using IC technology, and a chemically selective film containing ion exchange substances, enzymes, etc. is formed at the gate of the transistor. It is an extremely small device that detects changes in the interfacial potential with the electrolyte on the surface of this chemoselective membrane and measures the concentration of specific ions in the electrolyte and specific substances that act on enzymes. The applicant of the present application has already proposed the specific structure of such an ion sensor in Japanese Patent Publication No. 43863/1983. A feature of such a known gas sensor is that the gate portion of the ion sensor having an insulated gate field effect transistor structure and the reference electrode are coated with a hydrophilic polymer containing a gas absorbing liquid. Its basic structure is shown in Figure 1. An ion sensor 1 having a gate insulated field effect transistor structure, a reference electrode 2, and a lead wire 4 connected to them at an electrode section 3 are embedded in a tube body 5 with an insulating resin 6. The gate part 7 of the ion sensor and a part of the reference electrode 2 are coated with a hydrophilic polymer solution 8 containing a gas absorbing liquid, and further covered with a gas permeable membrane 9. (Problems to be Solved by the Invention) However, it has been found that such known gas sensors have the following problems. (1) Since the characteristics of the gas sensor, especially the response speed, vary depending on the shape and thickness of the hydrophilic polymer layer 8, it is necessary to keep the shape and thickness of the hydrophilic polymer layer constant in order to produce a sensor with constant performance. However, it is extremely difficult to quantitatively coat the ISFET gate surface with a small amount of hydrophilic polymer in a uniform shape.
(2) Since the hydrophilic polymer 8 has fluidity, when the sensor receives external force during use, for example,
The shape shown in may be deformed as shown in FIG. 1b. Therefore, the characteristics of the sensor change during use. (3) Generally, the ion sensor 1 is thin and hard, whereas the gas permeable membrane 9 is often made of a fragile material such as thin silicone rubber.
When a gas sensor whose surface is covered with a fragile membrane is inserted into muscle tissue, the tip of the ion sensor breaks through the gas permeable membrane, exposing the gate as shown in Figure 1c, and the gas sensor may lose its function. (Means for Solving the Problems) In order to eliminate such drawbacks in conventional gas sensors, the applicant of the present application has conducted extensive research and has developed a solution of a hydrophilic polymer as a gas absorbing liquid holder, as in the past. The present invention was achieved by discovering that instead of using a porous hollow fiber formed in advance, it is sufficient to cover the entire tip of the ion sensor with the porous hollow fiber. Next, one embodiment of the gas sensor of the present invention will be described with reference to the drawings. FIG. 2 shows the basic configuration of the gas sensor of the present invention. In FIG. It is embedded in the insulating resin 6. The ion sensitive part (gate part) 7 of the ion sensor and a part of the reference electrode are inserted into the hollow part of one porous hollow fiber 8 and covered by this porous hollow fiber 8, and the porous hollow fiber and The gap between the hollow fiber and the ion sensor is filled with gas absorption liquid 9. The porous hollow fibers are further covered with a gas-permeable homogeneous membrane 10. In FIG. 2b, the reference electrode 2 is provided outside the porous hollow fiber 8, and the gas permeable membrane 10 is coated on the outside. Materials for the porous hollow fiber used in the gas sensor of the present invention include hydrophilic polymers such as polyvinyl alcohol and ethylene-vinyl alcohol copolymer, and hydrophobic polymers such as polyacrylonitrile, polyethylene, polypropylene, polysulfone, and polytetrofluoroethylene. Polymers are used. At first glance, hydrophobic polymers give the impression that they are unsuitable as carriers for gas-absorbing liquids (generally aqueous solutions); The gas-absorbing liquid can be easily retained by filling the tank with liquid and then replacing these organic solvents with water. These materials must be chemically stable. Since the gas absorption liquid is generally an alkaline or acidic solution, unless the material is chemically stable for a long period of time in such an atmosphere, the characteristics of the gas sensor will change over time. The inner diameter of the porous hollow fiber is preferably a size suitable for covering the ion sensor or the ion sensor and the reference electrode. The wall thickness of porous hollow fiber is 10
The thickness is preferably between 200 μm and 200 μm. If the wall thickness is thinner than this, spinning the hollow fiber becomes difficult and the mechanical strength also decreases, making it difficult to cover the ion sensor with the hollow fiber. When the wall thickness exceeds 200 μm, the response of the gas sensor becomes slow. Furthermore, since the outer diameter of the sensor as a whole becomes thicker, the degree of invasiveness becomes greater when indwelling the sensor in a living body. The porous hollow fibers are membranes used for ultrafiltration or precision filtration, and precision filtration membranes are usually used. Further, this film may have a skin layer or may be a homogeneous film. The porosity of the porous hollow fiber used in the present invention is 20 to 80.
% is preferred. Further, the pore diameter is preferably 0.03 μm to 5 μm. When the pore volume and pore diameter are smaller than the above ranges, the gas diffusion rate in the porous hollow fibers decreases, and the response of the gas sensor becomes slow. If the pore volume or pore diameter is larger than the above range, the mechanical strength of the hollow fiber will decrease, making it difficult to spin the hollow fiber itself or attach it to a sensor. It is necessary that the porous hollow fiber covers at least the gate part of the ion sensor, but in order to prevent the gas permeable membrane from being punctured by the ion sensor mentioned above, the tip of the ion sensor must be completely covered within the hollow fiber. It is desirable to cover it to the extent that it can be accommodated. As described above, the reference electrode may be housed inside the porous hollow fiber together with the ion sensor, or may be placed between the porous hollow fiber and the gas permeable membrane.
Generally, the former is preferable when the reference electrode is closer to the gate of the ISFET, since the induction nozzle is smaller. (Example) PH in which the entire circumference of the gate part is coated with silicon oxide and silicon nitride, described in Japanese Patent Publication No. 57-43863
Sensitive field effect transistor (length 5 mm, width
Ag-AgCl made by chlorinating silver wire (400μm)
A reference electrode was drawn into a nylon catheter (diameter 0.6 mm), and only the PH sensitive part of the transistor and the tip of the reference electrode were exposed and fixed to the width of the nylon catheter with silicone resin. On the other hand, porous hollow fibers of polysulfon were developed in JP-A-58.
-91822. That is, the porous hollow fibers are formed by extruding a spinning dope containing a pore-forming agent through an annular nozzle and then extracting and removing the pore-forming agent. Therefore, the shape of the porous hollow fiber is determined by the shape of the opening of the annular nozzle and the particle size of the fine powder of the pore-forming agent. The inner diameter of the hollow fiber is 325 μm, the outer diameter is 380 μm, and micropores with an average pore size of 1.2 μm exist on the outer surface with a porosity of 70%,
The inner surface had a microporous structure with many micropores of 0.1μ or more. The hollow fiber was placed over the exposed portions of the PH-sensitive field effect transistor and the reference electrode as shown in Figure 2a, and the hollow fiber was cut approximately 0.2 mm beyond the tip of the transistor. The hollow fiber part of this type of sensor is immersed in ethyl alcohol to allow the ethanol to penetrate into the pores of the hollow fiber, and then the hollow fiber part of the sensor is immersed in running water, and the ethyl alcohol in the pores is soaked. was replaced with water. After that, the hollow fiber part of the sensor was immersed in an aqueous solution containing 0.1M NaHCO 3 and 0.05M NaCl, and NaHCO 3 and NaCl were added into the pores.
spread. This was covered with a silicone rubber tube whose tip was sealed. In this way, Figure 2a
I made a carbon dioxide sensor like the one shown in . This carbon dioxide sensor was placed in the heart muscle tissue of a dog, and the partial pressure of carbon dioxide in the heart muscle during heartbeat was monitored for 2 hours. The sensitivity and response time of the sensor were measured before and after use in this animal experiment. Table 1 shows the results.
It was shown to. As is clear from Table 1, the sensitivity and response time of the carbon dioxide sensor made by this method hardly change even after being exposed to myocardial exercise.

【表】 比較例 実施例と同様にしてPH感応性電界効果トランジ
スターと比較電極をナイロンカテーテル中に埋め
込み、シリコーン樹脂で固定した。0.1Mの
NaHCO3と0.05MのNaClおよび10wt%のポリビ
ニルアルコールを含む水溶液をトランジスターの
PH感応部と比較電極の露出部にコートし、これに
先端を封じたシリコーンゴムチユーブをかぶせて
炭酸ガスセンサーを作つた。 この炭酸ガスセンサーを用いて実施例と同様の
犬の心筋中の炭酸ガス分圧のモニタリングを行
い、その前後の感度と応答時間を測定した。その
結果を表−2に示した。これから明らかなごと
く、ガス吸収液として親水性ポリマーの溶液を用
いた場合、心筋中にセンサーを留置する時に破損
することが多く、破損しない場合でも心筋運動に
よりセンサーの特性が変化してしまう。破損の原
因は全てトランジスターの先端によるシリコーン
ゴムチユーブのつき破りであつた。
[Table] Comparative Example A PH-sensitive field effect transistor and a reference electrode were embedded in a nylon catheter in the same manner as in the example and fixed with silicone resin. 0.1M
An aqueous solution containing NaHCO 3 and 0.05 M NaCl and 10 wt% polyvinyl alcohol was added to the transistor.
A carbon dioxide gas sensor was made by coating the exposed parts of the PH sensitive part and reference electrode, and covering this with a silicone rubber tube with a sealed tip. Using this carbon dioxide sensor, the partial pressure of carbon dioxide in the myocardium of a dog was monitored in the same manner as in the example, and the sensitivity and response time before and after monitoring were measured. The results are shown in Table-2. As is clear from this, when a hydrophilic polymer solution is used as the gas absorption liquid, it is often damaged when the sensor is placed in the myocardium, and even if it is not damaged, the characteristics of the sensor change due to myocardial movement. The cause of all damage was the tip of the transistor puncturing the silicone rubber tube.

【表】 (発明の効果) 本発明のガスセンサーは従来のガスセンサーに
比べて次のような長所を有する。(1)多孔性中空糸
は紡糸技術によつてあらかじめ製造されるので、
形状や細孔分布を一定にすることが容易である。
そのためにガスセンサーの特性のバラつきを少な
くすることができる。(2)多孔性中空糸はポリマー
溶液と違つて、流動性はなく、一定の形を永久的
に保持することができるので、センサーの特性が
外力によつて変化することが少ない。(3)多孔性中
空糸をセンサーの先端にかぶせることによつてセ
ンサーの先端でガス透過膜を破ることを抑制でき
る。このように本発明のガスセンサーは従来のガ
スセンサーの問題点の多くを解消した実用上極め
て有用なものである。
[Table] (Effects of the Invention) The gas sensor of the present invention has the following advantages over conventional gas sensors. (1) Porous hollow fibers are manufactured in advance using spinning technology, so
It is easy to keep the shape and pore distribution constant.
Therefore, variations in the characteristics of the gas sensor can be reduced. (2) Unlike polymer solutions, porous hollow fibers do not have fluidity and can maintain a fixed shape permanently, so the characteristics of the sensor are less likely to change due to external forces. (3) By covering the tip of the sensor with a porous hollow fiber, it is possible to prevent the gas permeable membrane from breaking at the tip of the sensor. As described above, the gas sensor of the present invention solves many of the problems of conventional gas sensors and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガスセンサーの断面図であり、
第2図は本発明のガスセンサーの端面図である。 1……イオン感応性電界効果トランジスター、
2……比較電極、3……電極部、4……リード
線、5……管体、6……絶縁樹脂、7……ゲート
部、8……親水性高分子溶液、9……ガス透過
膜。
Figure 1 is a cross-sectional view of a conventional gas sensor.
FIG. 2 is an end view of the gas sensor of the present invention. 1...Ion-sensitive field effect transistor,
2... Reference electrode, 3... Electrode section, 4... Lead wire, 5... Tube body, 6... Insulating resin, 7... Gate section, 8... Hydrophilic polymer solution, 9... Gas permeation film.

Claims (1)

【特許請求の範囲】[Claims] 1 先端にゲート部と他端に電極部を有する細長
状のゲート絶縁型電界効果トランジスタ構造を有
するイオンセンサーの該ゲート部に隣接して比較
電極を設け、該ゲート部もしくは該ゲート部と比
較電極をガスを吸収することによりイオン濃度が
変化する吸収液を包含する多孔性中空糸の中空部
に挿入してこの多孔性中空糸で被覆し、該多孔性
中空糸の表面をガス透過性膜で被覆したことを特
徴とするガスセンサー。
1. A comparison electrode is provided adjacent to the gate part of an ion sensor having an elongated gate insulated field effect transistor structure having a gate part at the tip and an electrode part at the other end, and the comparison electrode is provided adjacent to the gate part or the gate part and the comparison electrode. is inserted into the hollow part of a porous hollow fiber containing an absorption liquid whose ion concentration changes by absorbing gas, and covered with this porous hollow fiber, and the surface of the porous hollow fiber is covered with a gas permeable membrane. A gas sensor characterized by being coated.
JP59268095A 1984-12-18 1984-12-18 Gas sensor Granted JPS61144562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59268095A JPS61144562A (en) 1984-12-18 1984-12-18 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59268095A JPS61144562A (en) 1984-12-18 1984-12-18 Gas sensor

Publications (2)

Publication Number Publication Date
JPS61144562A JPS61144562A (en) 1986-07-02
JPH0432985B2 true JPH0432985B2 (en) 1992-06-01

Family

ID=17453818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59268095A Granted JPS61144562A (en) 1984-12-18 1984-12-18 Gas sensor

Country Status (1)

Country Link
JP (1) JPS61144562A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071150A (en) * 1996-07-03 1998-03-17 Nippon Koden Corp Biological gas sensor
US7530715B2 (en) 2006-05-31 2009-05-12 Jenn-Wei Mii Luminescent assembly with shortwave and visible light source

Also Published As

Publication number Publication date
JPS61144562A (en) 1986-07-02

Similar Documents

Publication Publication Date Title
US4568444A (en) Chemical substance measuring apparatus
US4197852A (en) Catheter electrode for electrochemical analysis
US4442841A (en) Electrode for living bodies
US8017314B2 (en) Immersion sensor for measuring the concentration of an analyte with the help of an oxidase
EP0025110B1 (en) Electrochemical measuring apparatus provided with an enzyme electrode
US10060877B2 (en) Electrochemical sensor for determining an analyte concentration
US4614577A (en) Apparatus for urea analysis
DK167716B1 (en) Microelectrode for electrochemical analysis
JPH0142688B2 (en)
US4653499A (en) Solid phase electrode
EP0592805A2 (en) Carbon sensor electrode and process for producing the same
JPH0365491B2 (en)
US4463593A (en) Apparatus for monitoring the partial pressure of gases
US5106482A (en) High speed oxygen sensor
GB1593270A (en) Ion-selective elements
EP0056178B1 (en) Electrode for living bodies
JPH0432985B2 (en)
JPH06119B2 (en) Transdermal sensor for detecting organic matter and electrolytes in sweat
JPH0138524Y2 (en)
JPH0694670A (en) Carbon sensor electrode and production thereof
JPS6248188B2 (en)
JPH0368691B2 (en)
JPS61225642A (en) Chemical substance measuring apparatus
JPH0367220B2 (en)
JPS61237048A (en) Chemical matarial measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees