JPH04327549A - Method for utilizing carbon dioxide as resource - Google Patents

Method for utilizing carbon dioxide as resource

Info

Publication number
JPH04327549A
JPH04327549A JP3125442A JP12544291A JPH04327549A JP H04327549 A JPH04327549 A JP H04327549A JP 3125442 A JP3125442 A JP 3125442A JP 12544291 A JP12544291 A JP 12544291A JP H04327549 A JPH04327549 A JP H04327549A
Authority
JP
Japan
Prior art keywords
carbon dioxide
hydrogen
methanol
resource
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3125442A
Other languages
Japanese (ja)
Other versions
JP2614947B2 (en
Inventor
Noboru Koyama
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP3125442A priority Critical patent/JP2614947B2/en
Publication of JPH04327549A publication Critical patent/JPH04327549A/en
Application granted granted Critical
Publication of JP2614947B2 publication Critical patent/JP2614947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an utilizing method of carbon dioxide capable of utilizing carbon dioxide as resource in high efficiency and having variety in utilization of the resultant product, rich in safety because of reaction for utilization carried out at relatively low temperature and pressure and capable of diversifying the reaction style. CONSTITUTION:A hydrogen occluded metal, e.g. single metal such as Pd, Ti or V, magnesium based alloy such as MgCu2, rare earth based alloy such as MmNi5 (Mm is Misch metal) or rare earth based alloy such as TiFe kept in a state in which hydrogen is occluded is brought into contact with carbon dioxide to convert carbon dioxide into methanol and utilize carbon dioxide as resource. The above-mentioned method can be contributed to field for preventing earth environment and industrial field using methanol as a raw material, because carbon dioxide generated from fossil fuel, etc., accumulated in air and resulted in warming of the earth can be converted into methanol in high efficiency. The method has effects capable of carrying out plant design while coinciding with conditions and scale, because it has variety in conversion system and simplifying the process, because conversion is highly selective.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、化石燃料等から発生
する二酸化炭素を資源化する方法に関し、水素吸蔵金属
を触媒として利用し二酸化炭素を水素と反応させてメタ
ノールに転化させるようにしたものである。
[Industrial Application Field] This invention relates to a method for recycling carbon dioxide generated from fossil fuels, etc., in which a hydrogen storage metal is used as a catalyst to react carbon dioxide with hydrogen and convert it into methanol. It is.

【0002】0002

【従来の技術】近年、地球温暖化に関連して、化石燃料
等の炭素化合物のエネルギー利用によって発生、蓄積さ
れた大気中の二酸化炭素が大きな問題になっている。こ
のため、化石燃料等からの排出される排ガス中から二酸
化炭素を回収し、さらにこれを資源化する方法が真剣に
検討されている。
BACKGROUND OF THE INVENTION In recent years, atmospheric carbon dioxide generated and accumulated through the use of fossil fuels and other carbon compounds as energy has become a major problem in connection with global warming. For this reason, methods of recovering carbon dioxide from exhaust gas emitted from fossil fuels and the like and further converting it into a resource are being seriously considered.

【0003】二酸化炭素を資源化する方法については、
これまでは、産業上の積極的な課題となっていなかった
。しかし、上述のように、近年の地球温暖化問題に端を
発し、新しい技術課題として注目されるようになってい
る。現在の主要な資源化の方向は、植物、特にクロレラ
等の高増殖性の藻類を高い二酸化炭素濃度条件で培養す
る方法である。この方法で収穫されたクロレラを原料と
して利用する場合、化学工業用原料として利用するには
、更に数段の生物化学的工程を経る必要があるし、簡略
なものでは、単なる酪農用飼料等の低い次元の利用に限
られ、生物化学的な方法での資源化は、高度の利用に不
適当である。
[0003] Regarding the method of turning carbon dioxide into a resource,
Until now, this has not been an active industrial issue. However, as mentioned above, this problem has begun to attract attention as a new technological issue, stemming from the recent global warming problem. The current major direction of resource recovery is a method of culturing plants, especially highly proliferative algae such as chlorella, under conditions of high carbon dioxide concentration. When using chlorella harvested in this way as a raw material, it is necessary to go through several more biochemical steps in order to use it as a raw material for the chemical industry. Resource recovery using biochemical methods is limited to low-level uses and is inappropriate for high-level uses.

【0004】化学的な方法による二酸化炭素の資源化方
法については、幾つかの触媒を用いた反応が報告されて
いる。例えば、次のようなプロセスがある。 4H2+CO2→CH4+2H2O  〔触媒:Rh、
130〜200℃〕J.Molec.Catal.8.
471(1980)CO2+H2→CO+H2O  〔
触媒:Fe、350℃〕J.Catal.67.90(
1981)CO+3H2→CH4+H2O  〔触媒:
Ni、177〜437℃〕J.Catal.37.44
9(1975)
Regarding methods for recycling carbon dioxide as a resource by chemical methods, reactions using several catalysts have been reported. For example, there is a process like this: 4H2+CO2→CH4+2H2O [Catalyst: Rh,
130-200℃]J. Molec. Catal. 8.
471 (1980) CO2+H2→CO+H2O [
Catalyst: Fe, 350°C] J. Catal. 67.90 (
1981) CO+3H2→CH4+H2O [Catalyst:
Ni, 177-437°C] J. Catal. 37.44
9 (1975)

【0005】これらの触媒化学的な方法
は、反応系に比較的高圧の水素が直接係わることによる
安全上の問題や得られる資源化物が気体のメタンであり
、この後の利用における化学反応過程の多様性が余り期
待できない等の欠点がある。また、二酸化炭素を電気化
学的に還元して、CO、HCO2H(ギ酸)、CH4及
びメタノール等が生成するとの事例が、ごく最近になっ
て報告されるようになったが、まだ、研究的な段階であ
り、工業的利用の可能性も確かなものではない。
These catalytic chemical methods have safety problems due to the direct involvement of relatively high-pressure hydrogen in the reaction system, and the resulting resource is gaseous methane, which poses problems in the chemical reaction process for subsequent use. There are drawbacks such as not being able to expect much diversity. In addition, there have been reports recently of cases in which CO, HCO2H (formic acid), CH4, methanol, etc. are produced by electrochemical reduction of carbon dioxide, but research is still ongoing. It is still at a stage, and the possibility of industrial use is not certain.

【0006】[0006]

【発明が解決しようとする課題】よって、この発明にお
ける課題は、二酸化炭素を高効率で資源化でき、得られ
る資源化物の利用において多様性があり、資源化の際の
反応が低圧、低温で安全性にも富み、反応形式が多様化
できる二酸化炭素の資源化方法を得ることにある。
[Problems to be Solved by the Invention] Therefore, the problems of this invention are to make it possible to recycle carbon dioxide as a resource with high efficiency, to have diversity in the use of the resulting recyclables, and to perform reactions during resource reclamation at low pressure and low temperature. The objective is to obtain a method for recycling carbon dioxide as a resource that is safe and allows for diversification of reaction types.

【0007】[0007]

【課題を解決するための手段】かかる課題は、水素を吸
蔵した状態の水素吸蔵金属に二酸化炭素を接触させてメ
タノールに転化させる方法によって解決される。
[Means for Solving the Problems] This problem is solved by a method in which carbon dioxide is brought into contact with a hydrogen storage metal in a state in which hydrogen is stored, thereby converting it into methanol.

【0008】以下、この発明を詳しく説明する。本発明
の基本的構成は、水素を吸蔵した水素吸蔵金属と二酸化
炭素を接触させて、二酸化炭素をメタノール(CH3O
H)に転化させて資源化するものである。この転化反応
は、次のように表される。 CO2+6H→CH3OH+H2O
[0008] This invention will be explained in detail below. The basic structure of the present invention is to bring carbon dioxide into contact with a hydrogen storage metal that has stored hydrogen, and to convert carbon dioxide into methanol (CH3O).
H) and turn it into a resource. This conversion reaction is expressed as follows. CO2+6H→CH3OH+H2O

【0009】本発明で言う水素吸蔵金属とは、水素の圧
力が1気圧の条件で金属の自己容積以上の水素を吸蔵し
得る金属で、単体金属あるいは合金を言う。このような
ものとして、単体金属では、Pd(パラジゥム)、Ti
(チタン)及びV(バナジゥム)が使用できる。合金で
は、Mg−Ni、Mg−Cu、Mg−Ce、Mg−La
などのマグネシウム系合金、Ca−Ni、ミツシュメタ
ル−Ca−Ni(ミッシュメタルとはLa、Ce、Pr
、Ndなどの希土類金属の混合物を言う)などのカルシ
ウム系合金、La−Ni、ミッシュメタル−Niなどの
希土類系合金、Ti−Fe、Ti−Co、Ti−Mn、
Ti−Crなどのチタン系合金、Zr−Mn、Zr−V
などのジルコニウム系合金、V−Tiなどのバナジウム
系合金などが用いられる。これらの水素吸蔵金属は、1
種でも、また2種以上の任意の割合の混合物としても使
用される。
[0009] The hydrogen storage metal referred to in the present invention refers to a metal capable of storing hydrogen in an amount greater than the self-volume of the metal under the condition that the hydrogen pressure is 1 atm, and refers to a single metal or an alloy. As such, simple metals such as Pd (palladium) and Ti
(titanium) and V (vanadium) can be used. For alloys, Mg-Ni, Mg-Cu, Mg-Ce, Mg-La
Magnesium-based alloys such as Ca-Ni, Mitshumetal-Ca-Ni (Mishumetal is La, Ce, Pr
, a mixture of rare earth metals such as Nd), rare earth alloys such as La-Ni, misch metal-Ni, Ti-Fe, Ti-Co, Ti-Mn,
Titanium alloys such as Ti-Cr, Zr-Mn, Zr-V
Zirconium-based alloys such as V-Ti, vanadium-based alloys such as V-Ti, etc. are used. These hydrogen storage metals are 1
It can be used either as a species or as a mixture of two or more species in any proportion.

【0010】これらの水素吸蔵金属の本発明への適用の
可否は、前述の二酸化炭素の資源化化学反応に示したよ
うに、メタノール転化と平行して水が生成するが、この
水と金属の反応し易さによって決められる。上述の水素
吸蔵金属の中では、カルシウム系のものが水と反応し易
いため、本発明の適用において制限が生じる。
[0010] The applicability of these hydrogen storage metals to the present invention is determined by the fact that water is produced in parallel with methanol conversion, as shown in the above-mentioned carbon dioxide resource recovery chemical reaction, and the relationship between this water and metal is Determined by ease of reaction. Among the above-mentioned hydrogen storage metals, calcium-based metals tend to react with water, which limits the application of the present invention.

【0011】本発明では、このような水素吸蔵金属を水
素が吸蔵された状態で使用する。したがって、予め水素
吸蔵金属に水素を吸蔵させねばならない。水素吸蔵金属
に対する水素吸蔵のさせ方は、基本的に任意である。例
えば、水素吸蔵金属に加圧した水素を接触させて吸蔵さ
せる方法、水素吸蔵金属を陰極として水を電気分解して
、発生した水素を吸蔵させる方法、あるいは水素と二酸
化炭素の混合ガスを接触させて、水素の吸蔵と二酸化炭
素のメタノール転化反応を平行的に進める方法等いずれ
の方法を選択してもよい。本発明の反応機構は、水素吸
蔵合金に吸蔵された水素と二酸化炭素が反応してメタノ
ールに転化するものと推定されることから、この要件さ
え充たされるならば、どのような方法、手段でも良い。
In the present invention, such a hydrogen storage metal is used in a state in which hydrogen is stored therein. Therefore, hydrogen must be stored in the hydrogen storage metal in advance. The manner in which the hydrogen storage metal is allowed to store hydrogen is basically arbitrary. For example, there is a method in which pressurized hydrogen is brought into contact with a hydrogen-absorbing metal to absorb it, a method in which water is electrolyzed using a hydrogen-absorbing metal as a cathode and the generated hydrogen is absorbed, or a method in which a mixed gas of hydrogen and carbon dioxide is brought into contact with each other. Any method may be selected, such as a method in which hydrogen storage and carbon dioxide methanol conversion reaction proceed in parallel. Since the reaction mechanism of the present invention is presumed to be that hydrogen stored in a hydrogen storage alloy reacts with carbon dioxide and is converted to methanol, any method or means may be used as long as this requirement is met. .

【0012】水素吸蔵金属に対する水素の吸蔵量につい
ては、特別の限定をもうけない。しかし、吸蔵水素が多
いほど、二酸化炭素のメタノール転化反応が長時間持続
すること、時間当たりのメタノール転化量が大きいこと
等の傾向が認められている。従って、望ましい転化効率
を得るためには、吸蔵水素濃度を高めることが有効であ
る。
[0012] There are no particular limitations on the amount of hydrogen stored in the hydrogen storage metal. However, it has been observed that the larger the amount of absorbed hydrogen, the longer the methanol conversion reaction of carbon dioxide continues, and the larger the amount of methanol conversion per hour. Therefore, in order to obtain a desired conversion efficiency, it is effective to increase the concentration of occluded hydrogen.

【0013】水素を吸蔵した水素吸蔵金属と二酸化炭素
の接触のさせ方も基本的に任意である。例えば、ガス状
態の二酸化炭素を接触させる方法、水又は有機および無
機溶剤に溶解させた二酸化炭素を接触させる方法、ある
いは圧力を高めて二酸化炭素を液化させたものを接触さ
せる等のいずれの方法でも利用できる。また、二酸化炭
素と水素を吸蔵した金属を接触させ、メタノールに転化
させる場合の圧力、温度についても任意である。圧力を
高くして接触させる方法では、二酸化炭素の濃度を高め
る効果があるが、反応全体をガス状態で進めるためには
、生成するメタノールが気体となる温度を考慮した条件
が必要になる。あるいは、二酸化炭素が液体になる圧力
と温度で反応させることもできる。この場合は、生成し
たメタノールと未反応の二酸化炭素の分離が容易になる
[0013] The method of bringing the hydrogen-absorbing metal that has occluded hydrogen into contact with carbon dioxide is basically arbitrary. For example, any method such as contacting carbon dioxide in a gaseous state, contacting carbon dioxide dissolved in water or an organic or inorganic solvent, or contacting carbon dioxide liquefied by increasing pressure. Available. Furthermore, the pressure and temperature at which carbon dioxide and hydrogen-absorbing metal are brought into contact and converted into methanol are also arbitrary. The method of contacting at high pressure has the effect of increasing the concentration of carbon dioxide, but in order to proceed with the entire reaction in a gaseous state, conditions must be established that take into account the temperature at which the methanol produced becomes a gas. Alternatively, the reaction can be carried out at pressures and temperatures that turn carbon dioxide into a liquid. In this case, the generated methanol and unreacted carbon dioxide can be easily separated.

【0014】吸蔵された水素と二酸化炭素の反応は、水
素吸蔵金属の表面で進行すると考えられる。従って、水
素吸蔵金属の表面積を大きくする手段を取ることが、反
応の効率の点で有効である。表面積を大きくする手段と
しては、粉末として用いる方法、触媒反応で通常行われ
る担持体に水素吸蔵金属を微粉末状でローディングする
方法、水素吸蔵金属を薄膜にして用いる方法など何れも
採用できる。何れを採用するかは、二酸化炭素の資源化
プラントの設計の問題である。例えば、移動床型のプラ
ントの場合は粉末形を選択することができ、固定リアク
タ方式の場合は薄膜を採用し、水素吸蔵金属の薄膜の片
側に水素を配置し、他の面側に二酸化炭素を流動させれ
ばよい。
[0014] The reaction between occluded hydrogen and carbon dioxide is thought to proceed on the surface of the hydrogen-absorbing metal. Therefore, it is effective to increase the surface area of the hydrogen storage metal in terms of reaction efficiency. As a means for increasing the surface area, any of the following methods can be adopted: using the hydrogen storage metal as a powder, loading the hydrogen storage metal in the form of a fine powder onto a support that is normally carried out in a catalytic reaction, and using the hydrogen storage metal in the form of a thin film. Which one to adopt depends on the design of the carbon dioxide resource recovery plant. For example, a moving bed type plant can choose a powder type, while a fixed reactor type can use a thin film, with hydrogen placed on one side of a thin film of hydrogen storage metal and carbon dioxide on the other side. All you have to do is make it flow.

【0015】本発明の二酸化炭素資源化方法は、メタノ
ール転化が高い選択性を有することも特長である。現在
研究中の電気化学的な還元による方法では、前述したよ
うに多成分の混合物として生成する。これらに比べて、
本発明の反応後の組成は、反応主成分であるメタノール
及び水、更に未反応の二酸化炭素及び反応に関与できず
に水素吸蔵金属から放出されたわずかの水素である。従
って、資源化されたメタノールの分離、回収は容易であ
り、単純な分離システムで済む利点を有する。
The carbon dioxide resource recovery method of the present invention is also characterized by high selectivity in methanol conversion. In the electrochemical reduction method currently under research, it is produced as a multicomponent mixture, as described above. Compared to these,
The composition after the reaction of the present invention is methanol and water, which are the main components of the reaction, as well as unreacted carbon dioxide and a small amount of hydrogen that cannot participate in the reaction and is released from the hydrogen storage metal. Therefore, it is easy to separate and recover recycled methanol, which has the advantage of requiring a simple separation system.

【0016】以下、本発明の実施例を述べる。 (実施例1)水素吸蔵金属として、Pd、Ti及びVの
単体金属、合金系のものとして、Mg2Cu、MmNi
5(Mmはミッシュメタル)、LaNi5及びTiFe
の薄片(10x10x1mmt)を用意した。比較用に
Cu、Fe及びNiの同様の薄片を用意した。それぞれ
の薄片を圧力10kg/cm2の水素雰囲気で、100
℃1時間、室温1時間のサイクル処理を3回繰り返し、
前処理及び水素吸蔵処理を行った。水素吸蔵処理を施し
たそれぞれの金属薄片と水素吸蔵処理を行っていないP
dの薄片とを別々に、カラス容器中の二酸化炭素を飽和
溶解せしめた水に浸漬し、上部空間に二酸化炭素を流入
しつつ、室温で2時間保持した。
Examples of the present invention will be described below. (Example 1) As hydrogen storage metals, single metals of Pd, Ti, and V; as alloys, Mg2Cu, MmNi
5 (Mm is misch metal), LaNi5 and TiFe
A thin section (10 x 10 x 1 mm) was prepared. Similar flakes of Cu, Fe, and Ni were prepared for comparison. Each thin piece was heated for 100 minutes in a hydrogen atmosphere at a pressure of 10 kg/cm2.
Cycle treatment of 1 hour at °C and 1 hour at room temperature was repeated three times.
Pretreatment and hydrogen storage treatment were performed. Each metal flake with hydrogen storage treatment and P without hydrogen storage treatment
The thin slices of d and d were separately immersed in water in which carbon dioxide was saturated and dissolved in a glass container, and held at room temperature for 2 hours while flowing carbon dioxide into the upper space.

【0017】それぞれの水について、ガスクロマトグラ
フィによって分析し、メタノールその他の成分の確認試
験を行った。ガスクロマトグラフィ分析には、成分分離
に活性炭カラムを用い検出器として熱伝導型のTCDを
用いた水素、CO(一酸化炭素)及びCH4(メタン)
の検出ならびにPorapak−Qカラムを用い検出器
にFIDを用いたメタノール、CH4及びその他の有機
化合物の検出をそれぞれ行った。その結果は、表1のよ
うであった。
Each of the waters was analyzed by gas chromatography to confirm methanol and other components. Gas chromatography analyzes hydrogen, CO (carbon monoxide), and CH4 (methane) using an activated carbon column for component separation and a thermally conductive TCD as a detector.
and methanol, CH4, and other organic compounds were detected using a Porapak-Q column and an FID as a detector, respectively. The results were as shown in Table 1.

【0018】[0018]

【表1】[Table 1]

【0019】水素吸蔵処理を行った水素吸蔵金属でのガ
スクロマトグラフィ分析結果は、活性炭カラム/TCD
で水素、N2、O2の空気成分及びCO2を検出したが
、CO、CH4などは検出されなかった。また、Por
apak−Q/FIDでは、メタノールを検出したが、
メタノール以外の有機化合物は検出されなかった。水素
吸蔵処理をしないPd及び水素吸蔵処理を行ったCu、
Fe、Niでは、メタノールは検出されず、さらに水素
も検出されなかった。このように、本発明では、二酸化
炭素がメタノールに転化し、資源化される。
Gas chromatography analysis results for hydrogen storage metals subjected to hydrogen storage treatment are as follows: activated carbon column/TCD
Air components such as hydrogen, N2, O2, and CO2 were detected, but CO, CH4, etc. were not detected. Also, Por
Apak-Q/FID detected methanol, but
No organic compounds other than methanol were detected. Pd without hydrogen storage treatment and Cu with hydrogen storage treatment,
For Fe and Ni, methanol was not detected, and hydrogen was also not detected. In this way, in the present invention, carbon dioxide is converted into methanol and recycled.

【0020】(実施例2)電極として陰極にPdを、陽
極にPtを用い、電解液として0.1MolのKHCO
3水溶液を用い、−1.5VvsSCEの条件で二酸化
炭素の電気化学的還元を行った。電気化学反応生成物の
分析は、ガス状であるもの(ガス状有機化合物、CO及
び水素)及び液中に溶解するものについて、ガスクロマ
トグラフ分析を行った。分析は、電気分解開始後2時間
ごとに実施し、8時間経過後、電流を遮断して2時間経
過後に分析を行った。本発明に該当するものは、電流遮
断した後のものである。分析結果は、表2のようであっ
た。
(Example 2) Pd was used as the cathode, Pt was used as the anode, and 0.1M of KHCO was used as the electrolyte.
Electrochemical reduction of carbon dioxide was performed using an aqueous solution of 3 under conditions of -1.5V vs SCE. For analysis of electrochemical reaction products, gas chromatography was performed for those in gaseous form (gaseous organic compounds, CO and hydrogen) and those dissolved in the liquid. Analysis was performed every 2 hours after the start of electrolysis, and after 8 hours, the current was cut off and analysis was performed 2 hours later. What corresponds to the present invention is what happens after the current is cut off. The analysis results were as shown in Table 2.

【0021】[0021]

【表2】[Table 2]

【0022】上表に見られるように、−1.5VvsS
CEの電気分解では、メタノールは生成せず、水素のほ
か、CO、HCO2H、CH4が生成した。これに対し
て、通電8時間を経過して、水素を吸蔵した状態となっ
たPdは、電流を遮断した条件でメタノールを生成し、
COやCH4等は生成しないのである。この実施例から
分かるように、この例における電気分解は、水素吸蔵金
属であるPdに水素を吸蔵させるための過程であると考
えることができる。
As seen in the table above, -1.5V vs S
In the electrolysis of CE, methanol was not produced, but in addition to hydrogen, CO, HCO2H, and CH4 were produced. On the other hand, Pd, which has absorbed hydrogen after 8 hours of energization, produces methanol when the current is cut off.
CO, CH4, etc. are not generated. As can be seen from this example, the electrolysis in this example can be considered to be a process for causing Pd, which is a hydrogen storage metal, to store hydrogen.

【0023】(実施例3)陰極としてTiを用い、陽極
としてPtをもちい、初めに0.2Mol.Na2Cl
O4水溶液(PH3)で1mA/cm2の電流密度で1
0時間の水素吸蔵処理を行った。その後、0.1Mol
.NaClO4及び0.1Mol.リン酸緩衝溶液に二
酸化炭素を飽和溶解させた溶液(PH6)について、電
気分解の電圧を−0.6V  vs  Ag/AgCl
として電気分解を行った。生成成分は、メタノールと水
素で、電流効率で表すとメタノール59%、水素41%
であった。同一電気分解条件で陰極に水素吸蔵処理をし
ないTi電極を用いた場合は、メタノールが発生しない
のみならず、水素発生の電流効率も60%程度であった
。電気分解を更に継続して、10時間後に分析を行った
ところメタノールの生成が確認できた。事前に水素吸蔵
処理を行った前者は、電気分解で水素を吸蔵させつつ二
酸化炭素をメタノールに転化する方法の例である。後者
は、事前に水素吸蔵処理をしない場合であり、電気分解
の初期は水素吸蔵処理に対応した過程となり、一定の水
素吸蔵量になるとメタノールを生成するようになること
を示す例である。
(Example 3) Ti was used as the cathode, Pt was used as the anode, and 0.2 Mol. NaCl
1 at a current density of 1 mA/cm2 in O4 aqueous solution (PH3)
Hydrogen storage treatment was performed for 0 hours. After that, 0.1Mol
.. NaClO4 and 0.1Mol. For a solution (PH6) in which carbon dioxide is saturated in a phosphate buffer solution, the electrolysis voltage is set to -0.6V vs. Ag/AgCl.
Electrolysis was performed as follows. The generated components are methanol and hydrogen; expressed in terms of current efficiency, methanol is 59% and hydrogen is 41%.
Met. When a Ti electrode without hydrogen storage treatment was used as the cathode under the same electrolysis conditions, not only no methanol was generated, but also the current efficiency of hydrogen generation was about 60%. Electrolysis was further continued, and analysis was performed 10 hours later, and it was confirmed that methanol was produced. The former method, in which hydrogen storage treatment is performed in advance, is an example of a method in which carbon dioxide is converted to methanol while hydrogen is stored by electrolysis. The latter is a case where hydrogen storage treatment is not performed in advance, and is an example showing that the initial stage of electrolysis is a process corresponding to hydrogen storage treatment, and when a certain amount of hydrogen storage is reached, methanol is generated.

【0024】(実施例4)比表面積50cm2/gのT
iスポンジを0.1Mol.のH2SO4水溶液で洗浄
した後、室温で20kg/cm2の圧力で水素と10時
間接触させ、水素を吸蔵させた。この水素吸蔵Tiスポ
ンジを種々の状態の二酸化炭素と接触させ、メタノール
生成の有無をガスクロマトグラフにより分析した。接触
条件は、室温、5時間とした。接触させた二酸化炭素の
条件は、ピリジンに飽和溶解させた二酸化炭素、2kg
/cm2圧力の二酸化炭素ガス及び70kg/cm2で
加圧して液化した二酸化炭素の3種類を試みた。ピリジ
ン二酸化炭素溶液の場合は、溶液をそのままガスクロマ
トグラフ分析した。気体の二酸化炭素を接触させたもの
は、少量のベンゼンを添加してメタノールをベンゼンに
溶解させ、これを分析した。液化した二酸化炭素の場合
は、圧力を急激に低下させて、二酸化炭素の気化で生成
する固化二酸化炭素の気化残液について分析した。分析
の結果、何れのものからもメタノールを検出した。
(Example 4) T with a specific surface area of 50 cm2/g
0.1Mol of i-sponge. After washing with an aqueous H2SO4 solution, the sample was brought into contact with hydrogen at a pressure of 20 kg/cm2 at room temperature for 10 hours to absorb hydrogen. This hydrogen-absorbing Ti sponge was brought into contact with carbon dioxide in various states, and the presence or absence of methanol production was analyzed by gas chromatography. The contact conditions were room temperature and 5 hours. The conditions for the contacting carbon dioxide were 2 kg of carbon dioxide saturated in pyridine.
Three types of carbon dioxide were tried: carbon dioxide gas at a pressure of /cm2 and carbon dioxide liquefied by pressurizing at 70 kg/cm2. In the case of a pyridine carbon dioxide solution, the solution was directly analyzed by gas chromatography. For those in contact with gaseous carbon dioxide, a small amount of benzene was added to dissolve methanol in benzene, and this was analyzed. In the case of liquefied carbon dioxide, the pressure was rapidly lowered and the residual liquid of solidified carbon dioxide produced by vaporization of carbon dioxide was analyzed. As a result of analysis, methanol was detected in all of them.

【0025】(実施例5)素焼きの多孔陶管にポリカー
ボネート/ジメチルフォルムアミド溶液を塗布し、これ
を冷水中に浸漬して、最大孔径1mμ以下のロエブ膜を
形成した。この膜上にスパッタ法でLaNi5を概略0
.3μm厚さに被覆した。このように加工した管は、固
定型リアクタのモデルに該当し、管内に加圧水素を、管
外に二酸化炭素を配置することにより、連続的な二酸化
炭素のメタノール転化が達成できる。管内の水素圧力を
20kg/cm2とし、温度50℃の条件で1気圧の二
酸化炭素を接触させ、定期的な間隔でメタノールの濃度
を調べた。5時間経過後のメタノールの濃度は、0.5
8%であった。時間経過による濃度増加は漸減傾向を示
したが、240時間後においてもメタノール濃度は増加
していた。管内の水素ガス圧力を15kg/cm2に下
げた場合の初期5時間におけるメタノール生成量は、0
.40%であった。管内の水素圧力の低下が、吸蔵水素
濃度を低下させた影響と推定される。
(Example 5) A polycarbonate/dimethylformamide solution was applied to an unglazed porous ceramic tube, and the tube was immersed in cold water to form a Loeb membrane having a maximum pore diameter of 1 mm or less. Approximately 0% LaNi5 was deposited on this film by sputtering.
.. It was coated to a thickness of 3 μm. The tube processed in this way corresponds to a model of a fixed reactor, and by placing pressurized hydrogen inside the tube and carbon dioxide outside the tube, continuous methanol conversion of carbon dioxide can be achieved. The hydrogen pressure inside the tube was 20 kg/cm2, and the tube was brought into contact with 1 atm of carbon dioxide at a temperature of 50° C., and the methanol concentration was checked at regular intervals. The concentration of methanol after 5 hours is 0.5
It was 8%. Although the increase in concentration over time showed a tendency to gradually decrease, the methanol concentration continued to increase even after 240 hours. When the hydrogen gas pressure inside the tube is lowered to 15 kg/cm2, the amount of methanol produced in the initial 5 hours is 0.
.. It was 40%. It is presumed that the decrease in hydrogen pressure inside the pipe reduced the stored hydrogen concentration.

【0026】[0026]

【発明の効果】以上説明したように、この発明の二酸化
炭素の資源化方法によれば、 (1)二酸化炭素を高効率でメタノールに転化できるの
で、地球環境保全の分野及びメタノールを原料とする産
業分野に貢献できる。 (2)二酸化炭素の資源化生成物が、多様な応用が可能
なメタノールであるので新しい化学原料として産業界に
貢献できる。 (3)二酸化炭素のメタノール転化の方式に多様性があ
るので、条件や規模に合せてプラント設計ができる。 (4)基本的に高温度、高圧力を要せず、プロセスの設
計によっては、水素を隔離できるのでプロセスの安全に
寄与できる。 (5)二酸化炭素を高選択的にメタノールに転化できる
ので、プロセスが簡略化できる。 などの効果が得られる。
[Effects of the Invention] As explained above, according to the method of recycling carbon dioxide of the present invention, (1) carbon dioxide can be converted into methanol with high efficiency, so it can be used in the field of global environmental conservation and methanol is used as a raw material. Can contribute to the industrial field. (2) Since the carbon dioxide resource conversion product is methanol, which can be used in a variety of ways, it can contribute to industry as a new chemical raw material. (3) Since there is a variety of methods for converting carbon dioxide to methanol, plants can be designed to suit conditions and scale. (4) Basically, high temperature and high pressure are not required, and depending on the process design, hydrogen can be isolated, contributing to process safety. (5) Since carbon dioxide can be converted to methanol with high selectivity, the process can be simplified. Effects such as this can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  水素を吸蔵した状態の水素吸蔵金属に
二酸化炭素を接触させて二酸化炭素をメタノールに転化
させることを特徴とする二酸化炭素の資源化方法。
1. A method for recycling carbon dioxide as a resource, which comprises bringing carbon dioxide into contact with a hydrogen storage metal in a state in which hydrogen is stored, thereby converting carbon dioxide into methanol.
JP3125442A 1991-04-26 1991-04-26 How to recycle carbon dioxide Expired - Fee Related JP2614947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3125442A JP2614947B2 (en) 1991-04-26 1991-04-26 How to recycle carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3125442A JP2614947B2 (en) 1991-04-26 1991-04-26 How to recycle carbon dioxide

Publications (2)

Publication Number Publication Date
JPH04327549A true JPH04327549A (en) 1992-11-17
JP2614947B2 JP2614947B2 (en) 1997-05-28

Family

ID=14910193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3125442A Expired - Fee Related JP2614947B2 (en) 1991-04-26 1991-04-26 How to recycle carbon dioxide

Country Status (1)

Country Link
JP (1) JP2614947B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236847A (en) * 2005-04-15 2012-12-06 Univ Of Southern California Efficient and selective chemical recycling of carbon dioxide to methanol, dimethyl ether and derived products
JP2014201524A (en) * 2013-04-02 2014-10-27 オルガノ株式会社 Method for decreasing oxide in purified alcohol, and alcohol purification apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236847A (en) * 2005-04-15 2012-12-06 Univ Of Southern California Efficient and selective chemical recycling of carbon dioxide to methanol, dimethyl ether and derived products
JP2014201524A (en) * 2013-04-02 2014-10-27 オルガノ株式会社 Method for decreasing oxide in purified alcohol, and alcohol purification apparatus

Also Published As

Publication number Publication date
JP2614947B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
Ganesh Conversion of carbon dioxide into methanol–a potential liquid fuel: Fundamental challenges and opportunities (a review)
Grubel et al. Challenges and opportunities for using formate to store, transport, and use hydrogen
Wu et al. Catalytic conversion of CO2 to value added fuels: Current status, challenges, and future directions
Graves et al. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy
RU2479558C2 (en) Electrochemical method of producing nitrogen fertilisers
Enthaler et al. Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?
Ogura et al. Ru/La0. 5Pr0. 5O1. 75 catalyst for low-temperature ammonia synthesis
JP4276067B2 (en) Production of hydrogen from hydrocarbons and oxygen-containing hydrocarbons
US8961774B2 (en) Electrochemical production of butanol from carbon dioxide and water
JP4572384B2 (en) Hydrogen generation method
Adegoke et al. Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: Realities and prospects of Cu-based materials
EP3902621A1 (en) Alkali-mediated carbon dioxide capture and utilization
WO2018206235A1 (en) A method for generating syngas for use in hydroformylation plants
Li et al. How to go beyond C 1 products with electrochemical reduction of CO 2
Sanni et al. Strategic examination of the classical catalysis of formic acid decomposition for intermittent hydrogen production, storage and supply: A review
US20120276493A1 (en) Thermochemical Synthesis of Fuels for Storing Thermal Energy
EP3292231B1 (en) Electrochemical reduction of carbon dioxide in aqueous ionic liquid containing electrolytes
Sahebdelfar et al. Carbon monoxide clean-up of the reformate gas for PEM fuel cell applications: A conceptual review
Sato et al. Using a hydrogen-permeable palladium membrane electrode to produce hydrogen from water and hydrogenate toluene
JPH04327549A (en) Method for utilizing carbon dioxide as resource
Inta et al. Recent advances in electrocatalytic NO x reduction into ammonia
WO2020008267A2 (en) Methods of and systems for electrochemical reduction of substrates
Imamura et al. Efficient dehydrogenation of methanol using hydride-forming alloys (Zr2Ni, R2Co7 and RFe2) as hydrogen acceptors
JP3858087B2 (en) Method for producing hydrogenated fullerene by conversion reaction using a catalyst in which ruthenium, palladium, iridium, platinum or cobalt is supported on activated alumina
Oesterreicher et al. Catalytic activity of metal hydrides

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970121

LAPS Cancellation because of no payment of annual fees