JPH0432899A - Pitch detector for sound signal - Google Patents

Pitch detector for sound signal

Info

Publication number
JPH0432899A
JPH0432899A JP2138237A JP13823790A JPH0432899A JP H0432899 A JPH0432899 A JP H0432899A JP 2138237 A JP2138237 A JP 2138237A JP 13823790 A JP13823790 A JP 13823790A JP H0432899 A JPH0432899 A JP H0432899A
Authority
JP
Japan
Prior art keywords
point
pitch
waveform
detected
intermediate point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2138237A
Other languages
Japanese (ja)
Other versions
JP3035982B2 (en
Inventor
Kimiyasu Mifuji
仁保 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2138237A priority Critical patent/JP3035982B2/en
Publication of JPH0432899A publication Critical patent/JPH0432899A/en
Application granted granted Critical
Publication of JP3035982B2 publication Critical patent/JP3035982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently detect an accurate reference pitch free from misdeetction by detecting the feature elements of waveforms in respective parts while successively detecting an intermediate point and an end point corresponding to the intermediate point and detecting the reference pitch of a sound signal from a fuzzy output corresponding to the detection of the feature element. CONSTITUTION:The starting point of waveform pitches of a sound signal is detected by a pitch starting point detecting means 2, the feature elements of waveforms in respective parts between the start point and an intermediate point and between the intermediate point and an end point are detected by a waveform detecting means 3 and fuzzy inference processing is developed by a fuzzy inference processing means 4 by using the feature elements of the waveforms detected by the means 3 as inputs. In this case, the feature elements of the waveforms of respective parts are detected while successively moving the intermediate point and the end point corresponding to the intermediate point and the reference pitch of the sound signal is detected by the fuzzy output of the means 4 corresponding to these feature elements. Consequently, an accurate pitch free from misdetection can be efficiently detected.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、音声圧縮などに採用される音声信号の基本周
期(ピッチ)を検出する音声信号のピッチ検出装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an audio signal pitch detection device for detecting the fundamental period (pitch) of an audio signal, which is used for audio compression and the like.

[従来の技術] 例えば、人の声をメツセージとして送配信するシステム
として音声メールが知られている。ところで、このよう
なシステムにおける音声メツセージは、メツセージの情
報量が大きいことから、音声信号を圧縮符号化して記憶
し、これを転送するようにしている。
[Prior Art] For example, voice mail is known as a system for sending and distributing a person's voice as a message. By the way, since voice messages in such systems have a large amount of information, the voice signals are compressed and encoded, stored, and then transferred.

しかして、音声信号を圧縮符号化する場合、所定区間毎
に音声信号の基本ピッチの検出を必要とすることがある
。このような場合は、区間毎に音声信号のピッチ始点を
求め、この始点を基準にして1サンプルポイントずつず
らして自己相関関係を計算により求め、この関係が最小
になる点をもってピッチを検出するような方法が考えら
れている。
Therefore, when compressing and encoding an audio signal, it may be necessary to detect the basic pitch of the audio signal every predetermined section. In such a case, find the pitch start point of the audio signal for each section, shift one sample point at a time based on this start point, calculate the autocorrelation relationship, and detect the pitch at the point where this relationship is minimum. A method is being considered.

[発明が解決しようとする課題] ところが、このように始点を基準にして各サンプルポイ
ント毎に自己相関関係を計算するのでは、演算量が膨大
となるため時間がかかり効率が悪いとともに、演算量の
割りには検出ミスが出易い傾向があった。
[Problem to be solved by the invention] However, calculating the autocorrelation for each sample point based on the starting point in this way requires a huge amount of calculation, which is time consuming and inefficient. There was a tendency for detection errors to occur.

本発明は、上記事情に鑑みてなされたもので、音声信号
の基本ピッチを正確に、しかも効率よく検出できる音声
信号のピッチ検出装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an audio signal pitch detection device that can accurately and efficiently detect the basic pitch of an audio signal.

[課題を解決するための手段] 本発明は、音声信号の波形上のピッチ始点をピッチ始点
検出手段で検出し、このピッチ始点検出手段で検出され
たピッチ始点を基準にして始点から所定距離離れた変化
点を中間点に設定するとともに始点から中間点までの距
離に基づいて終点を設定し且つ始点から中間点と中間点
から終点についてそれぞれの各部位の波形の特徴要素を
波形検出手段で検出し、この波形検出手段で検出した波
形の特徴要素を入力としてファジィ推論処理手段でファ
ジィ推論処理を展開するものであって、上記中間点と該
中間点に対応する終点を順次移動させながら上記各部位
の波形の特徴要素を検出するとともに、これら特徴要素
に応じた上記ファジィ推論処理手段のファジィ出力によ
り上記音声信号の基本ピッチを検出するようにしたもの
である。
[Means for Solving the Problems] The present invention detects a pitch start point on the waveform of an audio signal using pitch start point detection means, and detects a pitch start point at a predetermined distance from the start point based on the pitch start point detected by the pitch start point detection means. The change point is set as the intermediate point, and the end point is set based on the distance from the starting point to the intermediate point, and characteristic elements of the waveform of each part are detected from the starting point to the intermediate point and from the intermediate point to the ending point using a waveform detection means. Then, the fuzzy inference processing means develops fuzzy inference processing using the characteristic elements of the waveform detected by the waveform detection means as input, and each of the above points is sequentially moved between the intermediate point and the end point corresponding to the intermediate point. In addition to detecting the characteristic elements of the waveform of the body part, the basic pitch of the audio signal is detected based on the fuzzy output of the fuzzy inference processing means corresponding to these characteristic elements.

[作 用] この結果、本発明によれば音声信号の波形上のピッチ始
点に対して設定される中間点と終点を順次移動させなが
ら、始点から中間点と中間点から終点についてそれぞれ
検出される各部位の波形の特徴要素によりファジィ推論
を展開するようにしているので、ファジィ出力より求め
られる基本ピッチは、検出ミスのない正確なものを効率
よく得られることになる。
[Function] As a result, according to the present invention, while sequentially moving the intermediate point and end point set with respect to the pitch start point on the waveform of the audio signal, the intermediate point from the start point and the end point from the intermediate point are detected respectively. Since the fuzzy inference is developed based on the characteristic elements of the waveform of each part, the basic pitch determined from the fuzzy output can be efficiently obtained without any detection errors.

[実施例] 以下、本発明の一実施例を図面にしたかい説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は、同実施例の回路構成を示すものである。図に
おいて、1は音声信号取込み部で、二の音声信号取込み
部1は、所定長さの音声信号を取り込むようにしている
FIG. 1 shows the circuit configuration of the same embodiment. In the figure, reference numeral 1 denotes an audio signal capture unit, and the second audio signal capture unit 1 captures an audio signal of a predetermined length.

音声信号取込み部1に取り込まれた音声信号は、ピッチ
始点検出部2に送られる。このピッチ始点検出部2は、
音声信号の基本ピッチ抽出のための始点を検出する。
The audio signal captured by the audio signal capture section 1 is sent to the pitch start point detection section 2. This pitch start point detection section 2 is
Detecting a starting point for basic pitch extraction of an audio signal.

音声信号取込み部1とピッチ始点検出部2の各出力は、
波形検出部3に送られる。
The outputs of the audio signal acquisition section 1 and pitch start point detection section 2 are as follows.
The signal is sent to the waveform detection section 3.

波形検出部3は、ピッチ始点検出部2で検出されたピッ
チ始点を基準にして始点から必要最小隔離れた最初の谷
と必要最大隔離れた最後の谷を探し、最初の谷を中間点
、最後の谷を最終点に設定するとともに、始点から中間
点までの距離に等しい距離を中間点から先に取り、これ
を終点に設定する。そして、始点から中間点までと中間
点から終点までのそれぞれの区間について波形の特徴要
素である山の数、犬山の数を検出するとともに、始点と
中間点の間の最犬山の値と、始点から最犬山までの距離
を中間点から終点方向に取った所に位置する山の値を検
出し、さらに始点の谷の値と中間点の谷の値を検出する
ようにしている。ここで、犬山とは、本来LPFを通し
て小山を除いた後の山の包絡を示したものであるが、今
回は、簡略化のために谷からの高さか0〜8C+pの間
の(最大−最小)73以上のものを犬山とし、その間で
最大値を示した所を山の位置としている。
The waveform detection unit 3 searches for a first valley separated from the pitch start point detected by the pitch start point detection unit 2 by the necessary minimum distance and a last valley separated by the necessary maximum distance from the start point, and sets the first valley as the intermediate point. The last valley is set as the final point, and a distance equal to the distance from the starting point to the midpoint is taken from the midpoint first, and this is set as the final point. Then, the number of peaks and the number of dog peaks, which are characteristic elements of the waveform, are detected for each section from the start point to the middle point and from the middle point to the end point, and the value of the most dog peak between the start point and the middle point, and the starting point The value of the peak located at the distance from the middle point to the end point is detected, and the value of the valley at the starting point and the valley value at the middle point are further detected. Here, Inuyama originally indicates the envelope of the mountain after removing small mountains through LPF, but this time, for the sake of simplification, it is defined as the height from the valley or between 0 and 8C+p (maximum - minimum ) 73 or higher is considered to be an inuyama, and the location where the maximum value is reached is considered to be the mountain position.

波形検出部3の出力は、ファジィ推論に必要な入力の形
に整えられファジィ推論処理部4に送られる。このファ
ジィ推論処理部4は、プロダクション・マスタールール
として、(1)もし、始点の谷の値と第1の中間点の谷
の値が同し位なら、よく似ている。(2)もし、本部の
山の数と比較部の山の数が同じ位なら、似ている。(3
)もし、周期か長ければ、何とも言えない。(4)もし
、本部の犬山の数と比較部の犬山の数か違っていたら、
似ていない。(5)もし、本部の最大値の山と同し位置
にある比較部の山の値か違っていたら、傭でいない。か
設定されていて、これらルールにしたがってファジィ推
論を展開するようにしている。
The output of the waveform detection section 3 is arranged into the input form necessary for fuzzy inference and sent to the fuzzy inference processing section 4. The fuzzy inference processing unit 4 uses the production master rule as follows: (1) If the valley value at the starting point and the valley value at the first intermediate point are about the same, then they are very similar. (2) If the number of mountains in the headquarters and the number of mountains in the comparison section are about the same, they are similar. (3
) If the cycle is long, I can't say anything. (4) If the number of Inuyama at the headquarters is different from the number of Inuyama at the comparison department,
Does not resemble. (5) If the peak of the maximum value at the headquarters and the peak of the comparison section at the same position are different, it is not a lie. The fuzzy inference is developed according to these rules.

そして、ファジィ推論処理部4の出力は、ビソチ出力部
5に送られる。ピッチ出力部5は、ファジィ推論処理部
4の出力が最大になるときの始点から中間点までのポイ
ント数から音声信号の基本ピッチを検出し、出力するよ
うにしている。
Then, the output of the fuzzy inference processing section 4 is sent to the bisochi output section 5. The pitch output section 5 detects and outputs the basic pitch of the audio signal from the number of points from the starting point to the intermediate point when the output of the fuzzy inference processing section 4 is maximum.

次に、こように構成した実施例の動作を説明する。Next, the operation of the embodiment configured in this way will be explained.

いま、第2図(a)に示すような所定長さの音声信号が
音声信号取込み部1に取り込まれると、この音声信号は
、例えば、fs=8KHz程度の周波数でその波形上の
各ポイントをサンプリングされるようになる。
Now, when an audio signal of a predetermined length as shown in FIG. Becomes sampled.

この状態で、第3図に示すフローチャートが実行される
In this state, the flowchart shown in FIG. 3 is executed.

まず、ステップA1でピッチ始点を検出する。First, in step A1, a pitch starting point is detected.

この場合、ピッチ始点検出部2において、第2図(a)
に示すように音声信号の頭Opから79pの各ポイント
をサンプリングし、一番深い谷をピッチ抽出のためのピ
ッチ始点Sに設定する。ここで、一番深い谷を検出する
のにOpから79pまでのサンプルポイントを指定した
のは、この程度の範囲を設定すれば、一番深い谷の検出
が確実になるからである。
In this case, in the pitch start point detection section 2, as shown in FIG.
As shown in the figure, each point of 79p from the beginning Op of the audio signal is sampled, and the deepest valley is set as the pitch starting point S for pitch extraction. Here, the reason why the sample points from Op to 79p are designated to detect the deepest valley is that if this range is set, the deepest valley can be detected reliably.

次いで、ステップA2に進み、第2図(b)に示すよう
に、波形検出部3によって、ピッチ始点Sから必要最小
限の距離、例えば20p以上離れた最初の谷と、必要最
大限の距離、例えば144p以内の最後の谷を探し、最
初の谷を中間点SI。
Next, the process proceeds to step A2, and as shown in FIG. 2(b), the waveform detection unit 3 detects the first trough at the minimum necessary distance from the pitch starting point S, for example, 20p or more, and the maximum necessary distance. For example, find the last valley within 144p and use the first valley as the intermediate point SI.

最後の谷を最終点Eに設定する。この場合、最初の谷を
探すのを20p以上としたのは、20pより短いピッチ
が存在せず、また、最後の谷を探すのに144p以内と
したのは、144pより長いピッチが存在しないからで
ある。さらに、ステップA3を通ってステップA4に進
み、第2図(C)に示すように始点Sから中間点Slま
での距離に等しい距離を、中間点Slから先に取り終点
Elを設定する。
Set the last valley to the final point E. In this case, the reason we searched for the first valley was 20p or more because there was no pitch shorter than 20p, and the reason we searched for the last valley was within 144p because there was no pitch longer than 144p. It is. Further, the process proceeds through step A3 to step A4, and as shown in FIG. 2(C), a distance equal to the distance from the starting point S to the intermediate point Sl is taken from the intermediate point Sl first to set the ending point El.

そして、ステップA5に進み、始点Sから中間点Slま
でと中間点Slから終点EIまでのそれぞれの区間につ
いて山の数と犬山の数を検出する。
Then, the process proceeds to step A5, and the number of mountains and the number of dog mountains are detected for each section from the starting point S to the intermediate point Sl and from the intermediate point Sl to the ending point EI.

次いで、ステップA6に進み、始点Sと中間点Slの間
に存在する最犬山の値と、始点Sから最犬山までの距離
を中間点Slから終点EI力方向取った所に位置する山
の値を検出し、さらに始点Sの谷の値と中間点SIの谷
の値を検出する。
Next, proceed to step A6, and calculate the value of the closest mountain between the starting point S and the intermediate point Sl, and the value of the mountain located at the distance from the starting point S to the closest mountain in the force direction from the intermediate point Sl to the final point EI. , and further detect the valley value at the starting point S and the valley value at the intermediate point SI.

次いで、ステップA7に進み、波形検出部3の出力につ
いてファジィ推論のための入力となる「1」に正規化さ
れた入力を計算し、これをファジィ推論処理部4に与え
る。これにより、ステップA8で、上述したプロダクシ
ョン・マスタールールに沿ってファジィ推論処理が展開
される。この場合、始点Sと中間点Slの間を本部、中
間点Slと終点Elの間を比較部とすると、第2図(c
)に示すものの場合は、本部と比較部の山の数は等しい
が、この他の始点Sの谷の値と中間点Slの谷の値、本
部と比較部の犬山の数、本部の最大値の山と同じ位置に
ある比較部の山の値は全て相違しており、これらに応じ
たファジィ出力が得られる。なお、プロダクション・マ
スタールールに沿ったファジィ推論の処理は、周知の技
術なので、ここでの説明は省略する。
Next, the process proceeds to step A7, where an input normalized to "1", which is an input for fuzzy inference, is calculated for the output of the waveform detection section 3, and this is provided to the fuzzy inference processing section 4. As a result, in step A8, fuzzy inference processing is developed in accordance with the production master rule described above. In this case, if we assume that the area between the starting point S and the intermediate point Sl is the headquarters, and the area between the intermediate point Sl and the ending point El is the comparison area, then
), the number of peaks in the headquarters and comparison section is the same, but the value of the valley at the starting point S, the value of the valley at the intermediate point Sl, the number of peaks at the headquarters and comparison section, and the maximum value at the headquarters The values of the peaks of the comparing section located at the same position as the peaks of are all different, and fuzzy outputs corresponding to these values can be obtained. Note that fuzzy inference processing in accordance with the production master rule is a well-known technique, so a description thereof will be omitted here.

そして、ファジィ推論処理部4からの出力は、ピッチ出
力部5に送られる。ピッチ出力部5では、ステップA9
においてファジィ出力が今までで最大かを判断する。こ
こで、YESと判断すると、ステップAIOに進み、フ
ァジィ出力最大値を書替え、さらにステップAllでピ
ッチの値を書替えて、ステップA2に戻る。一方、ステ
ップA9でNOと判断した場合は、直ちにステップA2
に戻るようになる。
Then, the output from the fuzzy inference processing section 4 is sent to the pitch output section 5. In the pitch output section 5, step A9
Determine whether the fuzzy output is the maximum ever. If it is determined to be YES here, the process proceeds to step AIO, where the fuzzy output maximum value is rewritten, and further, the pitch value is rewritten in step All, and the process returns to step A2. On the other hand, if it is determined NO in step A9, immediately proceed to step A2.
will return to .

ステップA2では、第2図(d)に示すように、中間点
SIの谷の次の谷を新たな中間点SI+1として設定す
る。これにより、ステップA4でも中間点SI+1に応
じて、新たな終点EI+1が設定され、続けてステップ
A5以降の動作が実行される。この場合、ファジィ出力
が今までで最大になる場合は、ステップAIOでファジ
ィ出力最大値を書替え、ステップAllでピッチの値を
書替えるようになる。
In step A2, as shown in FIG. 2(d), the valley next to the valley of the intermediate point SI is set as a new intermediate point SI+1. As a result, a new end point EI+1 is set in step A4 according to the intermediate point SI+1, and the operations from step A5 onwards are subsequently executed. In this case, if the fuzzy output is the maximum ever, the fuzzy output maximum value is rewritten in step AIO, and the pitch value is rewritten in step All.

以下、同様にして中間点を1つの各単位で移動しながら
、上述の動作が繰り返して実行され、その後、終点E+
nが最終点Eに達すると、ステップA3でYESとなり
、ステップAI2に進む。
Thereafter, the above operation is repeated while moving the intermediate point one unit at a time, and then the end point E+
When n reaches the final point E, the answer is YES in step A3, and the process proceeds to step AI2.

ステップA12では、これまでのファジィ出力最大値に
応じたピッチの値が取り出され、これが音声信号の基本
ピッチとして出力されるようになる。
In step A12, a pitch value corresponding to the maximum fuzzy output value up to now is extracted, and this value is output as the basic pitch of the audio signal.

第2図(e)は、ファジィ出力が最大となる検出状態を
示すもので、中間点がSI+m、終点がE I 十mに
設定されている。この場合は、本部と比較部の山の数、
始点Sの谷の値と中間点SIの谷の値、本部と比較部の
犬山の数、本部の最大値の山と同じ位置にある比較部の
山の値は全て一致している。
FIG. 2(e) shows a detection state in which the fuzzy output is maximum, and the intermediate point is set at SI+m and the end point is set at E I 10 m. In this case, the number of mountains in the headquarters and comparison section,
The trough value at the starting point S and the trough value at the intermediate point SI, the number of peaks at the headquarters and the comparison section, and the value at the peak at the comparison section at the same position as the peak at the headquarters are all the same.

したがって、このようにすれば最初に検出される始点を
基準にして、始点から中間点、中間点から終点までのそ
れぞれの区間について波形の山の数、犬山の数を検出す
るとともに、始点から中間点の間の最大重の値と、始点
から最大重までの距離を中間点から終点方向に取った所
に位置する山の値を検出し、さらに始点の谷の値と中間
点の谷の値を検出し、これらの特徴要素をもってファジ
ィ推論を展開するようしており、しかも、このようなフ
ァジィ推論を、中間点を谷ごとに移動しながら実行する
ようになるので、ファジィ出力より求められる基本ピッ
チは、検出ミスのない正確なものを効率よく得られるこ
とになる。また、波形の谷で始点を決めるようにしてい
るので、他の部分との整合性があり、このために波形の
分析などが行いやすい利点もある。
Therefore, in this way, the number of peaks and dog peaks of the waveform are detected for each section from the start point to the middle point and from the middle point to the end point, based on the first detected start point, and Detect the value of the maximum weight between the points and the value of the peak located at the distance from the start point to the maximum weight from the middle point to the end point, and then calculate the value of the valley at the start point and the value of the valley at the middle point. , and develops fuzzy inference using these feature elements.Furthermore, since this kind of fuzzy inference is executed while moving the intermediate points from valley to valley, the basics required from the fuzzy output Accurate pitches without detection errors can be efficiently obtained. Furthermore, since the starting point is determined at the trough of the waveform, there is consistency with other parts, which also has the advantage of making it easier to analyze the waveform.

なお、本発明は、上記実施例にのみ限定されず、要旨を
変更しない範囲で適宜変形して実施できる。
Note that the present invention is not limited to the above-mentioned embodiments, but can be implemented with appropriate modifications within the scope without changing the gist.

例えば、上述した実施例では、ピッチ始点を検出するの
に谷を検出するようにしたが、山を検出してピッチ始点
を求めるようにしてもよい。また、始点から中間点、中
間点から終点までのそれぞれの区間で検出される特徴要
素は、−例であって、これらのうちの一部を用いてもよ
いし、これら以外の特徴要素を検出して用いるようにし
てもよい。
For example, in the above embodiment, the pitch starting point is detected by detecting the valley, but the pitch starting point may be determined by detecting the peak. In addition, the feature elements detected in each section from the start point to the middle point and from the middle point to the end point are - examples, and some of these may be used, or feature elements other than these may be detected. It may also be used as

また、ピッチ始点も必ずしも最大重や近傍の谷でなくと
もよい、その場合は、前述のルール(1)を「本部最深
谷の値と比較部で同じくらいの所にある谷の値が同じく
らいなら似ている」とすればよい。
In addition, the pitch starting point does not necessarily have to be the maximum depth or a nearby valley. If so, you can say, ``They are similar.''

[発明の効果] 本発明は、音声信号の波形上のピッチ始点をピッチ始点
検出手段で検出し、このピッチ始点検出手段で検出され
たピッチ始点を基準にして始点から所定距離離れた変化
点を中間点に設定するとともに始点から中間点までの距
離に基づいて終点を設定し且つ始点から中間点と中間点
から終点についてそれぞれの各部位の波形の特徴要素を
波形検出手段で検出し、この波形検出手段で検出した波
形の特徴要素を入力としてファジィ推論処理手段でファ
ジィ推論処理を展開するようなものであって、上記中間
点と該中間点に対応する終点を順次移動させながら上記
各部位の波形の特徴要素を検出するとともに、これら特
徴要素に応じた上記ファジィ推論処理手段のファジィ出
力により上記音声信号の基本ピッチを検出するようにし
たものであるから、音声信号の波形上のピッチ始点に対
して設定される中間点と終点を順次移動させながら、始
点から中間点と中間点から終点についてそれぞれ検出さ
れる各部位の波形の特徴要素によりファジィ推論を展開
するようにでき、ファジィ出力より求められる基本ピッ
チは、検出ミスのない正確なものを効率よく得られるこ
とになる。
[Effects of the Invention] The present invention detects a pitch start point on the waveform of an audio signal using a pitch start point detection means, and detects a change point a predetermined distance away from the start point based on the pitch start point detected by the pitch start point detection means. At the same time, the end point is set based on the distance from the start point to the midpoint, and the waveform detecting means detects characteristic elements of the waveform of each part from the start point to the midpoint and from the midpoint to the end point. The fuzzy inference processing means uses the characteristic elements of the waveform detected by the detection means as input to develop fuzzy inference processing, and the intermediate point and the end point corresponding to the intermediate point are sequentially moved while each of the above parts is In addition to detecting the characteristic elements of the waveform, the basic pitch of the audio signal is detected by the fuzzy output of the fuzzy inference processing means according to these characteristic elements, so that the pitch starting point on the waveform of the audio signal is While sequentially moving the intermediate point and end point set for the target, fuzzy inference can be developed based on the characteristic elements of the waveform of each region detected from the starting point to the intermediate point and from the intermediate point to the end point, and the fuzzy inference can be This means that accurate basic pitches without detection errors can be efficiently obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の回路構成を示すブロック
図、第2図は、同実施例の動作を説明するための波形図
、第3図は、同実施例の動作を説明するためのフローチ
ャートである。 1・・・音声信号取込み部、2・・・ピッチ始点検出部
、3・・・波形検出部、4・・・ファジィ推論処理部、
5・・・ピッチ出力部。 出願人代理人 弁理士 鈴江武彦 第 図
FIG. 1 is a block diagram showing the circuit configuration of an embodiment of the present invention, FIG. 2 is a waveform diagram for explaining the operation of the embodiment, and FIG. 3 is a diagram for explaining the operation of the embodiment. This is a flowchart for 1... Audio signal capture unit, 2... Pitch start point detection unit, 3... Waveform detection unit, 4... Fuzzy inference processing unit,
5...Pitch output section. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 音声信号の波形上のピッチ始点を検出するピッチ始点検
出手段と、このピッチ始点検出手段で検出されたピッチ
始点を基準にして始点から所定距離離れた変化点を中間
点に設定するとともに始点から中間点までの距離に基づ
いて終点を設定し且つ始点から中間点と中間点から終点
についてそれぞれの各部位の波形の特徴要素を検出する
波形検出手段と、この波形検出手段で検出された波形の
特徴要素を入力としてファジィ推論処理を展開するファ
ジィ推論処理手段とを具備し、上記中間点と該中間点に
対応する終点を順次移動させながら上記各部位の波形の
特徴要素を検出するとともに、これら特徴要素に応じた
上記ファジィ推論処理手段のファジィ出力により上記音
声信号の基本ピッチを検出することを特徴とする音声信
号のピッチ検出装置。
Pitch start point detection means for detecting a pitch start point on a waveform of an audio signal; and a pitch start point detection means for detecting a pitch start point on a waveform of an audio signal; Waveform detection means for setting an end point based on the distance to the point and detecting characteristic elements of the waveform of each part from the start point to the intermediate point and from the intermediate point to the end point, and the characteristics of the waveform detected by the waveform detection means fuzzy inference processing means that develops fuzzy inference processing using elements as input; detects characteristic elements of the waveform of each region while sequentially moving the intermediate point and the end point corresponding to the intermediate point; A pitch detection device for an audio signal, characterized in that the basic pitch of the audio signal is detected by the fuzzy output of the fuzzy inference processing means according to the element.
JP2138237A 1990-05-30 1990-05-30 Pitch detection device for audio signal Expired - Lifetime JP3035982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2138237A JP3035982B2 (en) 1990-05-30 1990-05-30 Pitch detection device for audio signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2138237A JP3035982B2 (en) 1990-05-30 1990-05-30 Pitch detection device for audio signal

Publications (2)

Publication Number Publication Date
JPH0432899A true JPH0432899A (en) 1992-02-04
JP3035982B2 JP3035982B2 (en) 2000-04-24

Family

ID=15217286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2138237A Expired - Lifetime JP3035982B2 (en) 1990-05-30 1990-05-30 Pitch detection device for audio signal

Country Status (1)

Country Link
JP (1) JP3035982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681671A (en) * 2020-05-20 2020-09-18 浙江大华技术股份有限公司 Abnormal sound identification method and device and computer storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681671A (en) * 2020-05-20 2020-09-18 浙江大华技术股份有限公司 Abnormal sound identification method and device and computer storage medium
CN111681671B (en) * 2020-05-20 2023-03-10 浙江大华技术股份有限公司 Abnormal sound identification method and device and computer storage medium

Also Published As

Publication number Publication date
JP3035982B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
US4718097A (en) Method and apparatus for determining the endpoints of a speech utterance
US5295223A (en) Voice/voice band data discrimination apparatus
US5257309A (en) Dual tone multifrequency signal detection and identification methods and apparatus
US4086567A (en) Handwriting verification system using landmarks
GB1439035A (en) Method and apparatus for detecting the presence of signal - components of pre-determined frequency in a multi-frequency signal
US4768519A (en) Blood pressure measurement apparatus
US4190820A (en) Signal train verification system using landmarks
JPH0432899A (en) Pitch detector for sound signal
US5237512A (en) Signal recognition and classification for identifying a fire
CN115529475A (en) Method and system for detecting video flow content and controlling wind
JPH0425898A (en) Voice compression and storage device
JPS5984300A (en) Voice section detecting circuit
JP2574234B2 (en) Pitch extraction method
JPS62141595A (en) Voice detection system
JPS6126080B2 (en)
JP2507570B2 (en) Electronic exchange
JPS63259596A (en) Voice section detecting system
SU1075258A1 (en) Device for determining extremum points in continuous signal produced by generator
JPS6133583A (en) Character segmentation device
EP0275327B1 (en) Voice recognition
JPS61185800A (en) Voice pitch extractor
JPS63144631A (en) Synchronizing equipment
KR960006678A (en) Error detection method
JPS58169295A (en) Segment extracting circuit
JPH0574870B2 (en)