JPH04327787A - Circulating water pipe device - Google Patents

Circulating water pipe device

Info

Publication number
JPH04327787A
JPH04327787A JP9757391A JP9757391A JPH04327787A JP H04327787 A JPH04327787 A JP H04327787A JP 9757391 A JP9757391 A JP 9757391A JP 9757391 A JP9757391 A JP 9757391A JP H04327787 A JPH04327787 A JP H04327787A
Authority
JP
Japan
Prior art keywords
water
water level
gate
submerged weir
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9757391A
Other languages
Japanese (ja)
Other versions
JP2585883B2 (en
Inventor
Toshio Onuki
大貫 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9757391A priority Critical patent/JP2585883B2/en
Publication of JPH04327787A publication Critical patent/JPH04327787A/en
Application granted granted Critical
Publication of JP2585883B2 publication Critical patent/JP2585883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To reduce the power of a circulation pump and prevent generation of water bubbles in a circulating water pipe device wherein a great amount of water such as sea water is used as cooling water for a condenser. CONSTITUTION:In a circulating water pipe device, wherein water such as sea water sucked up by a circulating water pump is used to cool a condenser and the water after heat exchange is discharged through a forebay 8 and a flood- way 9 and a submerged dam 16 is provided in said forebay 8 or flood-way 9, a sluice gate 17 is installed on the downstream side of the dam 16 and also at least a water level detector 19 for detecting the water level on the upstream side of the dam 16 and a sluice gate control device 26 for controlling the opening of the gate 17 in response to the water level signals from the detector 19 are provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】〔発明の目的〕[Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、蒸気タービン発電プラ
ントの蒸気タービン排気蒸気を凝縮させる表面接触式の
復水器を海水で冷却するようにした蒸気タービン発電プ
ラントの循環水系統設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to circulating water system equipment for a steam turbine power plant in which a surface contact type condenser for condensing exhaust steam of a steam turbine power plant is cooled with seawater.

【0003】0003

【従来の技術】蒸気タービン発電プラントの蒸気タービ
ン排気蒸気を凝縮させる復水器の冷却水としては、一般
に海水が使用されている。
2. Description of the Related Art Seawater is generally used as cooling water for a condenser that condenses exhaust steam from a steam turbine in a steam turbine power plant.

【0004】海水1は、図2に示すように、取水路2を
経て取水口から循環水ポンプ3によって揚水され、取水
管4にて復水器5に導かれる。そして、蒸気タービンの
排気蒸気と伝熱管6によって熱交換された後、放水管7
によって放水庭8に放水され放水路9を経て海に戻され
るようなっている。
As shown in FIG. 2, seawater 1 passes through an intake channel 2, is pumped up from a water intake by a circulating water pump 3, and is led to a condenser 5 through an intake pipe 4. After exchanging heat with the exhaust steam of the steam turbine through the heat transfer tube 6, the water discharge pipe 7
The water is discharged into a water discharge garden 8 and returned to the sea via a discharge channel 9.

【0005】復水器5は、タービン建屋10内に設置さ
れるのであるが、一般に、蒸気タービン発電プラントに
おいては、土木工事によるタービン建屋10下の掘削量
を低減するという経済性の観点から、地表レベル11よ
り復水器5の設置レベルの方が高いのが普通である。ま
た、発電プラントが大容量化するにつれて使用する海水
量が増加し、循環水ポンプ3の動力が増大してくる傾向
にある。
[0005] The condenser 5 is installed inside the turbine building 10, and in general, in steam turbine power plants, from the economic point of view of reducing the amount of excavation under the turbine building 10 due to civil engineering work, The installation level of the condenser 5 is normally higher than the ground level 11. Further, as the capacity of power generation plants increases, the amount of seawater used increases, and the power of the circulating water pump 3 tends to increase.

【0006】この循環水ポンプ3の動力を低減するため
に、循環水系統にサイホンを持たせて設置レベルの高い
復水器5に海水を供給すると共に、放水庭8の水位レベ
ル12が極力界面よりも高くならないようにして、循環
水ポンプ3の動力の低減が図られている。
In order to reduce the power of this circulating water pump 3, a siphon is provided in the circulating water system to supply seawater to the condenser 5, which is installed at a high level, and the water level 12 of the water discharge garden 8 is kept as low as possible at the interface. The motive power of the circulating water pump 3 is reduced so as not to become higher than the above.

【0007】サイホンの高さの制限は、理論的には大気
圧10mAqであるが、実際的には、約8m(7〜9m
)にする必要がある。つまり、サイホンを持たせるため
には、放水庭8の水位レベル12と循環水ポンプ3の出
口から放水庭8の間の系統における最高位置海水レベル
との差を約8m以内に抑える必要がある。
[0007] The height limit of the siphon is theoretically atmospheric pressure 10 mAq, but in practice it is about 8 m (7 to 9 m).
). That is, in order to have a siphon, it is necessary to suppress the difference between the water level 12 of the water discharge garden 8 and the highest seawater level in the system between the outlet of the circulating water pump 3 and the water discharge garden 8 to within about 8 m.

【0008】一般に、最高位置海水レベルは、復水器5
であることが多い。したがって、放水庭8の水位レベル
12と復水器5の管束頂部レベル13との差Sをサイホ
ン高さの制限以上(S>8m)にすると、復水器5の管
束上部の伝熱管6に真空部が発生し、海水が流れなくな
る部分が発生する。このため、伝熱面積の実質低下を招
くと共に、真空部が何等かの原因で圧力が上がった場合
に消失して、復水器5の管束上部の伝熱管6内でウォー
タハンマを発生する可能性もでるため、サイホン制限内
に収まるように系統設備を設計する必要がある。
Generally, the highest seawater level is at the condenser 5.
Often. Therefore, if the difference S between the water level 12 in the water garden 8 and the level 13 at the top of the tube bundle of the condenser 5 is made equal to or higher than the siphon height limit (S > 8 m), the heat exchanger tubes 6 at the top of the tube bundle of the condenser 5 A vacuum is created, creating a part where seawater no longer flows. This results in a substantial reduction in the heat transfer area, and if the pressure in the vacuum section increases due to some reason, it may disappear and cause water hammer in the heat transfer tubes 6 at the top of the tube bundle of the condenser 5. Therefore, it is necessary to design the system equipment to stay within the siphon limit.

【0009】また、発電プラントの大容量化または同一
出力のプラントであってもタービンケーシング個数を低
減することに伴う復水器個数の低減によって、復水器1
基当りのサイズはますます大形化し、これに伴って放水
庭8の水位レベル12と復水器5の管束頭部レベル13
との差Sがますます大きくなる傾向にある。
[0009] Furthermore, by increasing the capacity of a power generation plant or reducing the number of condensers by reducing the number of turbine casings even in plants with the same output, the condenser 1
The size of the base is becoming larger and larger, and along with this, the water level 12 of the water garden 8 and the pipe bundle head level 13 of the condenser 5 are increasing.
There is a tendency for the difference S to become larger and larger.

【0010】このため、放水庭8の水位レベル12と復
水器5の管束頭部レベル13との差Sがサイホン制限を
満足しない場合には、放水庭8または放水路9に没水堰
16(図1参照)を設置して放水庭8の水位レベル12
を上昇させる等の対策が採られてきた。
Therefore, if the difference S between the water level 12 in the waterway 8 and the pipe bundle head level 13 of the condenser 5 does not satisfy the siphon restriction, the submerged weir 16 is placed in the waterway 8 or the waterway 9. (See Figure 1) to install water level 12 in water garden 8.
Measures have been taken to increase the

【0011】[0011]

【発明が解決しようとする課題】しかし、このように没
水堰16を設置した場合には、この没水堰16の前後で
水位差が発生するため、この水位差による海水の落差に
よって泡が発生するという問題が生じる。そして、放水
管7から放水庭8に放出された海水は、没水堰16の前
後で水位差F(図1参照)を生じ、水位値Fが、約40
cm以上(F>40cm)になると、没水堰16の後で
の海水の流れの乱れや海水の巻き込みによって海水の流
れ内に小さな気泡を巻き込んでしまう。
[Problem to be Solved by the Invention] However, when the submerged weir 16 is installed in this way, a difference in water level occurs before and after the submerged weir 16, and the head of the seawater caused by this water level difference causes bubbles to form. The problem arises that this occurs. The seawater discharged from the water pipe 7 to the water garden 8 causes a water level difference F (see Fig. 1) before and after the submerged weir 16, and the water level value F is approximately 40
cm or more (F>40 cm), the turbulence of the seawater flow after the submerged weir 16 and the entrainment of seawater will cause small air bubbles to be drawn into the seawater flow.

【0012】海水の場合には、一度泡が発生するとなか
なか消滅しないのが一般であり、この泡は海に放出され
ると、泡の付着による漁網の汚染、泡の飛散による塩害
などの問題を引き起こしてしまう。
[0012] In the case of seawater, once bubbles are generated, they generally do not disappear easily, and when these bubbles are released into the sea, they can cause problems such as contamination of fishing nets due to foam adhesion and salt damage due to flying bubbles. It will cause it.

【0013】従来は、これらの問題に対して、有効なる
手段となるものがないか、またはあったとしても大容量
の海水を処理する循環水系統設備に適用するには不適な
ものであったり、保守・点検が難しいのが実情である。 一度海水中に巻き込んだ気泡を取り除くためには、例え
ば没水堰16から海までの間に、流れの速度を約0.2
m/s以下にして小さな気泡が海水表面まで浮き上がる
時間が取れるかなり大きな貯水槽が必要となる。
Conventionally, there is no effective means for solving these problems, or even if there is, it is not suitable for application to circulating water system equipment that processes large volumes of seawater. The reality is that maintenance and inspection are difficult. In order to remove air bubbles once trapped in seawater, for example, the speed of the flow should be reduced by approximately 0.2 between the submerged weir 16 and the sea.
A fairly large water tank is required to allow time for small air bubbles to rise to the seawater surface at a speed of less than m/s.

【0014】最近は、循環水ポンプ3としてタービンの
出力に応じて海水流量を変化させることができる可動翼
形循環水ポンプが採用されている。この循環水ポンプは
、復水器5に供給する海水量をタービンの出力に応じて
変化させることができ、循環水ポンプ3の動力を低減さ
せることができる。このため、没水堰16を設置した場
合には、海水流量の変化に応じて没水堰16の前後の水
位差Fが変化する。
[0014] Recently, a movable vane type circulating water pump that can change the flow rate of seawater according to the output of a turbine has been adopted as the circulating water pump 3. This circulating water pump can change the amount of seawater supplied to the condenser 5 according to the output of the turbine, and can reduce the power of the circulating water pump 3. Therefore, when the submerged weir 16 is installed, the water level difference F before and after the submerged weir 16 changes according to changes in seawater flow rate.

【0015】また、放水路9は、新年時と経年時では放
水路9内に藻等が付着することによって水路抵抗が異な
り、また、潮位によっても水面レベルが変化する。これ
らの水位レベル変化条件を考えて、循環水ポンプの動力
を低減し、かつ泡を発生させないようにした循環水系統
設備は今までにないのが現状であった。
[0015] Furthermore, the waterway resistance of the waterway 9 differs between the new year and the old time due to the adhesion of algae, etc. in the waterway 9, and the water surface level also changes depending on the tide level. At present, there has been no circulating water system equipment that takes these water level change conditions into consideration, reduces the power of the circulating water pump, and prevents the generation of bubbles.

【0016】現在のように、発電プラントが大容量化し
てくるにつれて、復水器に使用する海水は、1100M
W級原子力プラントで約85m3 /s、800MW級
原子力プラントで約60m3 /sとなるため、上記条
件を満たす貯水槽を設置した場合には、非常に大きなも
の(400〜600m2 )となり、大きな設置スペー
スが必要となると共に、土木工事の費用が嵩み経済的で
ない。
[0016] As the capacity of power generation plants increases, the seawater used in the condenser increases to 1100M.
This is approximately 85m3/s for a W-class nuclear power plant and approximately 60m3/s for an 800MW-class nuclear power plant, so if a water tank that meets the above conditions is installed, it will be extremely large (400 to 600m2) and require a large installation space. In addition, the cost of civil engineering work increases and is not economical.

【0017】本発明は上述した事情を考慮してなされた
もので、、多量の海水等の水を復水器の冷却水として使
用する大容量蒸気タービン発電プラントの循環水系統設
備において、循環水ポンプの動力を低減すると共に、海
水の泡の発生を防止することができるようにした循環水
系統設備を提供することを目的とする。〔発明の構成〕
The present invention has been made in consideration of the above-mentioned circumstances, and is intended for use in circulating water system equipment of large-capacity steam turbine power generation plants that use large amounts of water such as seawater as cooling water for condensers. It is an object of the present invention to provide circulating water system equipment that can reduce the power of a pump and prevent the generation of seawater foam. [Structure of the invention]

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
、本発明に係る循環水系統設備は、循環水ポンプで汲み
上げた海水等の水で復水器を冷却し熱交換後の水を放水
庭および放水路を経て放水するようにするとともに、前
記放水庭または放水路中に没水堰を立設した循環水系統
設備において、前記没水堰の下流側に水門を設置すると
ともに、少なくとも前記没水堰の上流側の水位を検出す
る水位検出器と、この水位検出器からの水位信号によっ
て前記水門の開度を制御する水門制御装置とを備えたも
のである。
[Means for Solving the Problems] In order to achieve the above object, the circulating water system equipment according to the present invention cools a condenser with water such as seawater pumped up by a circulating water pump, and discharges the water after heat exchange. In a circulating water system facility in which water is discharged through a garden and a waterway, and a submerged weir is installed in the waterway or waterway, a water gate is installed downstream of the submerged weir, and at least This system includes a water level detector that detects the water level on the upstream side of the submerged weir, and a water gate control device that controls the opening degree of the water gate based on the water level signal from the water level detector.

【0019】[0019]

【作用】上記のように構成した本発明によれば、水位検
出器で没水堰の上流側の水位を検出しこの没水堰の下流
側に設置した水門の開度を水門制御装置により制御して
、没水堰の前後における海水の水位差が泡を発生させな
い約40cm以下になるようにすることができる。
[Operation] According to the present invention configured as described above, the water level on the upstream side of the submerged weir is detected by the water level detector, and the opening degree of the water gate installed on the downstream side of this submerged weir is controlled by the water gate control device. By doing so, the difference in seawater level before and after the submerged weir can be set to about 40 cm or less, which does not generate bubbles.

【0020】[0020]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。なお、図2に示す従来の循環水系統設備と同一
部材は、同一符号を付してその説明を省略する。
Embodiment An embodiment of the present invention will be described below with reference to FIG. Note that the same members as those in the conventional circulating water system shown in FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted.

【0021】放水庭8の内部には、ここでの水位レベル
を上昇させるための没水堰16が立設されているととも
に、この没水堰16の下流側には、放水路9の入口に位
置して水門17が設置されている。この水門17の開度
18は、没水堰16の前後に設置した水位検出器19,
20によって計測された水位によって没水堰16の前水
位21と後水位22との水位差Fが約40cm以下にな
るように制御され、これにより、没水堰16の後流で発
生する海水の流れの乱れや気泡の巻き込みを防止できる
るようなっている。
A submerged weir 16 is erected inside the water discharge garden 8 to raise the water level here, and on the downstream side of this submerged weir 16, there is a submerged weir 16 at the entrance of the water discharge channel 9. A water gate 17 is installed at this location. The opening degree 18 of this water gate 17 can be determined by water level detectors 19 installed before and after the submerged weir 16.
20, the water level difference F between the front water level 21 and the rear water level 22 of the submerged weir 16 is controlled to be approximately 40 cm or less. This prevents flow turbulence and air bubble entrainment.

【0022】水門17には、水門駆動装置23及び水門
開度計24が備えられ、この水門駆動装置23は前記水
位検出器19,20とともにケーブル25を介して水門
制御装置26に接続される。この水門制御装置26は、
ケーブル22を介して電源27及び表示盤28に接続さ
れている。水門制御装置26は、目標水位差と水位検出
器19,20によって計測された没水堰16の前後の水
位差Fとを比較し、制御目標範囲からずれていれば水門
17を水門駆動装置23を介して動かして水門17の開
度18を変えるものである。
The water gate 17 is equipped with a water gate driving device 23 and a water gate opening gauge 24, and this water gate driving device 23 is connected to a water gate control device 26 via a cable 25 together with the water level detectors 19 and 20. This water gate control device 26 is
It is connected to a power source 27 and a display panel 28 via a cable 22. The water gate control device 26 compares the target water level difference with the water level difference F before and after the submerged weir 16 measured by the water level detectors 19 and 20, and if it deviates from the control target range, the water gate 17 is moved to the water gate drive device 23. The opening degree 18 of the water gate 17 is changed by moving the water gate 17 through the water gate 17.

【0023】つまり、海水の流量を一定とした場合に、
水位差Fが約40cm以上となったならば、水門17の
開度18を小さくすることにより、没水堰16の後水位
22を上げる。この場合、没水堰16の前水位21も若
干上昇することになるが、没水堰16の流体関係から没
水堰16の後の水位22の上昇値より少なくて済むこと
が明らかである。
[0023] In other words, when the flow rate of seawater is constant,
When the water level difference F becomes approximately 40 cm or more, the water level 22 after the submerged weir 16 is raised by reducing the opening degree 18 of the water gate 17. In this case, the water level 21 before the submerged weir 16 will also rise slightly, but it is clear from the fluid relations of the submerged weir 16 that the increase will be less than the increase in the water level 22 after the submerged weir 16.

【0024】また、水門17の開度18が一定で海水流
量が増加した場合には、没水堰16の後水位22が高く
なり、かつ前水位21も高くなる。この場合、海水の流
量の増加と共に水位差Fは限り無く0に近付き、前水位
21が高くなるため循環水ポンプ3の動力が増加してし
まう。このため、循環水ポンプ3の動力を抑えるために
、没水堰16の後で泡が発生しない限界値近くになるま
で、即ち水位差Fが約40cmになるまで水門17の開
度18を大きくすることにより、没水堰16の前水位2
1を低く抑えることができる。
Further, when the opening degree 18 of the water gate 17 is constant and the seawater flow rate increases, the rear water level 22 of the submerged weir 16 becomes high, and the front water level 21 also becomes high. In this case, as the flow rate of seawater increases, the water level difference F approaches zero, and the front water level 21 becomes higher, so the power of the circulating water pump 3 increases. Therefore, in order to suppress the power of the circulating water pump 3, the opening degree 18 of the water gate 17 is increased until the water level difference F reaches about 40 cm, which is close to the limit value at which bubbles do not occur after the submerged weir 16. By doing so, the water level 2 in front of the submerged weir 16
1 can be kept low.

【0025】ここに、放水路9は海に連絡しているため
、潮位の変化によって水門17後の水位29がこの影響
を受けて上下する。また、放水路9が新年時と経年時で
は、水門17後の水位29のレベルが異なってくる。 つまり、外洋が大潮で満潮、かつ放水路9が経年時のと
き水門17後の水位29が一番高くなる。ただし、流量
は最大流量とする。逆に、水門17後の水位29が小さ
くなるのは、大潮の干潮時で、系統流量が最小の時とな
る。
Here, since the spillway 9 communicates with the sea, the water level 29 behind the water gate 17 is influenced by changes in the tide level and rises and falls. Further, the level of the water level 29 after the water gate 17 differs between when the spillway 9 is in the new year and when it is old. In other words, when the open ocean is at high tide and the spillway 9 is old, the water level 29 after the water gate 17 is the highest. However, the flow rate shall be the maximum flow rate. Conversely, the water level 29 after the water gate 17 becomes small at low spring tide, when the system flow rate is at its minimum.

【0026】このように、水門17後の水位29が各種
条件によって変化する。これによって、流れの関係から
没水堰16の前水位21及び後水位22も大きく影響を
受けて上下するが、水門17の開度18を変えて泡を発
生させない水位差内にすることにより、泡の発生を防止
することができる。かつ没水堰16の前水位21も水門
17の開度18を調整することによって極力低く抑える
ことができるため、循環水ポンプ3の動力の増加も極力
抑えることが可能となる。
As described above, the water level 29 after the water gate 17 changes depending on various conditions. As a result, the front water level 21 and rear water level 22 of the submerged weir 16 are greatly affected by the flow and go up and down, but by changing the opening degree 18 of the water gate 17 to keep the water level difference within the level that does not generate bubbles, Generation of bubbles can be prevented. In addition, since the water level 21 in front of the submerged weir 16 can be kept as low as possible by adjusting the opening degree 18 of the water gate 17, it is also possible to suppress an increase in the power of the circulating water pump 3 as much as possible.

【0027】以上は、水位差Fを泡の発生限度約40c
m内にするように水門17の開度18を制御した場合で
あるが、実際の制御では、この目標水位差40cmに約
±10〜20cm程度の制御範囲を設けるようにする。
[0027] Above, the water level difference F is the bubble generation limit of about 40c.
This is a case where the opening degree 18 of the water gate 17 is controlled to be within m, but in actual control, a control range of approximately ±10 to 20 cm is provided for this target water level difference of 40 cm.

【0028】また、水門の最大開度30は、水門17前
後の水位差が最小となる満潮時の経年時に最大系統流量
を流せる開度になるように決定されている。
Further, the maximum opening degree 30 of the water gate is determined to be such that the maximum system flow rate can flow at the time of high tide when the water level difference before and after the water gate 17 is the minimum.

【0029】上記実施例は、没水堰16の前後の水位を
計測して、この水位差Fを目標値内に抑えるようにした
場合の例であるが、没水堰16の前水位21を一定の範
囲内に制御することによって泡の発生を防止することが
できる。
The above embodiment is an example in which the water level before and after the submerged weir 16 is measured and this water level difference F is kept within the target value. The generation of bubbles can be prevented by controlling it within a certain range.

【0030】つまり、系統流量最大時に没水堰16の前
後水位差Fを泡を発生させない水位差とするためには、
前水位21と後水位22ともそれぞれ一義的に水位関係
から定めることができる。
In other words, in order to set the water level difference F before and after the submerged weir 16 at the maximum system flow rate to a level difference that does not generate bubbles,
Both the front water level 21 and the rear water level 22 can be uniquely determined from the water level relationship.

【0031】水門17後の水位29は、系統流量、潮位
、放水路9の抵抗によって決まる。このため、水門17
の開度18は、泡を発生させない水位差Fとするための
条件から没水堰16の後水位22が決まり、これと水門
17後の水位29の水位差と系統流量によって必要な水
門17の開度18が決定される。
The water level 29 after the water gate 17 is determined by the system flow rate, the tide level, and the resistance of the spillway 9. For this reason, water gate 17
The opening degree 18 of the water gate 17 is determined by the water level 22 after the submerged weir 16 based on the conditions for creating a water level difference F that does not generate bubbles, and the water level 22 after the submerged weir 16 and the water level 29 after the water gate 17 and the system flow rate. The opening degree 18 is determined.

【0032】この関係から、没水堰16の前水位21の
水位を最大流量時に決定し、流量がの変化した場合に、
没水堰16の前水位21を水位検出器19で計測してこ
の最大流量時の水位以上になるように水門17の開度1
8を変えれば、即ち没水堰16の前水位21と目標値と
を比較して水門17の開度18を水門駆動装置23を介
して調整することにより、没水堰16前後の水位差Fが
泡の発生しない水位差以下にすることができる。勿論、
この場合、潮位が変化することによっても、水門17の
開度18は変化する。
Based on this relationship, the water level at the front water level 21 of the submerged weir 16 is determined at the time of maximum flow rate, and when the flow rate changes,
The water level 21 in front of the submerged weir 16 is measured by the water level detector 19, and the opening degree of the water gate 17 is set to 1 so that the water level is equal to or higher than the maximum flow rate.
8, that is, by comparing the front water level 21 of the submerged weir 16 with the target value and adjusting the opening degree 18 of the flood gate 17 via the flood gate driving device 23, the water level difference F before and after the submerged weir 16 can be changed. The water level difference can be kept below the level where bubbles do not occur. Of course,
In this case, the opening degree 18 of the water gate 17 also changes as the tide level changes.

【0033】没水堰16の前水位21をこのように一定
水位以上になるよう水門17によって制御することは、
再循環ポンプ3の動力の点からは若干劣ることとなるが
、水位検出器で没水堰16の前水位21の計測のみを行
えばよいことと、水位差を制御するのではなく水位を制
御することから水位差制御より制御が行い易くなり、ま
た制御がより確実となる。
Controlling the water level 21 in front of the submerged weir 16 to be above a certain water level by the water gate 17 as described above is as follows:
Although the power of the recirculation pump 3 is slightly inferior, the water level detector only needs to measure the water level 21 in front of the submerged weir 16, and the water level is controlled instead of controlling the water level difference. Therefore, control is easier to perform than water level difference control, and control is more reliable.

【0034】この場合にも、前記水位差制御と同様に制
御水位に実際にはある制御幅を持たせることは言うまで
もない。この場合、水位の変動、水位検出器の精度を考
えて、実際には、約±20cm程度となる。これを−0
〜+40cmとしても良い。±20cmの場合には、制
御目標値が−20cmの場合にも泡を発生させないよう
にする。 この値は、なるべく小さいことが好ましいため、小さい
制御幅を規定するものではない。
[0034] In this case as well, it goes without saying that the controlled water level actually has a certain control range, similar to the water level difference control described above. In this case, considering the fluctuation of the water level and the accuracy of the water level detector, the actual difference is approximately ±20 cm. This is -0
~+40cm may also be used. In the case of ±20 cm, bubbles are not generated even when the control target value is -20 cm. Since this value is preferably as small as possible, it does not define a small control width.

【0035】なお、本実施例では、水門の数については
図示していないが、1門故障時を考えれば複数の水門を
並列に設置して構成することが循環水系の海水流量確保
の点から好ましい。また、没水堰16を放水庭8内に設
けた例を示しているが、放水路9内に没水堰を設けたも
のにも適用することができる。
Although the number of water gates is not shown in this embodiment, considering the case where one gate fails, it is recommended to install a plurality of water gates in parallel from the viewpoint of securing seawater flow rate in the circulating water system. preferable. Further, although an example is shown in which the submerged weir 16 is provided in the water discharge garden 8, the present invention can also be applied to a structure in which the submerged weir is provided in the water discharge channel 9.

【0036】[0036]

【発明の効果】以上のように、本発明によれば、循環水
系統設備における泡の発生を水門の開度を制御すること
によって容易かつ確実に防止することができるとともに
、循環水ポンプの動力の増加を極力抑えることができる
。しかも、水門は他の泡発生防止に比べ経済的であり、
保守点検についても容易であるといった効果がある。
As described above, according to the present invention, the generation of bubbles in circulating water system equipment can be easily and reliably prevented by controlling the opening degree of the water gate, and the power of the circulating water pump can be easily and reliably prevented. increase can be suppressed as much as possible. Furthermore, sluice gates are more economical than other forms of foam prevention;
This also has the effect of making maintenance and inspection easier.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る循環水系統設備の一実施例の要部
を示す系統図。
FIG. 1 is a system diagram showing essential parts of an embodiment of circulating water system equipment according to the present invention.

【図2】蒸気タービン発電プラントの循環水系統設備を
示す概略系統断面図。
FIG. 2 is a schematic cross-sectional diagram showing circulating water system equipment of a steam turbine power generation plant.

【符号の説明】[Explanation of symbols]

3  循環水ポンプ 5  復水器 8  放水庭 9  放水路 16  没水堰 17  水門 18  水門の開度 19,20  水位検出器 21  没水堰の前水位 22  没水堰の後水位 23  水門駆動装置 26  水門制御装置 F  水位差 3 Circulating water pump 5 Condenser 8 Water garden 9 Discharge channel 16 Submerged weir 17 Floodgate 18 Floodgate opening degree 19,20 Water level detector 21 Water level in front of submerged weir 22 Water level after submerged weir 23 Flood gate drive device 26 Floodgate control device F Water level difference

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  循環水ポンプで汲み上げた海水等の水
で復水器を冷却し熱交換後の水を放水庭および放水路を
経て放水するようにするとともに、前記放水庭または放
水路中に没水堰を立設した循環水系統設備において、前
記没水堰の下流側に水門を設置するとともに、少なくと
も前記没水堰の上流側の水位を検出する水位検出器と、
この水位検出器からの水位信号によって前記水門の開度
を制御する水門制御装置とを備えたことを特徴とする循
環水系統設備。
Claim 1: A condenser is cooled with water such as seawater pumped up by a circulating water pump, and the water after heat exchange is discharged through a waterway and a waterway, and the water is provided in the waterway or waterway. In a circulating water system facility in which a submerged weir is installed, a water gate is installed on the downstream side of the submerged weir, and a water level detector that detects at least the water level on the upstream side of the submerged weir;
A circulating water system facility comprising: a water gate control device that controls the opening degree of the water gate based on a water level signal from the water level detector.
JP9757391A 1991-04-26 1991-04-26 Circulating water system equipment Expired - Fee Related JP2585883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9757391A JP2585883B2 (en) 1991-04-26 1991-04-26 Circulating water system equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9757391A JP2585883B2 (en) 1991-04-26 1991-04-26 Circulating water system equipment

Publications (2)

Publication Number Publication Date
JPH04327787A true JPH04327787A (en) 1992-11-17
JP2585883B2 JP2585883B2 (en) 1997-02-26

Family

ID=14195985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9757391A Expired - Fee Related JP2585883B2 (en) 1991-04-26 1991-04-26 Circulating water system equipment

Country Status (1)

Country Link
JP (1) JP2585883B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014269A1 (en) * 2010-07-26 2012-02-02 株式会社ゼネシス Heat exchanger system
CN114020068A (en) * 2021-12-17 2022-02-08 孙中一 Solar energy brake control device of remotely controlled gate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101571606B1 (en) * 2013-11-18 2015-11-25 주식회사 포스코건설 Sea water discharge structure having breaker for reducing bubble occurrence

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014269A1 (en) * 2010-07-26 2012-02-02 株式会社ゼネシス Heat exchanger system
JP5476475B2 (en) * 2010-07-26 2014-04-23 株式会社ゼネシス Heat exchanger system
CN114020068A (en) * 2021-12-17 2022-02-08 孙中一 Solar energy brake control device of remotely controlled gate

Also Published As

Publication number Publication date
JP2585883B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
Barkdoll et al. Sediment control at lateral diversions: limits and enhancements to vane use
KR102499921B1 (en) Control method of multiple systems, multiple systems and ships equipped with the same
CN207541479U (en) A kind of intelligence pond inner recirculation flow water fish cultivation flume control system
JPH04327787A (en) Circulating water pipe device
CN105865220A (en) Double backpressure condenser optimized operation device and operation method thereof
CN111155478A (en) Riverbed protection device with wading bridge and protection method
JP3143641B2 (en) Cooling seawater discharge system for nuclear power plants
JPH0682178A (en) Equipment in circulating water system
CN112127316A (en) Vortex removing device
JPS5813812A (en) Multiply connected falling dam made of flexible film
JP3215835B2 (en) Siphon type water discharge device
JPH06324190A (en) Water intake equipment for nuclear power plant
Ervine et al. The full-scale behaviour of air-regulated siphon spillways.
JPS60111089A (en) Water distribution and apparatus thereof
CN213625426U (en) Vortex removing device
CN208748791U (en) Stablize the component of overflow after siphonic water-collecting well overflow weir for fire, nuclear power plant's drainage system
CN110176318B (en) Emergency treatment system and method for abnormal cooling water source of million-kilowatt nuclear power station
CN106959020A (en) A kind of automatic sparse water tank
Jones et al. COOLING WATER FOR POWER STATIONS.
JP3603145B2 (en) Operating device for seawater pump
Goldring THE USE OF SMALL-SCALE SIPHON MODELS.
De Cesare et al. Innovative methods to release fine sediments from reservoirs developed at EPFL, Switzerland
Vilberg et al. Supersaturation in hydropower installations
Bolieau Hydraulics of Circulating Systems
Zheng et al. Water intake sediment problems in thermal power plants

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees