JPH0432928B2 - - Google Patents

Info

Publication number
JPH0432928B2
JPH0432928B2 JP59148467A JP14846784A JPH0432928B2 JP H0432928 B2 JPH0432928 B2 JP H0432928B2 JP 59148467 A JP59148467 A JP 59148467A JP 14846784 A JP14846784 A JP 14846784A JP H0432928 B2 JPH0432928 B2 JP H0432928B2
Authority
JP
Japan
Prior art keywords
temperature
piston
air pressure
cooling water
supercharged air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59148467A
Other languages
Japanese (ja)
Other versions
JPS6128712A (en
Inventor
Takeaki Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP14846784A priority Critical patent/JPS6128712A/en
Publication of JPS6128712A publication Critical patent/JPS6128712A/en
Publication of JPH0432928B2 publication Critical patent/JPH0432928B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0493Controlling the air charge temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/044Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with movable valve members positioned between valve seats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)

Description

【発明の詳細な説明】 この発明は、過給機を備えたデイーゼル機関等
に設備されて過給機からの給気温度を制御する際
に用いて好適な過給空気の温度調整装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a supercharged air temperature regulating device installed in a diesel engine or the like equipped with a supercharger and suitable for use when controlling the temperature of air supplied from the supercharger.

過給機からの過給空気は、冷却器や加熱器を通
過して適温にされた後に、デイーゼル機関等の燃
焼室に供給されるようになつている。この場合の
冷却器や加熱器には各々低温冷却水や高温冷却水
が供給されており、これらの水量を調整すること
により、過給空気の温度を調整している。
Supercharged air from a supercharger is supplied to a combustion chamber of a diesel engine or the like after passing through a cooler or a heater and being brought to an appropriate temperature. In this case, low-temperature cooling water and high-temperature cooling water are supplied to the cooler and heater, respectively, and by adjusting the amounts of these water, the temperature of the supercharged air is adjusted.

従来はこの過給空気の温度調整をするために、
温度センサによつて過給空気の温度を検出し、こ
の温度情報に基づいて油圧サーボ式温調弁等の開
度を調整し、これにより、冷却器への通水量を制
御するという構成をとつている。
Conventionally, in order to adjust the temperature of this supercharged air,
The temperature sensor detects the temperature of the supercharged air, and based on this temperature information, the opening of the hydraulic servo temperature control valve is adjusted, thereby controlling the amount of water flowing to the cooler. It's on.

しかしながら、従来の温度調整装置において
は、部品点数が多く構成が複雑になるとともに、
価格が高く、また、メンテナンスが煩雑となる欠
点があつた。さらに、従来の温度調整装置におい
ては、デイーゼル機関の負荷と過給空気温度との
関係が、過給空気温度を検出し、一定となる様に
制御しているため、負荷に関係なく一定となる。
高負荷は過給空気温度が低く、低負荷に行くに従
つて過給空気温度が高くなるような最適関係にな
らないという問題があつた。
However, in conventional temperature adjustment devices, the number of parts is large and the configuration is complicated.
It has the drawbacks of being expensive and requiring complicated maintenance. Furthermore, in conventional temperature control devices, the relationship between the load of the diesel engine and the supercharging air temperature is constant regardless of the load because the supercharging air temperature is detected and controlled to be constant. .
There was a problem in that the supercharged air temperature was low at high loads, and the optimum relationship was not established, with the supercharged air temperature increasing as the load decreased.

この発明は上述した事情に鑑みてなされたもの
で、部品点数を少なくし、また、必要スペースを
少なくし得るとともに、価格の低廉化およびメン
テナンスの簡略化を図ることができ、しかも、デ
イーゼル機関の負荷と過給空気温度との関係を的
確に制御し最適化を図ることができる過給空気の
温度調整装置を提供することを目的としている。
This invention was made in view of the above-mentioned circumstances, and it is possible to reduce the number of parts and space required, as well as reduce costs and simplify maintenance. It is an object of the present invention to provide a temperature adjustment device for supercharging air that can accurately control and optimize the relationship between load and supercharging air temperature.

この発明は上述した問題点を解決するために過
給機からデイーゼル機関に給気される空気を冷却
する冷却器と、該冷却器に冷却水を通水する管路
と、該管路に設けられ該管路の冷却水流量を制御
する流量制御弁とを具備するものであつて、前記
流量制御弁は、一方から所定のバネ力を受け、他
方から過給空気圧を受けてこれらの力のバランス
点へ移動するピストンと、このピストンに連結さ
れた弁体と、この弁体によつて前記管路の流路断
面積が変化される制御流路とを有することを特徴
としている。
In order to solve the above-mentioned problems, the present invention provides a cooler for cooling air supplied from a supercharger to a diesel engine, a pipe line for passing cooling water to the cooler, and a pipe provided in the pipe line. and a flow control valve that controls the flow rate of cooling water in the pipe, the flow control valve receiving a predetermined spring force from one side and supercharging air pressure from the other side to control the flow rate of these forces. It is characterized by having a piston that moves to a balance point, a valve body connected to this piston, and a control passage whose flow passage cross-sectional area of the pipe is changed by this valve body.

この場合、デイーゼル機関の負荷に対応して過
給空気圧は変化するから、上記流量制御弁による
流量制御がデイーゼル機関の負荷に対応するもの
となり、これにより、デイーゼル機関の負荷と過
給空気温度との関係を最適化することができる。
In this case, since the supercharging air pressure changes in response to the load on the diesel engine, the flow rate control by the above-mentioned flow control valve corresponds to the load on the diesel engine, and thereby the load on the diesel engine and the supercharging air temperature change. relationship can be optimized.

しかも、過給空気圧によつて直接ピストンを移
動させこのピストンに連結された弁体を移動させ
て制御流路の断面積を変化させることで管路の冷
却水流量を制御することになるため、過給空気圧
を検出するためのセンサおよびこのセンサからの
情報により流量制御弁を作動させるための制御装
置等を必要とすることがない。
Moreover, the flow rate of cooling water in the pipe is controlled by directly moving the piston using supercharged air pressure and moving the valve body connected to the piston to change the cross-sectional area of the control flow path. There is no need for a sensor for detecting supercharging air pressure and a control device for operating a flow control valve based on information from this sensor.

以下、図面を参照してこの発明の実施例につい
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例の構成を示す断面
図であり、1は下部が三方弁2、上部がシリンダ
3になつている流量制御弁である。三方弁2は、
弁体7の右側上下に各々送出口5,6を、送出口
5,6の中間部左側に流入口4を構成している。
弁体7はロツド8に取り付けられており、流入口
4からの通水を各々の送出口5,6へ振り分ける
役目をしている。この弁体7は、弁座2aとの接
触面7aを流入口4付近の直径を大とし、各々の
送出口5,6付近の直径を小としたテーパによつ
て構成した二個の円錐台をつき合わせた形状とし
てある。
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention, and 1 is a flow control valve having a three-way valve 2 at the bottom and a cylinder 3 at the top. The three-way valve 2 is
Outlet ports 5 and 6 are formed on the upper and lower right sides of the valve body 7, respectively, and an inlet port 4 is formed on the left side of an intermediate portion between the outlet ports 5 and 6.
The valve body 7 is attached to the rod 8 and serves to distribute water flowing from the inlet 4 to the respective outlet ports 5 and 6. This valve body 7 has two truncated cones formed by tapering the contact surface 7a with the valve seat 2a with a larger diameter near the inlet 4 and a smaller diameter near each outlet 5 and 6. It is a shape that is made by butting together.

弁座2aと接触面7aが接触することによつて
送出5もしくは6は全閉状態となる。また、弁体
7はロツド8とともに上下動し、その位置によつ
て送出5,6への通水の分配比率が決定される。
ロツド8はシリンダ3内を上下に摺動するピスト
ン9の下面に一体として接合されており、弁ガイ
ド2bによつて横振れすることなく滑らかに上下
する。又ピストン9の上面はバネ10によつて押
圧され、このバネ10の上端はバネ押え部材11
によつて固定されている。バネ押え部材11の上
部には調整ボルト12の下端が接しており、この
調整ボルト12はシリンダ3の上端開口部を閉塞
するキヤツプ14の略中心部にあけられたネジ孔
15に螺合されている。この場合、調整ボルト1
2を回すと、バネ押え部材11が上下方向に摺動
し、これによつてピストン9に作用するバネ力が
変化する。このように、シリンダ3の上部はバネ
室15となつている。また、シリンダ3の下部は
圧力室16であり、過給空気圧を取り入れるため
の過給空気圧取入口17が設けられている。そし
て、バネ室15、圧力室16および三方弁2は、
摺動部分において通水や過給空気が漏れ込まない
ようにシール材によつてシールされている。
When the valve seat 2a and the contact surface 7a come into contact, the delivery 5 or 6 is brought into a fully closed state. Further, the valve body 7 moves up and down together with the rod 8, and the distribution ratio of water to the outlets 5 and 6 is determined by its position.
The rod 8 is integrally joined to the lower surface of the piston 9 that slides up and down within the cylinder 3, and moves up and down smoothly without lateral wobbling due to the valve guide 2b. Further, the upper surface of the piston 9 is pressed by a spring 10, and the upper end of this spring 10 is pressed by a spring pressing member 11.
It is fixed by. The lower end of an adjustment bolt 12 is in contact with the upper part of the spring holding member 11, and the adjustment bolt 12 is screwed into a screw hole 15 bored approximately at the center of a cap 14 that closes the upper end opening of the cylinder 3. There is. In this case, adjustment bolt 1
2, the spring holding member 11 slides in the vertical direction, thereby changing the spring force acting on the piston 9. In this way, the upper part of the cylinder 3 serves as a spring chamber 15. Further, the lower part of the cylinder 3 is a pressure chamber 16, and is provided with a supercharging air pressure intake port 17 for taking in supercharging air pressure. The spring chamber 15, pressure chamber 16 and three-way valve 2 are
The sliding parts are sealed with a sealing material to prevent water and supercharged air from leaking.

上述した構成において、圧力室16に過給空気
圧が取入れられると、ピストン9はロツド8の軸
線上でバネ10によるバネ力とピストン9のバネ
10と接した反対側の過給空気圧受圧面9aに作
用する過給空気圧力とバランスした位置で静止す
るから、過給空気圧が高いときはピストン9は上
方位置でバランスし、過給空気圧が低いときはピ
ストン9は下方位置でバランスする。弁体7はロ
ツド8を介してピストン9と一体構成であるた
め、送出口5,6の送出量の比は過給空気圧取入
口17から取入れられる過給空気圧に依存し、過
給空気圧が高いときは送出口6への送出量が多
く、過給空気圧が低いときは送出口5への送出量
が多くなる。
In the above-described configuration, when supercharging air pressure is taken into the pressure chamber 16, the piston 9 receives the spring force of the spring 10 on the axis of the rod 8 and the supercharging air pressure receiving pressure surface 9a of the piston 9 on the opposite side of the piston 9 that is in contact with the spring 10. Since the piston 9 stands still at a position balanced with the applied supercharging air pressure, when the supercharging air pressure is high, the piston 9 is balanced at the upper position, and when the supercharging air pressure is low, the piston 9 is balanced at the downward position. Since the valve body 7 is integrated with the piston 9 via the rod 8, the ratio of the delivery amounts of the delivery ports 5 and 6 depends on the supercharging air pressure taken in from the supercharging air pressure intake port 17, and the supercharging air pressure is higher. When the supercharging air pressure is low, the amount delivered to the delivery port 6 is large, and when the supercharging air pressure is low, the amount delivered to the delivery port 5 is large.

第2図は上述した流量制御弁1を用いて空気冷
却器への通水量制御を行う場合を示すブロツク図
であり、第1図の各部と対応する部分には同一の
符号を付してある。
FIG. 2 is a block diagram showing a case where the flow rate control valve 1 described above is used to control the amount of water flowing to the air cooler, and parts corresponding to those in FIG. 1 are given the same reference numerals. .

図において20は低温冷却水であり、流量制御
弁1の流入口4から流入した後、弁体7の位置に
よつて定まる比率で送出口5,6から送出する。
そして、送出口6から送出した低温冷却水20は
空気冷却器21内に流入して冷却を行つた後に戻
し路22に流入する。一方、送出口5から送出し
た低温冷却水20はバイパス路23を介して直接
戻し路22に流入し、冷却には寄与しない。25
は過給機であり、この過給機25からの過給空気
は空気冷却器21を介してデイーゼル機関26に
供給される。27は過給空気圧を過給空気圧取入
口17へ導く管路である。
In the figure, reference numeral 20 denotes low-temperature cooling water, which flows in from the inlet 4 of the flow control valve 1 and then is sent out from the outlets 5 and 6 at a ratio determined by the position of the valve body 7.
The low-temperature cooling water 20 sent out from the outlet 6 flows into the air cooler 21 to be cooled, and then flows into the return path 22. On the other hand, the low-temperature cooling water 20 sent out from the outlet 5 directly flows into the return path 22 via the bypass path 23 and does not contribute to cooling. 25
is a supercharger, and supercharged air from this supercharger 25 is supplied to a diesel engine 26 via an air cooler 21. Reference numeral 27 denotes a pipe line that guides the supercharging air pressure to the supercharging air pressure intake port 17.

上述した構成によれば、デイーゼル機関の負荷
が大となつて過給空気圧が高くなると、ピストン
9が上方でバランスするため、送出口6側の流出
量が比率が大となつて、冷却に寄与する低温冷却
水20の量が増し、過給空気に対する冷却効果が
増す。一方、機関負荷が小となつて過給空気圧が
低くなると、上述した場合とは逆に、冷却に寄与
しない低温冷却水20の量が増し、過給空気に対
する冷却効果が弱まる。第4図はデイーゼル機関
の負荷と過給空気温度との関係の一例を示すグラ
フであり、破線が従来の装置によるもの、実線が
この実施例によるものである。このグラフに示す
ように、この実施例によれば低負荷時における過
給空気温度が高くなつており、デイーゼル機関の
効率を向上させている。
According to the above-described configuration, when the load on the diesel engine becomes large and the supercharging air pressure increases, the piston 9 is balanced above, so the proportion of the outflow amount on the outlet port 6 side increases, contributing to cooling. The amount of low-temperature cooling water 20 to be used increases, and the cooling effect on the supercharged air increases. On the other hand, when the engine load becomes small and the supercharged air pressure decreases, contrary to the above case, the amount of low-temperature cooling water 20 that does not contribute to cooling increases, and the cooling effect on the supercharged air weakens. FIG. 4 is a graph showing an example of the relationship between the load of the diesel engine and the supercharging air temperature, in which the broken line is for the conventional device and the solid line is for this embodiment. As shown in this graph, according to this embodiment, the supercharging air temperature becomes high during low load, improving the efficiency of the diesel engine.

第3図は、流量制御弁1を用いて空気加熱器へ
の通水量制御を行う場合のブロツク図である。第
3図中で第1図および第2図とに対応する部分に
は同一の符号を付してある。この図で第2図と異
なる点は、空気冷却器21の後段に空気加熱器3
1が設けられていること、および高温冷却水30
が送出口5を介して空気加熱器31に供給される
とともに、送出口6を介してバイパス路23に供
給されることである。このような構成によると、
デイーゼル機関の負荷が大となつてピストン9が
上方でバランスすると、送出口6側の送出量の比
率が大となつて、加熱に寄与する高温冷却水の量
が減少し、過給空気に対する加熱効果が減少す
る。一方、デイーゼル機関の負荷が小となると、
上述の場合とは逆に、加熱に寄与する高温冷却水
の量が増し、過給空気に対する加熱効果が増大す
る。第5図は、この場合のデイーゼル機関の負荷
と過給空気温度の関係を示すグラフであり、破線
が従来装置によるもの、実線がこの実施例による
ものである。このグラフから判るように、第3図
に示す構成によれば、特に低負荷時において過給
空気温度が上昇しており、この領域におけるデイ
ーゼル機関の効率向上が実現されている。
FIG. 3 is a block diagram when the flow rate control valve 1 is used to control the amount of water flowing to the air heater. In FIG. 3, parts corresponding to those in FIG. 1 and FIG. 2 are given the same reference numerals. The difference between this figure and FIG. 2 is that an air heater 3 is installed after the air cooler 21.
1 and high temperature cooling water 30
is supplied to the air heater 31 via the outlet 5 and to the bypass path 23 via the outlet 6. According to such a configuration,
When the load on the diesel engine becomes large and the piston 9 is balanced upward, the ratio of the delivery amount on the delivery port 6 side becomes large, and the amount of high-temperature cooling water that contributes to heating decreases, causing heating of the supercharged air. The effect decreases. On the other hand, when the load on the diesel engine becomes small,
Contrary to the above case, the amount of high-temperature cooling water that contributes to heating increases, and the heating effect on the supercharged air increases. FIG. 5 is a graph showing the relationship between the load of the diesel engine and the supercharging air temperature in this case, where the broken line is for the conventional device and the solid line is for this embodiment. As can be seen from this graph, according to the configuration shown in FIG. 3, the supercharged air temperature rises, especially during low load, and the efficiency of the diesel engine is improved in this region.

なお、上述した実施例においては、圧力室16
に過給空気圧をそのまま導いたが、これに代え
て、例えば過給空気圧を油圧に変換し、この油圧
を圧力室16に導くように構成してもよい。
In addition, in the embodiment described above, the pressure chamber 16
Although the supercharging air pressure is introduced as is in the above, instead of this, for example, the supercharging air pressure may be converted into oil pressure and this oil pressure may be introduced to the pressure chamber 16.

また、本機構は三方弁としてばかりでなく、二
方弁としても適用できる。ただし、上述した実施
例の場合でいえば、空気冷却器21への送出口6
もしくは空気加熱器31への送出口5を二方弁の
送出口とし、バイパス23には、別途本二方弁を
設けるかもしくは絞り板をつける必要がある。
Further, this mechanism can be applied not only as a three-way valve but also as a two-way valve. However, in the case of the embodiment described above, the outlet 6 to the air cooler 21
Alternatively, the outlet 5 to the air heater 31 should be the outlet of a two-way valve, and the bypass 23 needs to be provided with a separate two-way valve or a throttle plate.

また、上述した実施例においては、調整ボルト
12を調整してバネ力を変えることによい、過給
空気圧と温度調整に寄与する通水量との関係を変
えることができ、個々のシステムに適した関係に
設定することができる。
In addition, in the above embodiment, by adjusting the adjustment bolt 12 to change the spring force, it is possible to change the relationship between the supercharging air pressure and the water flow rate that contributes to temperature adjustment, and to adjust the spring force to suit each system. Can be set in relationship.

以上説明したように、この発明によれば、デイ
ーゼル機関の負荷が大となつて過給空気圧が大と
なると過給空気温度を低下させ、逆に機関負荷が
小となつて過給空気圧が小となると過給空気温度
を上昇させることができるので、機関負荷と過給
空気温度との関係の最適化を図ることができる。
As explained above, according to the present invention, when the load on the diesel engine increases and the supercharging air pressure increases, the supercharging air temperature is lowered, and conversely, when the engine load decreases, the supercharging air pressure decreases. In this case, since the supercharged air temperature can be increased, the relationship between the engine load and the supercharged air temperature can be optimized.

しかも、過給空気圧によつて直接ピストンを移
動させこのピストンに連結された弁体を移動させ
て制御流路の断面積を変化させることで管路の冷
却水流量を制御することになるため、過給空気圧
を検出するためのセンサおよびこのセンサからの
情報により流量制御弁を作動させるための制御装
置等を必要とすることがなく、極めて簡単な構成
となつて価格の低廉化および機器配置の必要スペ
ースを少なくすることができ、メンテナンスの簡
略化をも図ることができる。その上、完全にメカ
ニカルな制御となり温度変化等に対する耐久性お
よび信頼性を向上することができる。
Moreover, the flow rate of cooling water in the pipe is controlled by directly moving the piston using supercharged air pressure and moving the valve body connected to the piston to change the cross-sectional area of the control flow path. There is no need for a sensor to detect supercharging air pressure or a control device for operating a flow rate control valve based on the information from this sensor, resulting in an extremely simple configuration that reduces costs and equipment layout. The required space can be reduced, and maintenance can also be simplified. Furthermore, the control is completely mechanical, and durability and reliability against temperature changes can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の構成を示す断面
図、第2図および第3図は各々第1図に示す流量
制御弁1を用いて過給空気の温度を制御する場合
のシステム構成を示すブロツク図、第4図および
第5図は各々第2図および第3図に示す構成で過
給空気温度調整を行つた場合のデイーゼル機関の
負荷と過給空気温度との関係を示すグラフであ
る。 1……流量制御弁、2……三方弁、3……シリ
ンダ、5,6……送出口(制御流路)、7……弁
体、9……ピストン、10……バネ、16……圧
力室。
FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention, and FIGS. 2 and 3 are system configurations in which the temperature of supercharged air is controlled using the flow control valve 1 shown in FIG. 1. Figures 4 and 5 are graphs showing the relationship between the diesel engine load and the supercharged air temperature when the supercharged air temperature is adjusted using the configurations shown in Figs. 2 and 3, respectively. It is. 1...Flow rate control valve, 2...Three-way valve, 3...Cylinder, 5, 6...Outlet port (control flow path), 7...Valve body, 9...Piston, 10...Spring, 16... pressure chamber.

Claims (1)

【特許請求の範囲】 1 過給機からデイーゼル機関に給気される空気
を冷却する冷却器と、該冷却器に冷却水を通水す
る管路と、該管路に設けられ該管路の冷却水流量
を制御する流量制御弁とを具備する過給空気の温
度調整装置において、 前記流量制御弁は、一方から所定のバネ力を受
け、他方から過給空気圧を受けてこれらの力のバ
ランス点へ移動するピストンと、このピストンに
連結された弁体と、この弁体によつて前記管路の
流路断面積が変化される制御流路とを有すること
を特徴とする過給空気の温度調整装置。
[Scope of Claims] 1. A cooler for cooling air supplied from a supercharger to a diesel engine, a pipe line for passing cooling water to the cooler, and a pipe line provided in the pipe line. In a supercharged air temperature adjustment device comprising a flow control valve that controls the flow rate of cooling water, the flow control valve receives a predetermined spring force from one side and receives supercharged air pressure from the other side to balance these forces. A supercharged air supply system characterized by having a piston that moves to a point, a valve body connected to the piston, and a control flow path in which the cross-sectional area of the pipe is changed by the valve body. Temperature control device.
JP14846784A 1984-07-17 1984-07-17 Temperature regulating device of supercharged air Granted JPS6128712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14846784A JPS6128712A (en) 1984-07-17 1984-07-17 Temperature regulating device of supercharged air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14846784A JPS6128712A (en) 1984-07-17 1984-07-17 Temperature regulating device of supercharged air

Publications (2)

Publication Number Publication Date
JPS6128712A JPS6128712A (en) 1986-02-08
JPH0432928B2 true JPH0432928B2 (en) 1992-06-01

Family

ID=15453397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14846784A Granted JPS6128712A (en) 1984-07-17 1984-07-17 Temperature regulating device of supercharged air

Country Status (1)

Country Link
JP (1) JPS6128712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048408A1 (en) * 1999-12-24 2001-07-05 Ichimaru Giken Co., Ltd. Piston valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK172262B1 (en) * 1995-10-10 1998-02-09 Man B & W Diesel Gmbh Multi-engine system with common fresh water cooling system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434115A (en) * 1977-08-19 1979-03-13 Tokico Ltd Terminal unit in oil station
JPS5435608A (en) * 1977-08-22 1979-03-15 Canadian Patents Dev Modem

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434115A (en) * 1977-08-19 1979-03-13 Tokico Ltd Terminal unit in oil station
JPS5435608A (en) * 1977-08-22 1979-03-15 Canadian Patents Dev Modem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048408A1 (en) * 1999-12-24 2001-07-05 Ichimaru Giken Co., Ltd. Piston valve

Also Published As

Publication number Publication date
JPS6128712A (en) 1986-02-08

Similar Documents

Publication Publication Date Title
US4196847A (en) Thermostatic control valve
JPH0432928B2 (en)
US4744335A (en) Servo type cooling system control
JPS6352227B2 (en)
JPH0212799B2 (en)
JPS63246463A (en) Fuel regulator
JP2001082271A (en) Pressure control valve
EP0171426A1 (en) Gaseous fuel supply and control system for an internal combustion engine
US5879594A (en) Temperature responsive pressure splitter
JPH094546A (en) Control device of auxiliary air volume of internal combustion engine
SU1715211A3 (en) Exhaust valve of internal combustion engine
FI87917B (en) STYRVENTIL FOER EN HYDRAULISK HISS
JPH0354961Y2 (en)
JPH07109206B2 (en) Liquid pressure controller
JPS6139903Y2 (en)
JPS625544Y2 (en)
JP2004500505A (en) Fuel return recirculation valve that can remove air
JPH0339602Y2 (en)
JPS6035825Y2 (en) temperature sensitive valve
JPS6215470Y2 (en)
JPS5919793Y2 (en) Engine idling speed control device
JPH0353289Y2 (en)
JPS6040826Y2 (en) Diesel engine lubricating oil temperature and cooling water temperature adjustment device
JPH06146901A (en) Intake air heating system for diesel engine
JPH1091244A (en) Air-conditioning machine equipped with flow rate controller