JPH04327545A - Method of manufacturing diisopropylbenzene - Google Patents

Method of manufacturing diisopropylbenzene

Info

Publication number
JPH04327545A
JPH04327545A JP12481091A JP12481091A JPH04327545A JP H04327545 A JPH04327545 A JP H04327545A JP 12481091 A JP12481091 A JP 12481091A JP 12481091 A JP12481091 A JP 12481091A JP H04327545 A JPH04327545 A JP H04327545A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
reaction
diisopropylbenzene
isopropylbenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12481091A
Other languages
Japanese (ja)
Other versions
JPH0688918B2 (en
Inventor
Ekigai O
奕 凱 王
Shinsho Sai
振 章 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIWAN HONOTSUKI KOGYO KOFUN YUGENKOSHI
Original Assignee
TAIWAN HONOTSUKI KOGYO KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIWAN HONOTSUKI KOGYO KOFUN YUGENKOSHI filed Critical TAIWAN HONOTSUKI KOGYO KOFUN YUGENKOSHI
Priority to JP12481091A priority Critical patent/JPH0688918B2/en
Publication of JPH04327545A publication Critical patent/JPH04327545A/en
Publication of JPH0688918B2 publication Critical patent/JPH0688918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • C07C6/123Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of only one hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To advantageously obtain diisopropylbenzene useful as an antioxidant, a stabilizer, etc., by using a zeolite β catalyst more excellent in reaction selectivity, reaction activity and stability than a known catalyst for disproportionation reaction of isopropylbenzene.
CONSTITUTION: Isopropyl-contg. starting material is brought into catalytic reaction at 90-250°C under about 1-100 atm pressure in the presence of a zeolite βcatalyst, preferably a hydrogen anion type zeolite β catalyst in which the molar ratio of SiO2 to Al2O3 is 10-150 to advantageously obtain the objective diisopropylbenzene useful also as a developer and an intermediate of polycarbonate. This method is preferably carried out in a continuous fixed bed reactor system and a flow of gaseous nitrogen is preferably passed through the reactor system so that the molar ratio between the flow and the starting material is regulated to (0-5):1. In this case, the starting material is preferably passed through the catalyst at 0.2-50 ghr-1gcat-1 rate and the reaction temp. is preferably 100-180°C. The stability of the catalyst is improved by pretreatment with steam.
COPYRIGHT: (C)1992,JPO

Description

【発明の詳細な説明】 【0001】 【技術分野】本発明はジイソプロピルベンゼンの製造法
に関する。詳しくは、イソプロピルを含む原料を触媒転
化によりジイソプロピルベンゼンを生成する方法に関す
る。 【0002】 【発明の背景】ジイソプロピルベンゼン、特にm−及び
p−ジイソプロピルベンゼン異性体は酸化防止剤、安定
剤であり、現像剤、ポリカーボネートの重要な中間体で
ある。また、ジイソプロピルベンゼンは脱水素によりス
チレン単量体に似た構造のジイソプロピレンベンゼンに
することもできる。例えば、H. A.Covin &
 J. Muse,”Polymers Diisop
ropenylbenzene”  Chemtech
, 500 (1986)に記載の通り、ジイソプロピ
レンベンゼンは構造修飾上の多様性により、スチレン単
量体より更に発展性のある中間体である。ジイソプロピ
ルベンゼンも工程プラスチック、エポキシ樹脂、ポリウ
レタンに発展応用されているので、ジイソプロピルベン
ゼンの製造は極めて産業上利用価値のある研究である。 【0003】ジイソプロピルベンゼンの一般的製造方法
は下記二種の方法がある。第1の方法は触媒を使い、プ
ロピル基を直接ベンゼンに結合する。適用する触媒はフ
リーデル・クラフツ、ZSM−5,ZSM−12等があ
る。第2の方法はイソプロピルベンゼンの不均化反応で
あり、2分子のイソプロパンを触媒の存在下、互いに反
応させ、1分子のベンゼンと1分子のジイソプロピルベ
ンゼンを生成することができる。一般に、不均化反応の
製造方法はアルキル化反応より反応選擇性が優れている
。 【0004】ソ連特許第192,109 号はAlCl
3 触媒の存在下のイソプロピルベンゼンの不均化反応
によるジイソプロピルベンゼンの製造方法を開示してい
る。このAlCl3 触媒は異性体の選擇性が劣るばか
りか、環境汚染の問題も起こす。米国特許第3,780
,123 号はアルキルベンゼンの不均化反応を開示し
ている。その反応は複合触媒の存在下で行い、複合触媒
はH型モルデナイト、酸化アルミニウム及びVIII族
金属硫化物より組成される。 【0005】W. W. Kaeding はJ. C
atal. 120 号、409 頁(1989)に 
”Shape−SelectiveReactions
 with Zeolite Catalysts V
II. Alkylation and Dispro
potionationof Cumene to P
roduce Diisopropylbenzene
”の論文にてZSM−12触媒の存在下、イソプロピル
ベンゼンを触媒反応によりジイソプロピルベンゼンを製
造する方法を開示した。このZSM−12触媒のイソプ
ロピルベンゼン不均化反応に対する選擇性はAlCl3
 触媒より優れているが、まだ改良の余地がある。 【0006】米国特許第3,308,069 号はゼオ
ライトβ触媒を開示している。その化学組成計算式は次
の通りである。 【数1】■          〔XNa(1.0 ±
0.1−X)〕TEA 〕AlO2 ・YSiO2 ・
 WH2O 数1式中、Xは1より小さい。Yは5より大きいが10
0より小さい。Wは4以下で、TEAはテトラエチルア
ンモニウムイオンを示す。 【0007】一般に、蒸気で前処理するとゼオライトY
触媒のSiO2 /Al2 O3 のモル比が上昇する
ことは米国特許第3,292,192 号にも記載して
いる。従って、蒸気前処理はゼオライトY触媒の酸強度
を増進し、粘結率及び安定性を低下させる。本発明は最
初にゼオライトβ触媒を使用し、イソプロピルベンゼン
の不均化反応により、ジイソプロピルベンゼンを製造し
た。このゼオライトβ触媒は周知のイソプロピルベンゼ
ンの不均化反応触媒より反応選擇性、反応活性と安定性
が優れている。 【0008】 【発明の構成】本発明はイソプロピルを含む原料をゼオ
ライトβ触媒の存在下、90−250℃にて触媒反応を
行うことを特徴とするジイソプロピルベンゼンの製造法
を提供する。本発明の方法に使用されるゼオライトβ触
媒はHアニオン型が好ましく、そのSiO2 /Al2
 O3 のモル比が10−150の間である。上記本発
明の方法は連続固定床反応器系統にて行うことが好まし
く、その内イソプロピル原料がゼオライトβ触媒の重量
空間を通る速度は0.2−50g hr−1gcat−
1である。 【0009】本発明はジイソプロピルベンゼンの製造方
法に関する。イソプロピルを含む原料をゼオライトβ触
媒の存在下、90−250℃にて触媒反応を行う。上記
本発明の方法の触媒反応は主としてイソプロピルベンゼ
ンの不均化反応であり、2モルのイソプロピルベンゼン
を触媒の存在下で反応させ、1モルのベンゼンと1モル
のジイソプロピルベンゼンを生成する。 【0010】本発明者が先に発表した論文 ”Disp
ropotionation of Toluene 
and Trimethylbenzen and T
heir Transalkylation over
 Zeolite Beta”,Ind. Eng. 
Chem. Resarch, 1990.9 は水素
アニオン型のゼオライトβ触媒がトルエンとトリメチル
ベンゼンの不均化とトランスアルキル化反応にて優れた
反応活性、選擇性と安定性を示すことを開示している。 従って、本発明に適用するゼオライトβ触媒は水素アニ
オン型にも優れた反応性があると信ずる。 【0011】上記本発明の方法のゼオライトβ触媒の製
造に適用する方法として、定温水熱法(hydro−t
hermal method)によりSiO2 −Al
2 O3 −水酸化テトラエチルアンモニウム−水の混
合物から結晶固体を製造する。 Parienteらが Appl. Catal.第3
1号、第35頁(1987)に発表した論文 ”Cry
stallization Mechanism of
 ZeoliteBeta from  (TEA)2
O , Na2O and K2O Containi
ng AluminosilicateGels”を参
照されたい。この論文の内容を本発明の参考とする。毎
回得られた固体の生成物を濾過、水洗し、120 ℃に
て一夜乾燥すると、SiO2 /Al2 O3 のモル
比が10−150の間のものが得られる。得られた製品
を450℃−660℃にて2−48時間焼き、NH4 
NO3 溶液でイオン交換を行い、濾過、水洗い、乾燥
して、望む寸法、形の粒子にし、及び/又は更に望まし
いサイズの粒子に粉砕する。 【0012】本発明の方法における反応温度は100℃
−180℃の間が好ましい。反応壓力は特に制限がない
が、約1大気圧が好ましい。本発明の方法の反応雰囲気
も特に制限がない。例えば、何のガスも添加しない、又
はN2 、H2 などを反応器に添加する。一般に、添
加したガスとイソプロピルベンゼン原料のモル比は0.
05以上である。本発明の方法は何れの周知の反応器系
統でも行うことができるが、本発明の好ましい実施例に
は連続固定床反応器系統を使用し、固定床反応器系統を
通過する原料の重量空間速度(WHSV)は0.2−5
0g hr−1gcat−1で、2.8−3.4g h
r−1gcat−1の間が好ましい。 【0013】 【実施例】本発明の方法を下記の実施例により更に詳し
く説明するが、これらの実施例は只説明にするだけで、
本発明の範囲を制限するものではない。 〔実施例1〕:  ゼオライトβ、ZSM−5,H型モ
ルデナイト、及びゼオライトHY触媒の製造ゼオライト
β触媒の製造は定温水熱法によりSiO2 −Al2 
O3 −水酸化テトラエチルアンモニウム−水の混合物
から結晶生成し水洗いし、120 ℃にて一夜乾燥する
。得られた製品を Simens D−500 X−線
回析計で分析すると、X−線粉末回折図は前記本発明者
が発表した ”Dispropotionation 
of Toluene and Trimethylb
enzene and Their Transalk
ylation over Zeolite Beta
”論文の図1に示す通りである。又、誘導カップリング
プラズマで測定したSiO2 /Al2 O3 のモル
比は15.3である。 【0014】上記乾燥製品を450℃にて6時間焼いた
後、次のイオン交換を行う:(1) 固体と80℃の1
N  NH4 NO3 溶液を該固体/溶液重量比1:
20で8時間接触させ、(2) 該固体を濾過回収し、
(3) 該固体を熱い脱イオン水で洗う。このイオン交
換工程を6回繰り返してから、このNH4 + イオン
交換固体を120℃にて一夜乾燥した後、450℃の空
氣中で6時間焼いて、このH型ゼオライトを造粒し、1
2−20メッシュの粒子にした。 【0015】H型モルデナイト(HM)はStream
 Chemicals Co.より直接購入した。ZS
M−5は Chao らの”Kinetic Stud
ies on the Formation of Z
eolite ZSM−5”Chem.Soc. Fa
raday Trans.,1, 77, 547(1
981) の方法で製造した。ゼオライトHYの製造は
Stream Chemicals Co.より購入し
たNaY。ZSM−5とNaYは上記ゼオライトβのN
H4 + イオン交換と同じくH型ゼオライトの12−
20メッシュの粒子に製造した。 【0016】〔実施例2〕:イソプロピルベンゼンの不
均化反応 反応は連続固定床反応器にて行った。2.54グラムの
上記実施例1にて製造したゼオライトβと4.65グラ
ムのセラミックフレークスを反応器に混合充填し、45
0℃の熱空氣を通して6時間活性化した後、窒素を通し
て望む反応温度まで冷却する。 【0017】Jassen  Chemical  社
から購入したイソプロピルベンゼンを計量ポンプで反応
器に通すと共に、別に計量された窒素気流を通し、窒素
/ イソプロピルベンゼン=0.19モル/モルにする
。反応器から流出した反応生成物を15分毎に回収し、
ジメチルシロキサンカラム、HP  Ultra  1
を配備したHewllett−Packard 589
0 ガスクロマトグラフィで分析した。 【0018】イソプロピルベンゼンの転化率XC 及び
不均化反応の選擇率SD の定義はそれぞれ下記の通り
である: 【数2】XC (重量%)=100−(イソプロピルベ
ンゼン、重量%)p  【数3】 数2式中及び数3式中、(イソプロピルベンゼン、重量
%)p と(DPB,重量%)p はそれぞれ生成物流
れ中のイソプロピルベンゼン組成成分とジプロピルベン
ゼン(DPBと略す)の組成成分を示す。 【0019】反応の結果と条件は表1の通りで、表1に
は尚同じ条件下、HY,HM  HZSM−5でゼオラ
イトβを置換した反応の結果を示した。 【表1】低転化率下、異なる触媒を比較したイソプロピ
ルベンゼン不均化反応に於ける不均化反応の反応活性、
選擇性と安定性1                          H
−Beta      HY      HM    
HZSM−52反応温度(℃)           
118     205      200     
 120転化率(重量%)         14.0
    13.0     5.9      6.3
選擇率(モル/モル) 不均化選擇率             0.99  
  0.95     0.93     0.69 
ヘ゛ンセ゛ン/シ゛フ゜ロヒ゜ルヘ゛ンセ゛ン    
       1.0     1.05     1
.09     2.07 m/p−シ゛イソフ゜ロヒ
゜ルヘ゛ンセ゛ン      1.75    2.1
0     1.71     0.23 α    
                   0.07  
  0.15     0.35     ・・・  
製品收率(重量%) ベンゼン                 4.50
    4.21     1.95     2.9
2 イソプロピルベンゼン    86.05   8
7.04    94.10    93.69 n−
プロピルベンゼン     0.11    0.13
     0.15     0.05 o−シ゛イソ
フ゜ロヒ゜ルヘ゛ンセ゛ン          ・・・
     0.19     0.10     ・・
・  m−シ゛イソフ゜ロヒ゜ルヘ゛ンセ゛ン    
      5.94    5.49     2.
28     0.52 p−シ゛イソフ゜ロヒ゜ルヘ
゛ンセ゛ン          3.4     2.
62     1.33     2.28 p−n−
フ゜ロヒ゜ル−イソフ゜ロヒ゜ルヘ゛ンセ゛ン    
  ・・・     ・・・      ・・・   
   0.13 他の芳香族物           
  ・・・     0.32     0.09  
   0.41 1  WHSV:3.4g hr −
1gcat−1,窒素/イソプロピルベンゼン=0.1
9モル/モル、反応時間(time−on−strea
m) :60分間 2  反応時間:30分間 【0020】表1のデータより、ゼオライトβ触媒はイ
ソプロピルベンゼン不均化反応の場合最も優れた反応活
性と選擇率を示す。例えば、反応温度が118℃の場合
、ゼオライトβ触媒転化率は14.0で、ゼオライトH
YとHMより遥かに大きく、且つその不均化反応の選擇
率は0.99で、1と非常に近く、殆ど等モルのベンゼ
ンとジプロピルベンゼンが生成していることを示す。ゼ
オライト触媒反応活性の老化は、一般にいずれも下記指
数公式で表す。 【数4】 数4式中、Xt は反応時間がtの時のイソプロピルベ
ンゼン転化率を示す。Xo は反応時間を0に外挿した
時の転化率を示す。αは衰退指数であり、α値が小さい
程、安定性がよいことを示す。例えば、表1に示す通り
、ゼオライトβ触媒は最も優れた安定性を有する。 【0021】又、高い転化率、即ち高い反応温度におけ
る反応の結果を次の表2に示す。 【表2】高転化率下、異なる触媒を比較したイソプロピ
ルベンゼン不均化反応に於ける不均化反応の反応活性、
選擇性と安定性1                          H
−Beta      HY      HM    
HZSM−52反応温度(℃)           
  138     220     240    
   250転化率(重量%)          4
0.1    22.5    14.5      
45.1粘結率〔(g/g cat)%3 〕    
4.72    4.54    6.62     
 ・・・ 選擇率(モル/モル) 不均化選擇率              0.98 
   0.91    0.95      0.90
ヘ゛ンセ゛ン/シ゛フ゜ロヒ゜ルヘ゛ンセ゛ン    
        1.06    1.16    1
.12      1.17m/p−シ゛イソフ゜ロヒ
゜ルヘ゛ンセ゛ン           2.05  
  2.18    2.01      1.81α
                        0
.23    0.14    0.31      
・・・ 製品收率(重量%) ベンゼン                  13.
5    7.74    4.95     15.
42イソフ゜ロヒ゜ルヘ゛ンセ゛ン         
      59.88   77.53   85.
55      54.9n−フ゜ロヒ゜ルヘ゛ンセ゛
ン                0.10    
0.17    0.14      0.32o−シ
゛イソフ゜ロヒ゜ルヘ゛ンセ゛ン          
 ・・・     0.42    0.11    
  0.23m−シ゛イソフ゜ロヒ゜ルヘ゛ンセ゛ン 
           17.76    9.17 
   6.08     17.54p−シ゛イソフ゜
ロヒ゜ルヘ゛ンセ゛ン             8.
68    4.21    3.03      9
.70他の芳香族物              0.
08    0.76    0.14      1
.891  WHSV: 3.4g hr−1gcat
 −1,窒素/イソプロピルベンゼン=0.19モル/
モル、反応時間:60分間2  データは前記 W. 
W. Kaedingらが発表した論文 J.Cata
l. 120, 409 (1989)より。 3  粘結率は反応時間終了後、窒素で反応温度にて3
時間洗い、沈着したコールタール量をDupont 9
51 Thermogravimetry で測定した
。 【0022】同様に、表2のデータもゼオライトβはイ
ソプロピルベンゼン不均化反応において、Y型、モルデ
ナイト型より高い転化率が得られ、尚優れた不均化選擇
率を保持できて、厳重なクラッキング生成物がないこと
を示す。ZSM−12型ゼオライトはゼオライトβに相
当する転化率が得られるが、その反応温度はゼオライト
βより遥かに高い(110℃高い)ので、その反応活性
はゼオライトより遥かに劣る。又、ゼオライトβはより
高い転化率で操作をするが、粘結率はやはりY型と同じ
で、モルデナイト型より低い。従って、同じ温度で操作
すると、ゼオライトβ型はY型とモルデナイト型より低
い粘結率を示す。これはゼオライトβ型により優れた安
定性があるからである。従って、ゼオライトβ型は優れ
た反応活性、選擇率と安定性を有する。 【0023】〔実施例3〕本実施例の目的は本発明の方
法に使用されるゼオライトβ触媒は蒸気前処理の方法に
よりイソプロピルベンゼン不均化反応の安定性を向上さ
せることを、例を挙げて、説明することにある。イソプ
ロピルベンゼン原料を導入する前、反応器中のゼオライ
トβ触媒を蒸気前処理する他は実施例2と同じく行う。 蒸気前処理は蒸留水をポンプで特定処理条件の反応器に
送り行う。前処理が完了後、窒素を反応器に導入し3時
間洗い、残留している蒸気を除去する。反応の結果と条
件は表3の通りである。 【表3】蒸気前処理のゼオライトβ触媒の反応活性と安
定性に対する影響1                           
             触    媒      
                         
             未  修  飾     
    1         2  蒸気前処理条件 温度(℃)                    
                454      
 450 WHSV(g /hr gcat )   
                   3.38  
    9.88窒素/水(モル/モル)      
                  0.18   
   0.18時間(hr)            
                      4  
       10  反応条件 温度(℃)                  13
4      143      153      
 172 WHSV(g /hr gcat )   
 3.4      3.4      2.0   
    2.2 転化率(重量%)         
   29.40    40.1     37.1
      33.50 粘結率(g /hr gca
t2)      ・・・      6.47   
  ・・・       5.92安定性 XO (重量%)              67.
4     100.0    55.2      
34.50 α                  
        0.19     0.23    
 0.09      0.01選擇率(モル/モル) SD (モル%)              98.
9     97.6     93.08     
82.48 ヘ゛ンセ゛ン/シ゛フ゜ロヒ゜ルヘ゛ンセ
゛ン              1.10     
1.06     1.27      1.40m/
p−シ゛イソフ゜ロヒ゜ルヘ゛ンセ゛ン       
  0.47     0.51     0.42 
     0.43製品收率(重量%) ベンゼン                    9
.45     13.5     13.22   
  12.61 イソプロピルベンゼン       
 70.65    59.88    62.95 
    66.51 n−フ゜ロヒ゜ルヘ゛ンセ゛ン 
               0.12     0
.10     0.16      0.17o−シ
゛イソフ゜ロヒ゜ルヘ゛ンセ゛ン          
   13.35    17.76    16.2
0     12.88 m−シ゛イソフ゜ロヒ゜ルヘ
゛ンセ゛ン             ・・・    
  ・・・      ・・・       0.20
p−シ゛イソフ゜ロヒ゜ルヘ゛ンセ゛ン       
      6.27     8.68     6
.87      5.57他の芳香族物      
          0.16     0.08  
   0.40      2.071  イソプロピ
ルベンゼン/窒素=14.5モル/モル、反応時間:6
0分間 【0024】上記表3のデータより明らかに示す通り、
蒸気前処理はゼオライトβ触媒の安定性を向上させるが
、同時に部分の反応活性を失う。
Description: TECHNICAL FIELD The present invention relates to a method for producing diisopropylbenzene. Specifically, the present invention relates to a method for producing diisopropylbenzene by catalytic conversion of a raw material containing isopropyl. BACKGROUND OF THE INVENTION Diisopropylbenzene, especially the m- and p-diisopropylbenzene isomers, is an antioxidant, stabilizer, and an important intermediate for developers and polycarbonates. Further, diisopropylbenzene can also be made into diisopropylenebenzene, which has a structure similar to styrene monomer, by dehydrogenation. For example, H. A. Covin &
J. Muse,”Polymers Diisop
"ropenylbenzene" Chemtech
, 500 (1986), diisopropylenebenzene is a more versatile intermediate than styrene monomer due to its diversity in structural modification. Diisopropylbenzene has also been developed and applied to process plastics, epoxy resins, and polyurethanes, so the production of diisopropylbenzene is research with great industrial value. [0003] There are two general methods for producing diisopropylbenzene as shown below. The first method uses a catalyst to attach the propyl group directly to benzene. Catalysts that can be used include Friedel-Crafts, ZSM-5, ZSM-12, and the like. The second method is a disproportionation reaction of isopropylbenzene, in which two molecules of isopropane are reacted with each other in the presence of a catalyst to produce one molecule of benzene and one molecule of diisopropylbenzene. Generally, the production method using the disproportionation reaction has better reaction selectivity than the alkylation reaction. USSR Patent No. 192,109 describes AlCl
3 discloses a method for producing diisopropylbenzene by disproportionation reaction of isopropylbenzene in the presence of a catalyst. This AlCl3 catalyst not only has poor isomer selectivity but also causes problems of environmental pollution. U.S. Patent No. 3,780
, No. 123 discloses the disproportionation reaction of alkylbenzenes. The reaction is carried out in the presence of a composite catalyst, which is composed of H-type mordenite, aluminum oxide, and Group VIII metal sulfide. [0005]W. W. Kaeding is a J. C
atal. No. 120, p. 409 (1989)
”Shape-SelectiveReactions
with Zeolite Catalysts V
II. Alkylation and Dispro
position of Cumene to P
roduce Diisopropylbenzene
disclosed a method for producing diisopropylbenzene by catalytic reaction of isopropylbenzene in the presence of ZSM-12 catalyst.The selectivity of this ZSM-12 catalyst for isopropylbenzene disproportionation reaction is
Although it is superior to catalysts, there is still room for improvement. US Pat. No. 3,308,069 discloses zeolite beta catalysts. The chemical composition calculation formula is as follows. [Math. 1]■ [XNa(1.0 ±
0.1-X)]TEA]AlO2 ・YSiO2 ・
WH2O In the formula 1, X is smaller than 1. Y is greater than 5 but 10
Less than 0. W is 4 or less, and TEA represents tetraethylammonium ion. Generally, when pretreated with steam, zeolite Y
The increase in the SiO2 /Al2 O3 molar ratio of the catalyst is also described in US Pat. No. 3,292,192. Therefore, steam pretreatment increases the acid strength of the zeolite Y catalyst and reduces the caking rate and stability. In the present invention, diisopropylbenzene was first produced by a disproportionation reaction of isopropylbenzene using a zeolite β catalyst. This zeolite β catalyst has better reaction selectivity, reaction activity, and stability than the well-known isopropylbenzene disproportionation reaction catalyst. DESCRIPTION OF THE INVENTION [0008] The present invention provides a method for producing diisopropylbenzene, which is characterized in that a raw material containing isopropyl is subjected to a catalytic reaction at 90-250°C in the presence of a zeolite β catalyst. The zeolite β catalyst used in the method of the present invention is preferably of the H anion type, and its SiO2 /Al2
The molar ratio of O3 is between 10-150. The method of the present invention is preferably carried out in a continuous fixed bed reactor system, in which the isopropyl raw material passes through the weight space of the zeolite β catalyst at a rate of 0.2-50 g hr-1 g cat-
It is 1. The present invention relates to a method for producing diisopropylbenzene. A catalytic reaction is performed on a raw material containing isopropyl at 90-250°C in the presence of a zeolite β catalyst. The catalytic reaction of the method of the present invention is mainly a disproportionation reaction of isopropylbenzene, in which 2 moles of isopropylbenzene are reacted in the presence of a catalyst to produce 1 mole of benzene and 1 mole of diisopropylbenzene. [0010] The paper previously published by the present inventor “Disp
rotation of Toluene
and Trimethylbenzene and T
hair translation over
Zeolite Beta”, Ind. Eng.
Chem. Research, 1990.9 discloses that a hydrogen anion type zeolite β catalyst exhibits excellent reaction activity, selectivity and stability in the disproportionation and transalkylation reactions of toluene and trimethylbenzene. Therefore, we believe that the zeolite β catalyst applied to the present invention has excellent reactivity even in the hydrogen anion type. [0011] As a method applied to the production of the zeolite β catalyst according to the method of the present invention, a constant temperature hydrothermal method (hydro-t
SiO2-Al
A crystalline solid is prepared from a mixture of 2O3-tetraethylammonium hydroxide-water. Pariente et al. Appl. Catal. Third
1, page 35 (1987) “Cry
Stallization Mechanism of
ZeoliteBeta from (TEA)2
O, Na2O and K2O Containi
ng AluminosilicateGels”. The content of this paper is used as reference for the present invention. The solid product obtained each time was filtered, washed with water, and dried overnight at 120 °C, so that the molar ratio of SiO2 /Al2 O3 The obtained product was baked at 450°C-660°C for 2-48 hours and then heated with NH4
Ion exchange with NO3 solution, filtering, washing, drying, and/or grinding to particles of desired size and shape, and/or further grinding to particles of desired size. [0012] The reaction temperature in the method of the present invention is 100°C.
It is preferably between -180°C. The reaction strength is not particularly limited, but is preferably about 1 atmospheric pressure. The reaction atmosphere in the method of the present invention is also not particularly limited. For example, no gas is added or N2, H2, etc. are added to the reactor. Generally, the molar ratio between the added gas and the isopropylbenzene raw material is 0.
05 or higher. Although the process of the invention can be carried out in any known reactor system, the preferred embodiment of the invention uses a continuous fixed bed reactor system, and the weight hourly space velocity of the feedstock passing through the fixed bed reactor system is (WHSV) is 0.2-5
At 0g hr-1gcat-1, 2.8-3.4g h
Preferably, it is between r-1gcat-1. [0013] The method of the present invention will be explained in more detail by the following examples, which are for illustrative purposes only.
It is not intended to limit the scope of the invention. [Example 1]: Production of zeolite β, ZSM-5, H-type mordenite, and zeolite HY catalyst Zeolite β catalyst was manufactured using a constant temperature hydrothermal method using SiO2-Al2
Crystals are formed from a mixture of O3-tetraethylammonium hydroxide-water, washed with water, and dried overnight at 120°C. When the obtained product was analyzed using a Simens D-500 X-ray diffractometer, the X-ray powder diffraction pattern was found in the "Dispropositionation" published by the present inventor.
of Toluene and Trimethylb
Enzene and Their Transalk
ylation over Zeolite Beta
"As shown in Figure 1 of the paper. Also, the molar ratio of SiO2 /Al2 O3 measured by inductively coupled plasma is 15.3. [0014] After baking the above dried product at 450°C for 6 hours, , carry out the following ion exchange: (1) solid and 1 at 80 °C
N NH4 NO3 solution at a solid/solution weight ratio of 1:
20 for 8 hours, (2) collecting the solid by filtration;
(3) Wash the solid with hot deionized water. After repeating this ion exchange process six times, this NH4 + ion exchange solid was dried at 120°C overnight, and then baked in air at 450°C for 6 hours to granulate this H-type zeolite.
The particles were made into 2-20 mesh particles. [0015] H-type mordenite (HM) is a Stream
Chemicals Co. Purchased directly from. ZS
M-5 is “Kinetic Stud” by Chao et al.
ies on the Formation of Z
eolite ZSM-5”Chem.Soc.Fa
raday Trans. ,1, 77, 547(1
981). Zeolite HY is manufactured by Stream Chemicals Co. NaY purchased from. ZSM-5 and NaY are N of the above zeolite β.
H4 + Same as ion exchange, 12- of H type zeolite
The particles were made into 20 mesh particles. [Example 2]: Disproportionation reaction of isopropylbenzene The reaction was carried out in a continuous fixed bed reactor. 2.54 grams of zeolite β produced in Example 1 above and 4.65 grams of ceramic flakes were mixed and packed into a reactor,
After activation for 6 hours by passing hot air at 0° C., cooling to the desired reaction temperature by passing nitrogen. Isopropylbenzene, purchased from Jassen Chemical, is passed through the reactor with a metering pump and a separately metered stream of nitrogen is passed to give a nitrogen/isopropylbenzene ratio of 0.19 mole/mole. The reaction product flowing out of the reactor is collected every 15 minutes,
Dimethylsiloxane column, HP Ultra 1
Hewlett-Packard 589 equipped with
0 Analyzed by gas chromatography. The conversion rate XC of isopropylbenzene and the selectivity SD of the disproportionation reaction are defined as follows: [Formula 2] 3 In Equations 2 and 3, (isopropylbenzene, wt%)p and (DPB, wt%)p are the compositions of isopropylbenzene and dipropylbenzene (abbreviated as DPB), respectively, in the product stream. Indicates the ingredients. The results and conditions of the reaction are shown in Table 1. Table 1 also shows the results of a reaction in which HY, HM HZSM-5 was substituted for zeolite β under the same conditions. [Table 1] Reaction activity of disproportionation reaction in isopropylbenzene disproportionation reaction comparing different catalysts under low conversion rate,
Selectivity and stability 1H
-Beta HY HM
HZSM-52 reaction temperature (℃)
118 205 200
120 Conversion rate (wt%) 14.0
13.0 5.9 6.3
Selection rate (mol/mol) Disproportionation selection rate 0.99
0.95 0.93 0.69
Sense/Selfie Sense
1.0 1.05 1
.. 09 2.07 m/p-shirofluorescence 1.75 2.1
0 1.71 0.23 α
0.07
0.15 0.35...
Product yield (wt%) Benzene 4.50
4.21 1.95 2.9
2 Isopropylbenzene 86.05 8
7.04 94.10 93.69 n-
Propylbenzene 0.11 0.13
0.15 0.05 o-shiroisoprofil hsen...
0.19 0.10...
・M-Shield Sense
5.94 5.49 2.
28 0.52 p-isophrofluorescence 3.4 2.
62 1.33 2.28 p-n-
Profile - ISO profile reference
・・・ ・・・ ・・・
0.13 Other aromatics
... 0.32 0.09
0.41 1 WHSV: 3.4g hr -
1gcat-1, nitrogen/isopropylbenzene = 0.1
9 mol/mol, reaction time (time-on-stream)
m): 60 minutes 2 Reaction time: 30 minutes From the data in Table 1, the zeolite β catalyst exhibits the best reaction activity and selectivity in the isopropylbenzene disproportionation reaction. For example, when the reaction temperature is 118°C, the zeolite β catalyst conversion rate is 14.0, and the zeolite H
It is much larger than Y and HM, and the selectivity of the disproportionation reaction is 0.99, which is very close to 1, indicating that almost equimolar amounts of benzene and dipropylbenzene are produced. Aging of zeolite catalyst reaction activity is generally expressed by the following exponential formula. ##EQU00004## In the formula 4, Xt represents the conversion rate of isopropylbenzene when the reaction time is t. Xo represents the conversion rate when the reaction time is extrapolated to 0. α is a decline index, and the smaller the α value, the better the stability. For example, as shown in Table 1, the zeolite β catalyst has the best stability. Table 2 below shows the results of the reaction at a high conversion rate, ie, at a high reaction temperature. [Table 2] Reaction activity of disproportionation reaction in isopropylbenzene disproportionation reaction comparing different catalysts under high conversion rate,
Selectivity and stability 1H
-Beta HY HM
HZSM-52 reaction temperature (℃)
138 220 240
250 Conversion rate (wt%) 4
0.1 22.5 14.5
45.1 Caking rate [(g/g cat)%3]
4.72 4.54 6.62
... Selection rate (mol/mol) Disproportionation selection rate 0.98
0.91 0.95 0.90
Sense/Selfie Sense
1.06 1.16 1
.. 12 1.17m/p-silicon isophylfluorescence 2.05
2.18 2.01 1.81α
0
.. 23 0.14 0.31
... Product yield (weight %) Benzene 13.
5 7.74 4.95 15.
42 Isophyllense
59.88 77.53 85.
55 54.9n-Full Sense 0.10
0.17 0.14 0.32o-isopropylene sensitization
... 0.42 0.11
0.23m-Silver sensor
17.76 9.17
6.08 17.54 p-isopropylene sensitization 8.
68 4.21 3.03 9
.. 70 Other aromatics 0.
08 0.76 0.14 1
.. 891 WHSV: 3.4g hr-1gcat
-1, nitrogen/isopropylbenzene = 0.19 mol/
mol, reaction time: 60 minutes2 Data are from the above W.
W. A paper published by Kaeding et al. J. Cata
l. 120, 409 (1989). 3 The caking rate is measured at the reaction temperature with nitrogen after the reaction time is over.
After washing for a while, remove the amount of deposited coal tar with Dupont 9
51 Measured by thermogravimetry. Similarly, the data in Table 2 shows that zeolite β has a higher conversion rate than the Y type and mordenite type in the isopropylbenzene disproportionation reaction, and can maintain an excellent disproportionation selectivity. Shows no cracking products. Although the ZSM-12 type zeolite can obtain a conversion rate equivalent to that of zeolite β, its reaction temperature is much higher (110° C. higher) than that of zeolite β, so its reaction activity is far inferior to that of zeolite. Also, although zeolite β operates at higher conversion rates, the caking rate is still the same as Y type and lower than mordenite type. Therefore, when operated at the same temperature, the zeolite beta type exhibits a lower caking rate than the Y and mordenite types. This is because the β-type zeolite has superior stability. Therefore, zeolite β type has excellent reaction activity, selectivity and stability. [Example 3] The purpose of this example is to demonstrate that the zeolite β catalyst used in the method of the present invention improves the stability of the isopropylbenzene disproportionation reaction by the method of steam pretreatment. This is what I want to explain. The same procedure as in Example 2 is carried out except that the zeolite β catalyst in the reactor is pretreated with steam before introducing the isopropylbenzene raw material. Steam pretreatment involves pumping distilled water to a reactor with specific treatment conditions. After the pretreatment is completed, nitrogen is introduced into the reactor and flushed for 3 hours to remove residual vapors. The reaction results and conditions are shown in Table 3. [Table 3] Effect of steam pretreatment on reaction activity and stability of zeolite β catalyst 1
catalyst

unqualified
1 2 Steam pretreatment condition temperature (℃)
454
450 WHSV (g/hr gcat)
3.38
9.88 nitrogen/water (mol/mol)
0.18
0.18 hours (hr)
4
10 Reaction condition temperature (℃) 13
4 143 153
172 WHSV (g/hr gcat)
3.4 3.4 2.0
2.2 Conversion rate (wt%)
29.40 40.1 37.1
33.50 Caking rate (g/hr gca
t2) ... 6.47
... 5.92 Stability XO (wt%) 67.
4 100.0 55.2
34.50 α
0.19 0.23
0.09 0.01 Selection rate (mol/mol) SD (mol%) 98.
9 97.6 93.08
82.48 Sense/Profile Sense 1.10
1.06 1.27 1.40m/
p-shirofluorescence sensor
0.47 0.51 0.42
0.43 Product yield (wt%) Benzene 9
.. 45 13.5 13.22
12.61 Isopropylbenzene
70.65 59.88 62.95
66.51 n-Full Sense
0.12 0
.. 10 0.16 0.17o-Siisopropylene Sense
13.35 17.76 16.2
0 12.88 m-Shirofluorescence...
・・・ ・・・ 0.20
p-shirofluorescence sensor
6.27 8.68 6
.. 87 5.57 Other aromatics
0.16 0.08
0.40 2.071 Isopropylbenzene/nitrogen = 14.5 mol/mol, reaction time: 6
0 minutes [0024] As clearly shown from the data in Table 3 above,
Steam pretreatment improves the stability of the zeolite β catalyst, but at the same time loses the reactive activity of the fraction.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  イソプロピル原料を触媒反応によりジ
イソプロピルベンゼンを含む混合物を生成する方法にお
いて、その改良が該イソプロピルを含む原料をゼオライ
トβ触媒の存在下、90−250℃にて触媒反応を行う
ことを特徴とするジイソプロピルベンゼンの製造法。
Claim 1: A method for producing a mixture containing diisopropylbenzene by catalytic reaction of an isopropyl raw material, an improvement of which involves carrying out a catalytic reaction of the isopropyl-containing raw material at 90-250°C in the presence of a zeolite β catalyst. Characteristic method for producing diisopropylbenzene.
【請求項2】  ゼオライトβ触媒は水素アニオン型で
あり、そのSiO2 /Al2 O3 のモル比が10
−150の間である請求項1の方法。
[Claim 2] The zeolite β catalyst is a hydrogen anion type, and its SiO2/Al2O3 molar ratio is 10.
-150.
【請求項3】  触媒反応を連続固定床反応器系統にて
行う請求項1の方法。
3. The method of claim 1, wherein the catalytic reaction is carried out in a continuous fixed bed reactor system.
【請求項4】  反応器系統には別に窒素気流を通らせ
、窒素気流とイソプロピル原料のモル比が0−5である
請求項3の方法。
4. The method of claim 3, wherein a nitrogen stream is separately passed through the reactor system, and the molar ratio between the nitrogen stream and the isopropyl feedstock is 0-5.
【請求項5】  イソプロピル原料がゼオライトβ触媒
の重量空間を通る速度は0.2−50g hr−1gc
at−1である請求項4の方法。
5. The speed at which the isopropyl raw material passes through the weight space of the zeolite β catalyst is 0.2-50 g hr-1gc.
5. The method of claim 4, wherein at-1.
【請求項6】  反応温度が100−180℃の間であ
る請求項5の方法。
6. The method of claim 5, wherein the reaction temperature is between 100-180°C.
【請求項7】  触媒反応は約1−100大気圧の壓力
にて行う請求項1の方法。
7. The method of claim 1, wherein the catalytic reaction is carried out at a pressure of about 1-100 atmospheric pressures.
【請求項8】  ゼオライトβ触媒は蒸気前処理工程に
て処理する請求項1の方法。
8. The method of claim 1, wherein the zeolite beta catalyst is treated in a steam pretreatment step.
JP12481091A 1991-04-26 1991-04-26 Method for producing diisopropylbenzene Expired - Lifetime JPH0688918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12481091A JPH0688918B2 (en) 1991-04-26 1991-04-26 Method for producing diisopropylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12481091A JPH0688918B2 (en) 1991-04-26 1991-04-26 Method for producing diisopropylbenzene

Publications (2)

Publication Number Publication Date
JPH04327545A true JPH04327545A (en) 1992-11-17
JPH0688918B2 JPH0688918B2 (en) 1994-11-09

Family

ID=14894684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12481091A Expired - Lifetime JPH0688918B2 (en) 1991-04-26 1991-04-26 Method for producing diisopropylbenzene

Country Status (1)

Country Link
JP (1) JPH0688918B2 (en)

Also Published As

Publication number Publication date
JPH0688918B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US4375573A (en) Selective production and reaction of p-Disubstituted aromatics over zeolite ZSM-48
US5081323A (en) Liquid phase alkylation or transalkylation process using zeolite beta
Reddy et al. Alkylation of benzene with isopropanol over zeolite beta
JP2656124B2 (en) Liquid phase alkylation and transalkylation method using beta zeolite
JP2753650B2 (en) Process for producing alkylbenzenes using dealuminated zeolite Y-based catalyst and dealuminated mordenite-based catalyst
US4724275A (en) Crystalline aluminosilicates and their use in the conversion of methanol to low molecular weight hydrocarbons
RU2514423C1 (en) Method for xylene and ethylbenzene isomerisation using uzm-35
WO1996034843A1 (en) Process of preparing ethylbenzene or substituted derivatives thereof
RU2656602C1 (en) One-step method of obtaining butadiene
US5672799A (en) Process for the preparation of cumene
JPH04230335A (en) Method for preparation of 2- and 3-phenylalkane using catalyst based on modified mordenite
JP2681223B2 (en) Process for the production of alkylbenzenes using modified mordenite-based catalysts
AU718155B2 (en) Selective catalytic conversion of a C9 aromatic feedstock containing substantial amounts of ethyl substituted aromatic components to a product rich in toluene and/or xylenes
Reddy et al. Selective formation of cymenes over large pore zeolites
JPH04243843A (en) Process for producing 2- and 3-phenylalkanes by using catalyst based on special mordenite
US4814531A (en) Silica-titania hydrocarbon conversion catalyst
EP0393895B1 (en) Silicometallate molecular sieves and their use as catalysts in oxidation of alkanes
EP0306181A2 (en) Two stage synthesis of zeolite
JPH0247448B2 (en)
Das et al. Zeolite beta catalyzed C7 and C9 aromatics transformation
Jacob et al. Selective benzoylation of o-xylene to 3, 4-dimethylbenzophenone using various zeolite catalysts
US4665238A (en) Process for the synthesis of alkylaromatic compounds
JPH0576455B2 (en)
JPH04327545A (en) Method of manufacturing diisopropylbenzene
JP2545649B2 (en) Improved zeolite β catalyst and method for producing diisopropylbenzene using improved zeolite β catalyst