JPH0432861B2 - - Google Patents

Info

Publication number
JPH0432861B2
JPH0432861B2 JP59070657A JP7065784A JPH0432861B2 JP H0432861 B2 JPH0432861 B2 JP H0432861B2 JP 59070657 A JP59070657 A JP 59070657A JP 7065784 A JP7065784 A JP 7065784A JP H0432861 B2 JPH0432861 B2 JP H0432861B2
Authority
JP
Japan
Prior art keywords
propylene
ethylene
weight
block
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59070657A
Other languages
Japanese (ja)
Other versions
JPS60215048A (en
Inventor
Masayuki Fujii
Yoshiharu Yamamoto
Kazuhiro Fujiwara
Kazumasa Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP7065784A priority Critical patent/JPS60215048A/en
Publication of JPS60215048A publication Critical patent/JPS60215048A/en
Publication of JPH0432861B2 publication Critical patent/JPH0432861B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、透明性、剛性、耐衝撃性および耐応
力白化に優れたポリプロピレン樹脂組成物に関す
る。 ポリプロピレン樹脂は、その優れた剛性、加工
性、耐熱性、機械的特性等により種々の成形品に
適用されている。しかるにポリプロピレン樹脂は
結晶性が高いために透明性が悪く、また耐衝撃性
にも乏しいので、透明性、剛性、耐衝撃性のすべ
てが必要とされる用途には進出することが困難で
あつた。 そこで、透明性を改良する為に、プロピレンを
少量のエチレン、ブテン−1、ヘキセン−1等の
α−オレフイン類とランダム共重合させる方法が
とられたが、これらは或る程度の透明性の改良効
果は認められるものの、十分といいえる程度とは
謂難かつた。また、耐衝撃性も或る程度は改良さ
れたが、剛性の低下が著しく、かつ透明性及び耐
衝撃性の改良程度を高める程商品価値の乏しい無
定形ポリマーの副生量が増すためにかかるランダ
ム共重合体の製造が急激に困難となる問題があつ
た。 また、添加剤配合の面からは、プロピレン単独
重合体にジベンジリデンソルビトールまたはビス
(アルキルベンジリデン)ソルビトールを配合す
ることにより、透明性と剛性とを同時に改良しう
ることが知られているが、このものの耐衝撃性は
配合前のプロピレン単独重合体に較べてむしろ低
下する傾向があつた。 さらに、プロピレン系ランダム共重合体は、例
えば、シート成形されたあと、切り出しや折り曲
げ加工により箱等の容器とされるが、その際、製
箱機での衝撃力による折り曲げ時に、その衝撃に
耐える材料とするために、プロピレンと少量のエ
チレンとのランダム共重合体樹脂にその透明性を
極力損なわない範囲でエチレン・プロピレン系共
重合ゴムを添加した材料を用いていたが、この方
法では、該共重合樹脂と該ゴムが相溶性に欠ける
為、両者が不均一であるモルフオロジーを形成
し、耐衝撃性の向上とは裏腹に著しい応力白化を
起こす原因ともなつていた。この欠点は、商品価
値を著しく損なうものであり、是非とも解決しな
ければならない問題点であつた。 斯る状況に鑑み、本発明者らは鋭意研究を重ね
た結果、特定の構造をもつプロピレンブロツク共
重合体に特定の添加剤を配合することにより、透
明性と剛性と耐衝撃性に優れ、かつ応力が加わつ
た際に発生する白化の抑制されたポリプロピレン
樹脂組成物が得られることを見出して本発明を為
すに至つた。 即ち、本発明は、プロピレン単独重合体ブロツ
ク15〜85重量部およびエチレン含量2〜15重量%
のプロピレン・エチレンランダム共重合体ブロツ
ク85〜15重量部より成り、かつ、メルトフローレ
ート(MFR)が0.1〜100g/10分であるプロピ
レン系ブロツク共重合体100重量部に、下記式
〔〕の化合物0.05〜0.5重量部からなることを特
徴とするポリプロピレン樹脂組成物である。 (Rは炭素数1〜5のアルキル基、アルコキシ
基、ハロゲン原子または水酸基;mとnは0〜3
の整数;Rは同一化合物中異なつていてもよく、
mとnは同一化合物中同じでもよい。) 本発明で用いるプロピレン系ブロツク共重合体
は、プロピレン単独重合体ブロツク15〜85重量部
およびエチレン含量2〜15重量%(好ましくは
2.5〜13重量%、更に好ましくは3〜10重量%)
のプロピレン・エチレンランダム共重合体ブロツ
ク85〜15重量部からなるもので、かつ、MFRが
0.1〜100g/10分のものが適する。プロピレン単
独重合体ブロツクとプロピレン・エチレンランダ
ム共重合体ブロツクの割合は所望の物性をバラン
スによつて広範囲の選択が可能であるが、一般的
には剛性重視の物性バランスを得るためにはプロ
ピレン単独重合体ブロツクの割合を高く、耐衝撃
性重視の物性バランスを指向する場合にはプロピ
レン・エチレンランダム共重合体ブロツクの割合
を高く、それぞれ設定することができる。前記割
合の範囲をいずれの側に逸脱しても、剛性と耐衝
撃性のバランスは崩れる。 プロピレン単独重合体ブロツクとプロピレン・
エチレンランダム共重合体ブロツクの割合を一定
に保つ場合、ランダム共重合体ブロツク中のエチ
レン含量を高めることにより、ブロツク共重合体
の剛性は殆んど低下させることなく耐衝撃性を著
しく向上させることが可能である。しかし、これ
と並行して透明性と耐応力白化が低下することが
判明した。しかし、エチレン含量が前記の範囲に
入つている限りにおいては、後記する如く、特定
の添加剤を配合することによつて、一度高められ
た耐衝撃性を殆んど低下させることなく透明性と
耐応力白化を大巾に改善することが可能である。 更に好都合なことに、剛性も同時に若干向上す
る。 エチレン含量が前記範囲を上廻る場合には、特
定の添加剤配合によつても回復不可能な程度に透
明性は悪化するばかりでなく、ブロツク共重合体
製造時に副生する無定形ポリマーの量が急激に増
大して生産性を悪化させる。 かかるブロツク共重合体は、一般にプロピレン
単独重合体またはプロピレンとエチレンとのラン
ダムまたはブロツク共重合体の製造技術をそのま
ま適用して製造される。即ち、不活性溶媒の存在
または非存在下、チーグラー型の立体特異性重合
触媒を用いて、プロピレン単独重合工程とプロピ
レン・エチレンランダム重合工程を含む多段重合
方式により製造される。分子量は水素により制御
される。チーグラー型立体特異性重合触媒として
は、各種の三塩化チタンまたは塩化マグネシウム
担体チタン含有触媒とジエチルアルミニウムクロ
ライド、トリエチルアルミニウム等の有機アルミ
ニウム化合物とを主成分とする触媒系が好適に使
用しうる。 本発明のブロツク共重合体を構成成分とする組
成物は、該ブロツク共重合体の代りにプロピレン
単独重合体とプロピレン・エチレンランダム共重
合体の機械的ブレンド物を用いて得られる組成物
に対して、物性面ならびに経済性の面で次の様な
優位性をもつ。 一般にチーグラー型立体特異性触媒を用いてプ
ロピレン・エチレンランダム共重合体を製造する
場合、結晶性を保持した共重合体粒子と同時に無
定形のゴム状共重合体が副生するが、このゴム状
共重合体の副生量は共重合体中のエチレン含量が
高まると急激に増大する傾向があるため、プロセ
スの安定運転ならびに経済生の制約のために、共
重合体中のエチレン含量は工学的には5重量%程
度が上限と考えられる。しかるに、2段重合法に
よつて、プロピレン単独重合体ブロツクを製造し
たあと引き続きプロピレン・エチレンランダム共
重合体ブロツクを製造する場合には、驚くべきこ
とにランダム共重合体ブロツク中のエチレン含量
を15重量%程度迄高めてもゴム状共重合体の副生
量は許容範囲内にあることがわかつた。このこと
は、ブレンド法では工業的に実現不可能なポリマ
ー構造が、ブロツク共重合法により初めて実現可
能となることを意味し、このことが最終組成物の
物性バランスの向上に如何に寄与するかは、これ
迄の説明によつて容易に理解しうるところであ
る。 このようにして得たプロピレン系ブロツク共重
合体のMFRが0.1g/10分未満のものでは、成形
性が著しく困難となり、一方、100g/10分超過
では機械的強度の点で好ましくない。 なお、MFRは、230℃および2.16Kg荷重の条件
で測定した値である。 また、本発明で用いるジベンジリデンソルビト
ールまたはビス(置換ベンジリデン)ソルビトー
ルは、一般式 (Rは炭素数1〜5のアルキル基、アルコキシ
基、ハロゲン原子または水酸基;mとnは0〜3
の整数;Rは同一化合物中異なつていてもよく、
mとnは同一化合物中同じでもよい。) で表わされる化合物である。具体的には、例え
ば、ジベンジリデンソルビトール、1,3,2,
4−ジ(p−メチルベンジリデン)ソルビトール
1,3,2,4−ジ(p−クロルベンジリデン)
ソルビトール1,3,2,4−ジ(p−メトキシ
ベンジリデン)ソルビトールなどが挙げられる。 この化合物は、上記プロピレン系ブロツク共重
合体100重量部に対して0.05〜0.5重量部、好まし
くは0.1〜0.3重量部配合される。0.05重量部未満
では透明性や耐応力白化の改良効果が殆んど見ら
れず、0.5重量部超過ではブリードの問題の外、
経済性も好ましくない。 なお、本発明の組成物には、発明の効果を損な
わない範囲で、適宜各種の添加剤を配合すること
ができる。具体的には、酸化防止剤、光安定剤、
紫外線吸収剤、核剤、帯電防止剤、顔料、顔料分
散剤、滑剤、中和剤、酸捕促剤等があげられる。 特に酸化防止剤は、造粒及び成形加工安定性を
保つ上で添加することが好ましく、又金属石ケン
類及びハイドロタルサイト類等の中和又は塩酸捕
促剤は、本特許の効果を発現する上でより好まし
いものである。 実施例 1 撹拌翼を備えた内容積200のステンレス鋼製
反応器内をプロピレンガスで十分置換したのち、
重合溶媒としてヘプタン80を入れた。器内温度
を50℃に保ち、触媒としてジエチルアルミニウム
クロライド(DEAC)50gおよび三塩化チタン
(丸紅ソルベイ化学社製TMB−07)10gを加え
た。続いてプロピレンを5.83Kg/時の速度で15分
間供給した。尚、この間水素を気相部濃度が2.0
体積%となるよう供給した。次に器内温度を60℃
に上げると共に、水素濃度を3.5体積%とし、プ
ロピレンは引続き5.83Kg/時の速度のまま185分
間にわたつて供給した。この間のプロピレンの総
供給量は18.0Kgであつた(以上プロピレン単独重
合体ブロツク)。 器内温度、水素濃度およびプロピレン供給速度
を維持したまま、新たにエチレンを0.333Kg/時
の速度で供給し、プロピンレンとエチレンをそれ
ぞれ175分間にわたつて供給した。この間のプロ
ピレンおよびエチレンの総供給量は17.0Kgおよび
0.97Kgであつた。この時点で器内圧力は3.9Kg/
cm2(ゲージ圧)であつたがこの時点でプロピレン
ならびに水素の供給は停止し、エチレンは0.233
Kg/時の速度で供給しつつ30分間かけて器内圧力
を2.0Kg/cm2(ゲージ圧)まで下げ、反応を終え
た。この間のエチレンの総供給量は0.12Kgであつ
た(以上プロピレン・エチレンランダム共重合体
ブロツク)。 得られたブロツク共重合体にブタノールを1.1
添加し、68℃にて3時間かけて触媒を分解した
のち、水洗により触媒を除去した。更に遠心分離
と乾燥工程を経て製品共重合体32.0Kgを得た。 また重合溶剤に可溶化して副生した無定形共重
合体は1.12Kgであつた。 ブロツク共重合体中に占めるプロピレン単独重
合体ブロツクとプロピレン−エチレンランダム共
重合体ブロツクの割合は未反応モノマー量及び副
生無定形ポリマー量をモノマーの総供給量から差
引いた残りを、それぞれの共重合体ブロツクを製
造するために供給したモノマー量の比に割り振つ
て算出した。またプロピレン・エチレンランダム
共重合体ブロツク部分のエチレン含量は、上で算
出した両ブロツクの割合と、製品ブロツク共重合
体中のエチレン含量とから算出した。 斯くして得られたブロツク共重合体100重量部
に対し、テトラキス〔メチレン(3,5−ジ−t
−ブチル−4−ヒドロキシヒドロシンナメート)〕
ブタン(酸化防止剤)0.1重量部、ステアリン酸
カルシウム(中和剤)0.1重量部および1,3,
2,4−ジベンジリデンソルビトール−0.1重量
部を添加して混合し、260℃で造粒した。 このブロツク共重合体組成物ペレツトを、硬質
クロムメツキ加工を施した鉄板ではさみ、230℃
の熱板プレス成形機にてプレス成形し、30℃の冷
却プレス成形機にて冷却固化したのち取り出して
厚さ1mmおよび2mmのシートを製造した。 これら各シートについて、厚さ1mmのシートを
使用して霞み度(ASTM−D1003に準処)およ
び耐応力白化を測定し、厚さ2mmのシートを使用
して曲げ弾性率(ASTM−D747に準処)および
シヤルピー衝撃強度(JIS−K7111に準処)を測
定した。結果は第1表の通り。 なお、耐応力白化の測定は、デユポン衝撃試験
機(東洋精機製作所製)にて、荷重300gを高さ
5、10、20、30および40各cmの高さから落下させ
てシートに衝撃応力を与えたのち、シートの白化
状態を目視にて評価した。評価は、各高さの落下
衝撃で全て白化が見られたものを5級、全く白化
が認められなかつたものを0級として行なつた。 実施例 2〜4 1,3,2,4−ジベンジリデンソルビトール
の代りに1,3,2,4−ジ(パラメチルベンジ
リデン)ソルビトール、1,3,2,4−ジ(パ
ラクロールベンジリデン)ソルビトールまたは
1,3,2,4−ジ(パラメトキシベンジリデ
ン)ソルビトールを夫々用いたこと以外は、実施
例1と同様の方法でブロツク共重合体の製造なら
びにシート成形を行なつた。その評価結果を第1
表に示す。 実施例 5 重合器内の温度が60℃に達してからのプロピレ
ン単独重合体ブロツク製造段階におけるプロピレ
ンの供給時間を250分(従つて、プロピレンの総
供給量を24.3Kg)、またこの間の気相部の水素濃
度を4.2体積%としたこと、プロピレン・エチレ
ンランダム共重合体ブロツク製造段階におけるエ
チレンの供給速度を0.530Kg/時、プロピレンと
エチレンを同時に供給する間の供給時間を110分
(従つて、この間のプロピレンとエチレンの総供
給量を夫々10.7Kgおよび0.97Kg)、またプロピレ
ンの供給停止後のエチレン供給速度ならびに時間
を夫々0.675Kg/時および22分(従つて、この間
のエチレンの総供給量を0.248Kg)としたこと以
外は、実施例1と同様の方法でブロツク共重合体
を製造した。また得られたブロツク共重合体を用
いて実施例1と同様の条件でシートを成形して評
価した。結果は第1表通り。 比較例 1および2 実施例1および5のブロツク共重合体を用い
て、添加剤の1,3,2,4−ジベンジリデンソ
ルビトールを加えないこと以外は、実施例1およ
び5と同様の方法で夫々シートを成形し評価し
た。結果を第1表に示す。 比較例 3 重合器内の温度が60℃に達したところで更にプ
ロピレンの単独重合を行なうことなく、直ちにプ
ロピレンとエチレンのランダム共重合段階に移行
したこと、および該ランダム共重合段階における
プロピレンとエチレンの同時供給時間を360分間
とし、この間の水素濃度を3.0体積%、エチレン
供給速度を0.186Kg/時に変更した(従つて、こ
の間のプロピレンおよびエチレンの総供給量を
夫々35.0Kgおよび1.12Kgとした)こと、またプロ
ピレンの供給を停止してからのエチレンの供給速
度、供給時間および総供給量を夫々0.130Kg/時、
36分間および0.078Kgとしたこと以外は、実施例
1と同様の方法でブロツク共重合体を製造した。
このブロツク共重合体を用いて実施例1と同様の
方法でシート成形し評価した。 結果を第1表に示す。 比較例 4 ランダム共重合段階におけるエチレンの供給速
度を、プロピレンとエチレンとを同時供給する間
については0.350Kg/時とし、プロピレンの供給
停止後については0.245Kg/時としたこと、また
エチレンの供給時間を、プロピレンとエチレンを
同時供給する間については比較例3と同じ(従つ
て、この間のエチレン総供給量を2.10Kg)とし、
プロピレンの供給停止後については28分とした
(従つて、この間のエチレンの総供給量を0.114Kg
とした)こと以外は比較例3と同様の方法でブロ
ツク共重合体を製造した。 また、このブロツク共重合体を用いて実施例1
と同様の方法でシート成形し評価した。結果を第
1表に示す。 比較例 5 比較例3で用いたブロツク共重合体100重量部
に、ムーニー粘度70、プロピレン含量27重量%の
エチレン・プロピレン共重合体ゴムを5重量部添
加した以外は実施例1と同様にしてシート成形し
評価した。結果を第1表に示す。 比較例 6 比較例5において、ゴムを添加しないブロツク
共重合体について同様に評価した。結果は第1表
の通り。
The present invention relates to a polypropylene resin composition that has excellent transparency, rigidity, impact resistance, and stress whitening resistance. Polypropylene resin is used in various molded products due to its excellent rigidity, processability, heat resistance, mechanical properties, etc. However, polypropylene resin has poor transparency due to its high crystallinity and poor impact resistance, making it difficult to use it in applications that require all of transparency, rigidity, and impact resistance. . Therefore, in order to improve transparency, a method was adopted in which propylene was randomly copolymerized with a small amount of α-olefins such as ethylene, butene-1, hexene-1, etc., but these methods had a certain degree of transparency. Although the improvement effect was recognized, it could hardly be called sufficient. In addition, although the impact resistance has been improved to some extent, the decrease in rigidity is significant, and as the degree of improvement in transparency and impact resistance is increased, the amount of by-product of amorphous polymers with poor commercial value increases. There was a problem in which the production of random copolymers suddenly became difficult. In addition, from the perspective of additive formulation, it is known that transparency and rigidity can be simultaneously improved by incorporating dibenzylidene sorbitol or bis(alkylbenzylidene) sorbitol into propylene homopolymer. The impact resistance of the product tended to be lower than that of the propylene homopolymer before blending. Furthermore, propylene-based random copolymers, for example, are formed into sheets and then cut out or bent to make containers such as boxes, but at that time, they withstand the impact of bending due to the impact force of a box-making machine. In order to make the material, a material was used in which ethylene-propylene copolymer rubber was added to a random copolymer resin of propylene and a small amount of ethylene to the extent that the transparency was not impaired as much as possible. Since the copolymer resin and the rubber lack compatibility, the two form a non-uniform morphology, which, despite improving impact resistance, also causes significant stress whitening. This drawback significantly impairs the commercial value and is a problem that must be solved. In view of this situation, the present inventors have conducted intensive research and have found that by blending specific additives into a propylene block copolymer with a specific structure, a product with excellent transparency, rigidity, and impact resistance can be obtained. The present inventors have also discovered that a polypropylene resin composition can be obtained in which whitening that occurs when stress is applied is suppressed, and the present invention has been completed. That is, the present invention uses a propylene homopolymer block of 15 to 85 parts by weight and an ethylene content of 2 to 15% by weight.
To 100 parts by weight of a propylene block copolymer consisting of 85 to 15 parts by weight of a propylene/ethylene random copolymer block and having a melt flow rate (MFR) of 0.1 to 100 g/10 minutes, the following formula [] was added. This is a polypropylene resin composition characterized by comprising 0.05 to 0.5 parts by weight of a compound. (R is an alkyl group having 1 to 5 carbon atoms, an alkoxy group, a halogen atom, or a hydroxyl group; m and n are 0 to 3
an integer; R may be different in the same compound,
m and n may be the same in the same compound. ) The propylene block copolymer used in the present invention has a propylene homopolymer block of 15 to 85 parts by weight and an ethylene content of 2 to 15% by weight (preferably
2.5-13% by weight, more preferably 3-10% by weight)
It consists of 85 to 15 parts by weight of a propylene/ethylene random copolymer block, and has an MFR of
0.1-100g/10 minutes is suitable. The proportion of the propylene homopolymer block and the propylene/ethylene random copolymer block can be selected from a wide range depending on the balance of desired physical properties, but in general, propylene alone is the most suitable for achieving a balance of physical properties that emphasizes rigidity. If the proportion of the polymer block is high and the physical property balance with emphasis on impact resistance is desired, the proportion of the propylene/ethylene random copolymer block can be set high. Any deviation from the above ratio range will disrupt the balance between rigidity and impact resistance. Propylene homopolymer block and propylene
When the proportion of the ethylene random copolymer blocks is kept constant, by increasing the ethylene content in the random copolymer blocks, the impact resistance can be significantly improved with almost no decrease in the rigidity of the block copolymer. is possible. However, a parallel decrease in transparency and stress whitening resistance was found. However, as long as the ethylene content is within the above range, transparency can be improved by adding specific additives, as described below, without significantly reducing the impact resistance once increased. It is possible to significantly improve stress whitening resistance. Furthermore, advantageously, the stiffness is also slightly improved at the same time. If the ethylene content exceeds the above range, not only will the transparency deteriorate to an extent that cannot be recovered even by adding specific additives, but the amount of amorphous polymer produced as a by-product during block copolymer production will deteriorate. increases rapidly, deteriorating productivity. Such block copolymers are generally produced by directly applying the production techniques for propylene homopolymers or random or block copolymers of propylene and ethylene. That is, it is produced by a multistage polymerization method including a propylene homopolymerization step and a propylene/ethylene random polymerization step using a Ziegler type stereospecific polymerization catalyst in the presence or absence of an inert solvent. Molecular weight is controlled by hydrogen. As the Ziegler type stereospecific polymerization catalyst, a catalyst system containing various titanium trichloride or magnesium chloride supported titanium-containing catalysts and an organic aluminum compound such as diethylaluminium chloride or triethylaluminum as the main components can be suitably used. The composition containing the block copolymer of the present invention is different from the composition obtained by using a mechanical blend of a propylene homopolymer and a propylene/ethylene random copolymer instead of the block copolymer. It has the following advantages in terms of physical properties and economy. Generally, when a propylene/ethylene random copolymer is produced using a Ziegler-type stereospecific catalyst, an amorphous rubber-like copolymer is produced as a by-product at the same time as copolymer particles that retain crystallinity. The amount of copolymer by-products tends to increase rapidly as the ethylene content in the copolymer increases, so the ethylene content in the copolymer must be carefully controlled in order to ensure stable operation of the process and economical constraints. The upper limit is considered to be about 5% by weight. However, when a propylene homopolymer block is produced and then a propylene/ethylene random copolymer block is produced by a two-stage polymerization method, surprisingly, the ethylene content in the random copolymer block is reduced to 15%. It was found that the amount of rubbery copolymer by-product was within an acceptable range even if the amount was increased to about % by weight. This means that a polymer structure that cannot be realized industrially using the blending method can be realized for the first time using the block copolymerization method.How does this contribute to improving the physical property balance of the final composition? can be easily understood from the explanations given so far. If the MFR of the propylene block copolymer thus obtained is less than 0.1 g/10 minutes, moldability will be extremely difficult, while if it exceeds 100 g/10 minutes, it will be unfavorable in terms of mechanical strength. Note that MFR is a value measured under the conditions of 230°C and a load of 2.16 kg. Furthermore, dibenzylidene sorbitol or bis(substituted benzylidene) sorbitol used in the present invention has the general formula (R is an alkyl group having 1 to 5 carbon atoms, an alkoxy group, a halogen atom, or a hydroxyl group; m and n are 0 to 3
an integer; R may be different in the same compound,
m and n may be the same in the same compound. ) is a compound represented by Specifically, for example, dibenzylidene sorbitol, 1,3,2,
4-di(p-methylbenzylidene) sorbitol 1,3,2,4-di(p-chlorobenzylidene)
Examples include sorbitol 1,3,2,4-di(p-methoxybenzylidene) sorbitol. This compound is blended in an amount of 0.05 to 0.5 parts by weight, preferably 0.1 to 0.3 parts by weight, per 100 parts by weight of the propylene block copolymer. If it is less than 0.05 parts by weight, there will be almost no improvement in transparency or stress whitening resistance, and if it exceeds 0.5 parts by weight, there will be problems in addition to bleeding.
Economic efficiency is also not favorable. In addition, various additives can be appropriately blended into the composition of the present invention within a range that does not impair the effects of the invention. Specifically, antioxidants, light stabilizers,
Examples include ultraviolet absorbers, nucleating agents, antistatic agents, pigments, pigment dispersants, lubricants, neutralizing agents, and acid scavengers. In particular, it is preferable to add antioxidants to maintain the stability of granulation and molding processes, and neutralizing or hydrochloric acid scavengers such as metal soaps and hydrotalcites exhibit the effects of this patent. This is more preferable. Example 1 After sufficiently replacing the inside of a stainless steel reactor with an internal volume of 200 mm equipped with a stirring blade with propylene gas,
Heptane 80 was added as a polymerization solvent. The temperature inside the vessel was maintained at 50° C., and 50 g of diethyl aluminum chloride (DEAC) and 10 g of titanium trichloride (TMB-07, manufactured by Marubeni Solvay Chemical Co., Ltd.) were added as catalysts. Propylene was then fed at a rate of 5.83 Kg/hr for 15 minutes. During this time, the concentration of hydrogen in the gas phase was 2.0.
% by volume. Next, increase the temperature inside the vessel to 60℃.
The hydrogen concentration was increased to 3.5% by volume, and propylene was continuously fed at a rate of 5.83 kg/hour for 185 minutes. The total amount of propylene supplied during this period was 18.0 kg (the above is a propylene homopolymer block). Ethylene was newly fed at a rate of 0.333 kg/hour while maintaining the internal temperature, hydrogen concentration, and propylene feed rate, and propylene and ethylene were each fed for 175 minutes. The total amount of propylene and ethylene supplied during this period was 17.0Kg and
It weighed 0.97Kg. At this point, the internal pressure was 3.9Kg/
cm 2 (gauge pressure), but at this point the supply of propylene and hydrogen was stopped, and ethylene was 0.233 cm2 (gauge pressure).
While feeding at a rate of kg/hour, the pressure inside the vessel was lowered to 2.0 kg/cm 2 (gauge pressure) over 30 minutes to complete the reaction. The total amount of ethylene supplied during this period was 0.12 kg (propylene/ethylene random copolymer block). Butanol was added to the obtained block copolymer at 1.1
After the catalyst was decomposed at 68° C. for 3 hours, the catalyst was removed by washing with water. After further centrifugation and drying steps, 32.0 kg of product copolymer was obtained. The amount of amorphous copolymer produced as a by-product after being solubilized in the polymerization solvent was 1.12 kg. The proportion of the propylene homopolymer block and the propylene-ethylene random copolymer block in the block copolymer is calculated by subtracting the amount of unreacted monomer and the amount of by-product amorphous polymer from the total amount of monomer supplied. It was calculated by allocating it to the ratio of the amount of monomers supplied to produce the polymer block. The ethylene content of the propylene/ethylene random copolymer block portion was calculated from the ratio of both blocks calculated above and the ethylene content in the product block copolymer. To 100 parts by weight of the block copolymer thus obtained, tetrakis[methylene (3,5-di-t-
-butyl-4-hydroxyhydrocinnamate)]
Butane (antioxidant) 0.1 part by weight, calcium stearate (neutralizing agent) 0.1 part by weight and 1,3,
0.1 part by weight of 2,4-dibenzylidene sorbitol was added and mixed, followed by granulation at 260°C. The block copolymer composition pellets were sandwiched between hard chrome-plated iron plates and heated to 230°C.
The mixture was press-molded using a hot plate press-molding machine, and after being cooled and solidified using a cooling press-molding machine at 30° C., it was taken out to produce sheets with a thickness of 1 mm and 2 mm. For each of these sheets, the degree of haze (based on ASTM-D1003) and stress whitening resistance were measured using a 1 mm thick sheet, and the flexural modulus (based on ASTM-D747) was measured using a 2 mm thick sheet. ) and Charpy impact strength (based on JIS-K7111) were measured. The results are shown in Table 1. The stress whitening resistance was measured using a Dupont impact tester (manufactured by Toyo Seiki Seisakusho) by dropping a load of 300 g from heights of 5, 10, 20, 30, and 40 cm to apply impact stress to the sheet. After the application, the whitening state of the sheet was visually evaluated. The evaluation was carried out as 5th grade if all whitening was observed after being dropped at each height, and 0 grade if no whitening was observed at all. Examples 2 to 4 1,3,2,4-di(paramethylbenzylidene) sorbitol, 1,3,2,4-di(parachlorbenzylidene) sorbitol instead of 1,3,2,4-dibenzylidene sorbitol A block copolymer was produced and a sheet was formed in the same manner as in Example 1, except that 1,3,2,4-di(paramethoxybenzylidene)sorbitol was used. The evaluation results are the first
Shown in the table. Example 5 The propylene supply time in the propylene homopolymer block manufacturing stage after the temperature in the polymerization vessel reached 60°C was 250 minutes (therefore, the total amount of propylene supplied was 24.3 kg), and the gas phase during this period was The hydrogen concentration in the block was set at 4.2% by volume, the ethylene supply rate at the propylene-ethylene random copolymer block manufacturing stage was set at 0.530 kg/hour, and the supply time during simultaneous supply of propylene and ethylene was set at 110 minutes (therefore, , the total supply of propylene and ethylene during this period was 10.7Kg and 0.97Kg, respectively), and the ethylene supply rate and time after stopping the propylene supply were 0.675Kg/hour and 22 minutes, respectively (therefore, the total supply of ethylene during this period was 0.675Kg/hour and 22 minutes, respectively). A block copolymer was produced in the same manner as in Example 1, except that the amount was changed to 0.248 kg). Further, a sheet was formed using the obtained block copolymer under the same conditions as in Example 1 and evaluated. The results are shown in Table 1. Comparative Examples 1 and 2 The block copolymers of Examples 1 and 5 were used in the same manner as in Examples 1 and 5, except that the additive 1,3,2,4-dibenzylidene sorbitol was not added. Each sheet was molded and evaluated. The results are shown in Table 1. Comparative Example 3 When the temperature inside the polymerization vessel reached 60°C, the process immediately proceeded to the random copolymerization stage of propylene and ethylene without further homopolymerizing propylene. The simultaneous supply time was set to 360 minutes, and the hydrogen concentration during this period was changed to 3.0% by volume, and the ethylene supply rate was changed to 0.186Kg/hour (therefore, the total amount of propylene and ethylene supplied during this period was set to 35.0Kg and 1.12Kg, respectively). In addition, the ethylene supply rate, supply time, and total supply amount after stopping the propylene supply are 0.130Kg/hour, respectively.
A block copolymer was produced in the same manner as in Example 1, except that the reaction time was 36 minutes and the weight was 0.078 kg.
This block copolymer was molded into a sheet in the same manner as in Example 1 and evaluated. The results are shown in Table 1. Comparative Example 4 The ethylene supply rate in the random copolymerization stage was 0.350 Kg/hour during the simultaneous supply of propylene and ethylene, and 0.245 Kg/hour after the propylene supply was stopped. The time period during which propylene and ethylene were simultaneously supplied was the same as in Comparative Example 3 (therefore, the total amount of ethylene supplied during this period was 2.10 kg),
The period after the propylene supply was stopped was set at 28 minutes (therefore, the total amount of ethylene supplied during this period was 0.114Kg).
A block copolymer was produced in the same manner as in Comparative Example 3, except that Further, using this block copolymer, Example 1
A sheet was formed and evaluated in the same manner as above. The results are shown in Table 1. Comparative Example 5 The same procedure as in Example 1 was carried out, except that 5 parts by weight of ethylene-propylene copolymer rubber having a Mooney viscosity of 70 and a propylene content of 27% by weight was added to 100 parts by weight of the block copolymer used in Comparative Example 3. A sheet was formed and evaluated. The results are shown in Table 1. Comparative Example 6 In Comparative Example 5, a block copolymer to which no rubber was added was similarly evaluated. The results are shown in Table 1.

【表】【table】

【表】 なお、第1表中で、ビス(置換ベンジリデン)
ソルビトールの種類の記号は、次の内容を表す。 A:1,3,2,4−ジベンジリデンソルビトー
ル B:1,3,2,4−ジ(p−メチルベンジリデ
ン)ソルビトール C:1,3,2,4−ジ(p−クロロベンジリデ
ン)ソルビトール D:1,3,2,4−ジ(p−メトキシベンジリ
デン)ソルビトール 実施例6〜9及び比較例7〜11 プロピレン単独重合体ブロツク製造段階におけ
るプロピレンの供給時間、この間の気相部の水素
濃度、プロピレン・エチレンランダム共重合体ブ
ロツク製造段階におけるエチレンの供給速度、プ
ロピレンとエチレンを同時に供給する間の供給時
間、及びプロピレンの供給停止後のエチレン供給
速度ならびに時間を夫々適宜選んで実施例1と同
様の方法で、第2表に示す各種のブロツク共重合
体を製造した。得られたブロツク共重合体を用い
て実施例1と同様の条件でシートを成形して評価
した。結果を第2表に示す。
[Table] In Table 1, bis(substituted benzylidene)
The sorbitol type symbols represent the following: A: 1,3,2,4-dibenzylidene sorbitol B: 1,3,2,4-di(p-methylbenzylidene) sorbitol C: 1,3,2,4-di(p-chlorobenzylidene) sorbitol D :1,3,2,4-di(p-methoxybenzylidene)sorbitol Examples 6 to 9 and Comparative Examples 7 to 11 Supply time of propylene in the propylene homopolymer block production stage, hydrogen concentration in the gas phase during this time, The ethylene supply rate in the propylene/ethylene random copolymer block production stage, the supply time during the simultaneous supply of propylene and ethylene, and the ethylene supply rate and time after stopping the propylene supply were respectively selected as in Example 1. Various block copolymers shown in Table 2 were produced by the method described above. Using the obtained block copolymer, a sheet was molded and evaluated under the same conditions as in Example 1. The results are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 プロピレン単独重合体ブロツク15〜85重量部
およびエチレン含量2〜15重量%のプロピレン・
エチレンランダム共重合体ブロツク85〜15重量部
より成り、かつ、メルトフローレートが0.1〜100
g/10分であるプロピレン系ブロツク共重合体
100重量部に、下記式〔〕の化合物0.05〜0.5重
量部からなることを特徴とするポリプロピレン樹
脂組成物。 (Rは炭素数1〜5のアルキル基、アルコキシ
基、ハロゲン原子または水酸基;mとnは0〜3
の整数;Rは同一化合物中異なつていてもよく、
mとnは同一化合物中同じでもよい。)
[Scope of Claims] 1 Propylene homopolymer block with 15 to 85 parts by weight and an ethylene content of 2 to 15% by weight.
Consists of 85 to 15 parts by weight of ethylene random copolymer block, and has a melt flow rate of 0.1 to 100.
g/10 minutes of propylene block copolymer
A polypropylene resin composition comprising 0.05 to 0.5 parts by weight of a compound represented by the following formula [] to 100 parts by weight. (R is an alkyl group having 1 to 5 carbon atoms, an alkoxy group, a halogen atom, or a hydroxyl group; m and n are 0 to 3
an integer; R may be different in the same compound,
m and n may be the same in the same compound. )
JP7065784A 1984-04-09 1984-04-09 Polypropylene resin composition Granted JPS60215048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7065784A JPS60215048A (en) 1984-04-09 1984-04-09 Polypropylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7065784A JPS60215048A (en) 1984-04-09 1984-04-09 Polypropylene resin composition

Publications (2)

Publication Number Publication Date
JPS60215048A JPS60215048A (en) 1985-10-28
JPH0432861B2 true JPH0432861B2 (en) 1992-06-01

Family

ID=13437942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7065784A Granted JPS60215048A (en) 1984-04-09 1984-04-09 Polypropylene resin composition

Country Status (1)

Country Link
JP (1) JPS60215048A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121744A (en) * 1985-11-21 1987-06-03 Sumitomo Chem Co Ltd Polypropylene resin composition
JPH0699615B2 (en) * 1986-04-08 1994-12-07 株式会社トクヤマ Resin composition
JPH0699616B2 (en) * 1986-04-14 1994-12-07 株式会社トクヤマ Resin composition
JPH0745601B2 (en) * 1986-08-04 1995-05-17 住友化学工業株式会社 Polypropylene composition
US5149484A (en) * 1990-12-11 1992-09-22 Union Carbide Chemicals & Plastics Technology Corporation Process for injection molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335788A (en) * 1976-09-16 1978-04-03 Mitsui Toatsu Chem Inc Preparation of propylene-ethylene copolymer
JPS54159454A (en) * 1978-06-06 1979-12-17 Tokuyama Soda Co Ltd Polypropylene composition
JPS58157841A (en) * 1982-03-15 1983-09-20 Mitsubishi Petrochem Co Ltd Propylene polymer composition
JPS58180543A (en) * 1982-04-19 1983-10-22 Mitsubishi Petrochem Co Ltd Propylene polymer composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335788A (en) * 1976-09-16 1978-04-03 Mitsui Toatsu Chem Inc Preparation of propylene-ethylene copolymer
JPS54159454A (en) * 1978-06-06 1979-12-17 Tokuyama Soda Co Ltd Polypropylene composition
JPS58157841A (en) * 1982-03-15 1983-09-20 Mitsubishi Petrochem Co Ltd Propylene polymer composition
JPS58180543A (en) * 1982-04-19 1983-10-22 Mitsubishi Petrochem Co Ltd Propylene polymer composition

Also Published As

Publication number Publication date
JPS60215048A (en) 1985-10-28

Similar Documents

Publication Publication Date Title
EP0151883B1 (en) Crystalline propylene polymer composition
EP0152701A1 (en) Process for producing propylene copolymer
JP3135934B2 (en) Polymer composition
JPH1053628A (en) High-molecular weight ethylene-propylene reactional vessel blend having wide molecular weight distribution
US4946898A (en) Propylene polymer composition
EP2480604B1 (en) Propylene polymer compositions
EP2480605B1 (en) Propylene polymer compositions
GB2124240A (en) Isotactic polypropylene for moulding
EP0651012A1 (en) Propylene random copolymer composition
NZ239816A (en) Compositions comprising two polybutene-1 resins having different melt flow rates; water pipes moulded therefrom
IL46620A (en) Thermoplastic ethylene-propylene rubbers and their preparation
JPH0374247B2 (en)
JP2003327642A (en) Propylene-ethylene block copolymer
GB2087409A (en) Propylene polymerization process
US4910262A (en) Olefinic block copolymers containing three blocks
JPH0432861B2 (en)
JPH0564658B2 (en)
WO1999061493A1 (en) Crystalline polypropylene and molded object and film thereof
JPH0343292B2 (en)
JPH0564984B2 (en)
JP2607099B2 (en) High rigidity ethylene-propylene block copolymer composition
JPH0360345B2 (en)
JPH083009B2 (en) Highly rigid propylene homopolymer composition
JP3325420B2 (en) Method for producing propylene-ethylene block copolymer
JPH0326203B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term