JPH04327525A - Sustained release medicine-containing ceramic porous substance - Google Patents

Sustained release medicine-containing ceramic porous substance

Info

Publication number
JPH04327525A
JPH04327525A JP3097747A JP9774791A JPH04327525A JP H04327525 A JPH04327525 A JP H04327525A JP 3097747 A JP3097747 A JP 3097747A JP 9774791 A JP9774791 A JP 9774791A JP H04327525 A JPH04327525 A JP H04327525A
Authority
JP
Japan
Prior art keywords
drug
ceramic porous
ceramic
medicine
porous substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3097747A
Other languages
Japanese (ja)
Other versions
JP2922667B2 (en
Inventor
Tsunehiro Ishii
石井 経裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3097747A priority Critical patent/JP2922667B2/en
Publication of JPH04327525A publication Critical patent/JPH04327525A/en
Application granted granted Critical
Publication of JP2922667B2 publication Critical patent/JP2922667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To obtain a sustained release medicine-containing ceramic porous substance capable of sustaining a medicine for a long period and preventing side effects due to concentrated elution of the medicine by applying a biodegradable substrate containing the medicine, dispersed and held therein to the inner wall surfaces in pores and the outside surface of a ceramic porous substance. CONSTITUTION:A sustained release medicine-containing ceramic porous substance is obtained by applying a biodegradable substrate containing and holding a dispersed medicine therein and further containing at least one selected from chitin and its derivative or collagen to the inner wall surfaces of pores and the outside surface of a ceramic porous substance composed of calcium phosphate-based ceramics, alumina, zirconia, etc. Calcium phosphate-based ceramics excellent in biocompatibility, etc., are preferred as the aforementioned ceramics and tricalcium phosphate and hydroxyapatite at 1.4-1.7 atomic ratio (Ca/P) are especially preferred in aspect of rapid production of newly formed bones. The porosity of the ceramic porous substance is preferably 30-95% and the average pore diameter is preferably within the range of 10-300mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、骨の切除を行った部位
に補填する人工骨や、骨髄炎、悪性腫瘍等の治療、感染
予防等に利用される、薬剤を制御下に徐放しうる薬剤含
有のセラミックス多孔体に関するものである。
[Industrial Application Field] The present invention is capable of controlled and sustained release of drugs, which are used for artificial bone to be replaced at the site where bone has been removed, for the treatment of osteomyelitis, malignant tumors, etc., and for the prevention of infection. This invention relates to a ceramic porous body containing a drug.

【0002】0002

【従来の技術】局在する炎症や腫瘍等に対し薬剤を投与
する場合、薬効は薬剤の局所対流時間によって大きく作
用される。一般に生体側は、このような薬剤を速やかに
排除する機能を働かせる性質を持っているため、投与直
後から血液中に吸収還流され、肝臓や腎臓を通じて排泄
されるのが常である。
BACKGROUND OF THE INVENTION When administering a drug to localized inflammation, tumors, etc., the efficacy of the drug is greatly affected by the local convection time of the drug. In general, living organisms have the ability to rapidly eliminate such drugs, so they are usually absorbed and refluxed into the bloodstream immediately after administration and excreted through the liver and kidneys.

【0003】この急速な排泄作用に抗して薬剤の効果を
長時間に渡って持続させるためには、薬剤を徐放的に投
与する方法を講じなければならない。この目的の為に、
セラミックス体の気孔内に薬剤を含浸させた薬液含浸多
孔質セラミックス(特開昭59−101145 号公報
) 、粒状体が有する小孔中に医薬を含有させた医薬投
与用セラミック小粒体( 特公昭62−6522)、小
孔内に抗生物質を入れその周囲をリン酸カルシウム層と
するリン酸カルシウム質充填材( 特開昭60−106
459)がある。
[0003] In order to maintain the effects of drugs over a long period of time against this rapid excretion effect, it is necessary to devise a method for administering drugs in a sustained release manner. For this purpose,
Porous ceramics impregnated with a drug solution in which the pores of the ceramic body are impregnated with a drug (Japanese Patent Application Laid-open No. 59-101145), Ceramic small granules for drug administration in which the small pores of the granules contain a drug (Japanese Patent Publication No. 1988-101145) -6522), a calcium phosphate filler containing an antibiotic in the small pores and forming a calcium phosphate layer around the pores (JP-A-60-106)
459).

【0004】0004

【従来技術の課題】上記薬剤含有セラミックス体はいず
れも、セラミックスの気孔内に薬剤をそのまま保持させ
ているすぎないので、薬効の長時間維持が必ずしも十分
でない。
[Problems with the Prior Art] All of the above-mentioned drug-containing ceramic bodies merely retain the drug as is in the pores of the ceramic, so that the medicinal efficacy is not necessarily maintained for a long period of time.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本発明は単なる薬剤含浸容器に留まる物ではなく、薬効
の持続的効果に優れる、薬剤を保持した、キチン及びそ
の誘導体もしくはコラーゲンから選ばれる少なくとも一
種を含む生体分解性基材が、セラミックス多孔体の孔内
壁面及び外側表面に付着して成る徐放性薬剤含有セラミ
ックス多孔体を提供する。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention is not limited to a mere drug-impregnated container, but a drug-retaining container selected from chitin, its derivatives, or collagen, which has excellent long-lasting medicinal effects. A porous ceramic body containing a sustained-release drug is provided, in which a biodegradable substrate containing at least one type of substrate is attached to the inner wall surface and the outer surface of the pores of the porous ceramic body.

【0006】[0006]

【実施例】【Example】

実施例1 ヒドロキシアパタイトをボールミルにて泥漿状態にし、
約1cm 3 の#30 のウレタンフォームに含浸さ
れた後、1300℃にて焼成し、気孔率90%、平均孔
径300 μm のヒドロキシアパタイトから成るセラ
ミックス多孔体を2個作製した。次に、キチン5g、コ
ラーゲン1gをPH 3.0の塩酸溶液50mlに溶解
し、この複合溶液に抗生物質のカナマイシン2gを混和
させた。この溶液に上記のヒドロキシアパタイト多孔体
のうち1個を浸漬、減圧脱泡、乾燥した後、過剰な塩酸
を除去する為に洗浄を水洗で行い、図1の模式図に示さ
れるようなカナマイシン1が分散保持されたキチン・コ
ラーゲン生体分解性基材2が前記ヒドロキシアパタイト
多孔体3の孔4の孔内表面、及び外部表面にに付着した
状態で含有された本発明の徐放性薬剤含有セラミックス
多孔体5を作製した。
Example 1 Hydroxyapatite was made into a slurry using a ball mill,
After being impregnated with approximately 1 cm 3 of #30 urethane foam, it was fired at 1300° C. to produce two ceramic porous bodies made of hydroxyapatite with a porosity of 90% and an average pore diameter of 300 μm. Next, 5 g of chitin and 1 g of collagen were dissolved in 50 ml of a hydrochloric acid solution with a pH of 3.0, and 2 g of kanamycin, an antibiotic, was mixed with this composite solution. One of the above-mentioned hydroxyapatite porous bodies was immersed in this solution, defoamed under reduced pressure, dried, and then washed with water to remove excess hydrochloric acid. The sustained-release drug-containing ceramic of the present invention contains a chitin/collagen biodegradable substrate 2 in which chitin/collagen is dispersed and adhered to the inner and outer surfaces of the pores 4 of the hydroxyapatite porous body 3. A porous body 5 was produced.

【0007】[0007]

【表1】[Table 1]

【0008】このようにして作製された上記本発明によ
るセラミックス多孔体1個と上記生体分解性基材を含ま
ないセラミックス多孔体の物性特性を評価した結果を表
1 に示す。尚、圧縮強度の測定は万能試験機で行った
Table 1 shows the results of evaluating the physical properties of one porous ceramic body according to the present invention and the porous ceramic body not containing a biodegradable base material prepared in this way. The compressive strength was measured using a universal testing machine.

【0009】次に、上記のセラミックス多孔体にカナマ
イシンを泥漿状態にし含有させた従来の薬剤含有セラミ
ックス多孔体と上記の本発明による徐放性薬剤含有セラ
ミックス多孔体をリン酸緩衝液50mlに浸漬し、37
℃恒温器中で徐放されカマイシンの累計溶出率を液体ク
ロマトグラフで経時的に調べた。その結果を表2 に示
す。なお、従来の薬剤含有セラミックス多孔体によるカ
ナマイシンの含有はカナマイシンを数μm に粉砕後、
粘性をもたせる為に減菌水を加え泥漿状態にし、そこに
前記セラミックス多孔体に含浸させ、その後乾燥させて
実施した。
Next, the conventional drug-containing porous ceramic material in which kanamycin was contained in a slurry state in the ceramic porous material and the sustained-release drug-containing porous ceramic material according to the present invention were immersed in 50 ml of a phosphate buffer solution. , 37
The cumulative elution rate of kamycin was examined over time using a liquid chromatograph after it was released slowly in a temperature incubator. The results are shown in Table 2. In addition, kanamycin is contained in conventional drug-containing porous ceramic materials after pulverizing kanamycin to several micrometers.
In order to make it viscous, sterilized water was added to form a slurry, and the ceramic porous body was impregnated with the slurry, which was then dried.

【0010】0010

【表2】[Table 2]

【0011】図2は表2の結果をグラフ化したものであ
って、図2からも明らかなように単にカナマイシンを含
有させたものにおいては8日、一方カナマイシンが分散
保持されたキチン・コラーゲン生体分解性基材が多孔体
の孔内表面に付着した状態で含有された本発明の徐放性
薬剤含浸セラミックス多孔体では約32日であり、本発
明のものが従来のものよりも長期にわたり安定した薬剤
の溶出が行われたことが判る。
FIG. 2 is a graph showing the results of Table 2, and as is clear from FIG. 2, it took 8 days in the case where kanamycin was simply added, whereas in the case of the chitin-collagen biological body in which kanamycin was dispersed and maintained. The sustained-release drug-impregnated ceramic porous body of the present invention, which contains a degradable base material attached to the pore surface of the porous body, is about 32 days, indicating that the present invention is stable for a longer period of time than the conventional one. It can be seen that the drug was eluted.

【0012】ところで、セラミックス多孔体を構成する
材料としては例えば、リン酸カルシウム系セラミックス
、アルミナ、ジルコニア等の生体為害性のないものが用
いられる。その中でも新成骨の生成が良好で、生体親和
性等に優れいるリン酸カルシウム系セラミックスが最適
である。
By the way, as the material constituting the ceramic porous body, materials that are not harmful to living organisms, such as calcium phosphate ceramics, alumina, and zirconia, are used. Among these, calcium phosphate ceramics are optimal because they produce good new bone and have excellent biocompatibility.

【0013】リン酸ンカルシウム化合物にはCaHPO
 4 −2 H2 O( ブルッシャイト) 、CaH
PO 4 ( モネタイト) 、Ca2 P 2 O 
7 ( ピロリン酸カルシウム) 、Ca3 ( PO
4 ) 2 (トリカルシウムホスフェート) 、Ca
5 ( PO4 ) 3 ( OH)(ヒドロキシアパ
タイト)などがあり、これらの化合物を単独、又は2 
種以上の混合物として用いることが出来る。その中でも
Ca/Pの原子比が1.4 〜1.7 範囲内にあるト
リカルシウムホスフェート、ヒドロキシアパタイトなど
のものが他のリン酸カルシウム化合物より新生骨の生成
が速いという理由から好ましい。
Calcium phosphate compounds include CaHPO
4-2 H2O (brushite), CaH
PO4 (monetite), Ca2P2O
7 (calcium pyrophosphate), Ca3 (PO
4) 2 (Tricalcium phosphate), Ca
5 (PO4) 3 (OH) (hydroxyapatite), etc., and these compounds can be used alone or in combination with 2
It can be used as a mixture of more than one species. Among these, tricalcium phosphate, hydroxyapatite, and the like having an atomic ratio of Ca/P in the range of 1.4 to 1.7 are preferred because they generate new bone faster than other calcium phosphate compounds.

【0014】セラミックス多孔体は薬剤を分散保持した
生体分解性基材が、その孔の表面に付着して含有され得
る任意の気孔率、平均孔径を持っている。一般に本発明
と同様な目的に使用される薬剤キャリアは通常気孔率=
10〜98%、平均孔径=1 〜500 μm である
が、本発明の構成要素であるセラミックス多孔体におい
ては気孔率が30%以下、又は平均孔径が10μm 以
下では薬剤を分散保持した生体分解基材が十分に含有さ
れず、気孔率が95%以上のものは作製困難、あるいは
不可能である。また、平均孔径が300 μm 以上で
は分散保持された薬効の持続時間が短くなって効果が十
分に上がらない。したがって、本発明のセラミックス多
孔体の気孔率は30〜95%、平均孔径としては10〜
300 μm が好ましい。
[0014] The ceramic porous body has an arbitrary porosity and average pore diameter that allow the biodegradable base material in which the drug is dispersed and held to be attached and contained on the surface of the pores. In general, drug carriers used for the same purpose as the present invention usually have a porosity =
10 to 98%, average pore size = 1 to 500 μm.However, in the ceramic porous body that is a component of the present invention, if the porosity is 30% or less or the average pore size is 10 μm or less, the biodegradable group holding the drug dispersedly It is difficult or impossible to produce a material that does not contain enough material and has a porosity of 95% or more. Furthermore, if the average pore diameter is 300 μm or more, the duration of the medicinal effect maintained in the dispersed state will be shortened, and the effect will not be sufficiently enhanced. Therefore, the porosity of the ceramic porous body of the present invention is 30 to 95%, and the average pore diameter is 10 to 95%.
300 μm is preferred.

【0015】セラミックス多孔体の製造方法には公知の
種々の方法を取ることができる。例えば、セラミックス
粉末に有機物を混合成形、焼成することによって気孔率
が約50%までの多孔体を製造することができる。又、
本実施例と同一の方法である高分子性材料のスポンジを
セラミックス粉末が混和された泥漿に浸漬し、焼成する
ことによって気孔率を約95%まで上げることが出来る
[0015] Various known methods can be used for producing the ceramic porous body. For example, a porous body with a porosity of up to about 50% can be produced by mixing ceramic powder with an organic substance, molding it, and firing it. or,
The porosity can be increased to about 95% by immersing a sponge made of a polymeric material in a slurry mixed with ceramic powder and firing, which is the same method as in this example.

【0016】次に、薬剤を分散保持する生体分解性基材
としてのキチンとは甲殻類、昆虫中類等を塩酸処理なら
びに可性ソーダ処理して蛋白質及び無機質を分離精製す
ることによって得られるN−アセチル−Dグルコサミン
がβ−1、4 結合したものであり、キトサンはその脱
アセチル化物である。化1 はキチン、キトサンの一般
式を示している。
Next, chitin, which is a biodegradable base material for dispersing and retaining drugs, is N, which is obtained by treating crustaceans, middle insects, etc. with hydrochloric acid and sodium hydroxide treatment to separate and purify proteins and inorganic substances. -Acetyl-D glucosamine has β-1,4 bonds, and chitosan is its deacetylated product. Chemical formula 1 shows the general formula of chitin and chitosan.

【0017】[0017]

【化1】[Chemical formula 1]

【0018】薬剤を保持する為の生体分解性基材として
は、キチン、キトサン、エーテル化物、エステル化物、
カルボキシルメチル化物等それらの誘導体、及びコラー
ゲンが用いられるが、このうちコラーゲンは動物の骨や
皮膚などの結合組織を構成している主要なタンパク質で
、その分子量は約10万のポリペチド鎖が3 本集まっ
たコラーゲン特有の螺旋構造を形成している。この分子
の両末端に螺旋構造をとらないペプチド鎖( テロペプ
チド) が付いており、コラーゲンの抗原性は、このテ
ロペチドの存在によるものであると知られている。薬剤
を保持するのに用いられる生体分解性基材としてのコラ
ーゲンは、牛皮等を公知の方法である酵素処理方法やア
ルカリ処理方法によって作られる実質的にテロペプチド
鎖を含まない、すなわち抗原性を有さないアテロコラー
ゲンが用いられる。又、コラーゲンの変成体であるゼラ
チンも薬剤を保持する生体分解性基材として用いること
が出来る。
Biodegradable substrates for holding drugs include chitin, chitosan, etherified products, esterified products,
Carboxyl methylated products and other derivatives thereof, as well as collagen, are used. Of these, collagen is the main protein that makes up connective tissues such as bones and skin of animals, and its molecular weight is approximately 100,000 and consists of three polypeptide chains. Collagen gathers together to form a unique helical structure. A non-helical peptide chain (telopeptide) is attached to both ends of this molecule, and it is known that the antigenicity of collagen is due to the presence of this telopeptide. Collagen, which serves as a biodegradable base material used to hold drugs, is produced by treating cowhide etc. with enzymes or alkali, which are known methods, and is substantially free of telopeptide chains, that is, has no antigenicity. Atelocollagen that does not have is used. Furthermore, gelatin, which is a denatured product of collagen, can also be used as a biodegradable base material for holding drugs.

【0019】薬剤を保持するのに用いられる生体分解性
基材の種類、濃度等は、目的、用途に応じて選択される
The type, concentration, etc. of the biodegradable substrate used to hold the drug are selected depending on the purpose and use.

【0020】保持される薬剤としては、長時間に渡り薬
効維持を必要とする医薬である。例えば、抗生物質、制
ガン剤、蛋白質薬剤、骨形成因子等がある。具体的に示
せば、抗生物質としては、ペニシリン類、セファロスポ
リン類、カナマイシン、テトラサイクリン、アクチノマ
イシン等が用いられる。制ガン剤としては、カルチノフ
ィリン、ザルコマイシン、プレオマイシン、シクロホフ
ファミド等が用いられる。骨形成因子としては、ボーン
モルフォロジックプロティン等が用いられる。上記のよ
うな薬剤を生体分解性基材に保持させる方法は、先ず、
薬剤を保持するのに用いられる生体分解性基材、キチン
、キトサン、コラーゲン等をギ酸、塩酸、酢酸等の溶媒
に溶解し、薬剤を分散させ、そして、セラミックスの多
孔体を減菌した後、上記の薬剤を分散含有させた溶液に
、上記多孔体を浸漬させ真空ポンプなどで、減圧を行う
ことによって、孔内の空気が排除され、薬剤を保持した
生体分解性基材が多孔体の孔内表面に付着する。これに
常温乾燥もしくは凍結乾燥を行い、薬剤を保持した生体
分解性基材が多孔体の孔内の表面に付着した徐放性薬剤
含有セラミックス多孔体が得られる。
[0020] The drugs that are retained are those that require maintenance of their efficacy over a long period of time. Examples include antibiotics, anticancer drugs, protein drugs, bone morphogenetic factors, and the like. Specifically, as the antibiotic, penicillins, cephalosporins, kanamycin, tetracycline, actinomycin, etc. are used. As anticancer drugs, carcinophilin, sarcomycin, pleomycin, cyclofofamide, etc. are used. As the osteogenic factor, bone morphological protein and the like are used. The method for retaining the above-mentioned drugs on a biodegradable substrate is as follows:
After dissolving the biodegradable base material used to hold the drug, chitin, chitosan, collagen, etc. in a solvent such as formic acid, hydrochloric acid, or acetic acid, dispersing the drug, and sterilizing the porous ceramic body, By immersing the above porous body in a solution containing the above drug dispersed therein and reducing the pressure using a vacuum pump, the air inside the pores is removed, and the biodegradable base material holding the drug is released into the pores of the porous body. Adheres to internal surfaces. This is dried at room temperature or freeze-dried to obtain a sustained-release drug-containing ceramic porous body in which the biodegradable base material holding the drug adheres to the inner surface of the pores of the porous body.

【0021】一方、スポンジ状の有機質連続多孔体にセ
ラミックス粉末を混和させた泥漿を含浸、焼成すること
によって得られる多孔体は、強度が低くなる。しかしな
がら、この多孔体に薬剤を保持した生体分解性基材が多
孔体の外表面、及び孔内の表面をコートするので強度が
高くなる。なお、含有される薬剤の量は、セラミックス
多孔体の大きさ、形状、使用目的等によって異なり、適
応される症例に応じて決められる。
On the other hand, a porous body obtained by impregnating a spongy organic continuous porous body with a slurry in which ceramic powder is mixed and firing it has low strength. However, since the biodegradable base material holding the drug in this porous body coats the outer surface of the porous body and the inner surface of the pores, the strength is increased. Note that the amount of the drug contained varies depending on the size, shape, purpose of use, etc. of the porous ceramic body, and is determined depending on the case to which it is applied.

【0022】実施例2 トリカルシウムホスフェート100gに対して、ナフタ
リン50g を混合、プレス成形したものを1200℃
にて焼成後、分級し、α  トリカルシウムホスフェー
トのセラミックス多孔体を2個作製した。
Example 2 100g of tricalcium phosphate was mixed with 50g of naphthalene, and the mixture was press-molded at 1200°C.
After firing, the mixture was classified to produce two ceramic porous bodies of α-tricalcium phosphate.

【0023】キトサン4gをPH4.0 のギ酸溶液5
0mlに溶解した液に抗ガン剤のシスプラチン3gを分
散させた。この溶液に上記の多孔体顆粒30g を浸漬
、減圧脱泡、乾燥し、シスプラチンを分散保持したキト
サン生体分解性基材が孔内の表面に付着したキトサン生
体分解性基材が孔内の表面及び外部表面に付着したα 
 トリカルシウムホスフェートの本発明による徐放性薬
剤含有セラミックス多孔体を作製した。上記のシスプラ
スチンを分散保持した生体分解性基材を含有した多孔体
のα  トリカルシウムホスフェートの物性値を表3に
示す。
[0023] 4 g of chitosan was added to a formic acid solution with a pH of 4.0.
3 g of cisplatin, an anti-cancer agent, was dispersed in 0 ml of the solution. 30g of the above porous granules were immersed in this solution, defoamed under reduced pressure, and dried.The chitosan biodegradable base material with cisplatin dispersed therein was attached to the surface of the pores and α attached to external surface
A ceramic porous body containing a sustained release drug of tricalcium phosphate according to the present invention was prepared. Table 3 shows the physical properties of the porous α-tricalcium phosphate containing the biodegradable base material in which cisplastin is dispersed and held.

【0024】[0024]

【表3】[Table 3]

【0025】また、平行して上記のセラミックス多孔体
のうち残りの1個をPH7.4 のリン酸緩衝液50m
lに浸漬しシスプラスチンを含有させた従来の薬剤含有
セラミックス多孔体を作製し、上述の方法で作製された
キトサンにシスプラスチンを分散保持させた前記本発明
の徐放性薬剤含有セラミックス多孔体とともに実施例1
 と同様にシスプラスチンの累計溶出率を経時的に調べ
た結果を表4 示す。
[0025] In parallel, the remaining one of the above ceramic porous bodies was soaked in 50 m of a phosphate buffer solution of pH 7.4.
The sustained-release drug-containing porous ceramic body of the present invention is prepared by preparing a conventional drug-containing porous ceramic body containing cisplastin by immersing it in water, and by making cisplastin dispersed and retained in the chitosan produced by the above-described method. Example 1 with the body
Table 4 shows the results of examining the cumulative elution rate of cisplastin over time.

【0026】[0026]

【表4】[Table 4]

【0027】また、表4の結果をクラフ化したものを図
3に示す。表4、及び図3から明らかなように従来の薬
剤含有セラミックス多孔体では、10日以後は徐放性が
なくなり、持続的な薬効は期待できないが、一方本発明
による多孔性セラミックスでは40日を経過しても安定
した溶出傾向がみられ、持続的な薬剤の溶出が起こって
いる。
Furthermore, a graph of the results of Table 4 is shown in FIG. As is clear from Table 4 and FIG. 3, the conventional drug-containing porous ceramic body loses sustained release properties after 10 days, and sustained drug efficacy cannot be expected. A stable elution trend was observed even after the passage of time, indicating that the drug was continuously elution.

【0028】実施例3 トリカルシウムホスフェート100gに対してパラフィ
ンワックス40gを混合、プレス成形したものを110
0℃にて焼成後、気孔率35%、平均孔径200 μm
 のβ− トリカルシウムホスフェートのセラミックス
多孔体2 個を作製した。
Example 3 100 g of tricalcium phosphate was mixed with 40 g of paraffin wax and press-molded into 110 g of tricalcium phosphate.
After firing at 0℃, porosity 35%, average pore diameter 200 μm
Two ceramic porous bodies of β-tricalcium phosphate were prepared.

【0029】キトサン2gをPH5 のギ酸溶液50m
lに溶解した溶液に抗生物質、テトラサイクリン2gを
混和させた。 この溶液に上記セラミックス多孔体のうち1 個を浸漬
し、その他、実施例1 と同様な方法で本発明の徐放性
薬剤含有セラミックス多孔体を作製した。また、上記セ
ラミックス多孔体の残りの1 個を使って実施例1 と
同様な方法を用い、テトラサイクリン含有の従来の薬剤
含有セラミックス多孔体作製した。  前者のテトラサ
イクリンの量は多孔体1cm 3 当たり45mg、後
者は50mgであったが、実施例1 と同様な方法でテ
トラサイクリンの累計溶出率を経時的に調べた。その結
果を図4 に示す。
[0029] 2 g of chitosan was added to 50 m of a formic acid solution with a pH of 5.
2 g of an antibiotic, tetracycline, was mixed with the solution dissolved in 1 liter of water. One of the ceramic porous bodies described above was immersed in this solution, and otherwise a sustained-release drug-containing ceramic porous body of the present invention was produced in the same manner as in Example 1. Further, using the remaining one of the above ceramic porous bodies, a conventional drug-containing ceramic porous body containing tetracycline was prepared using the same method as in Example 1. The amount of tetracycline in the former was 45 mg per cm 3 of the porous material, and the amount in the latter was 50 mg, but the cumulative elution rate of tetracycline was examined over time in the same manner as in Example 1. The results are shown in Figure 4.

【0030】図4から明らかなように、本発明の徐放性
薬剤含有セラミックス多孔体は60日を経過しても薬剤
の徐放性を示したことが判る。
As is clear from FIG. 4, it can be seen that the sustained-release drug-containing ceramic porous body of the present invention exhibited sustained drug release properties even after 60 days.

【0031】実施例4 ヒドロキシアパタイド100gに対して、カーボン50
gを混合、プレス成形したものを1100℃にて焼成後
、気孔率50%、平均孔径40μm のセラミックス多
孔体2 個を作製した。
Example 4 50 g of carbon was added to 100 g of hydroxyapatide.
After baking the mixture at 1100° C., two ceramic porous bodies having a porosity of 50% and an average pore diameter of 40 μm were prepared.

【0032】キトサン2g、ゼラチン1gをPH5.0
 の酢酸溶液50mlに溶解し、この溶液に制ガン剤で
あるプレオマイシン2gを混和した。その他、実施例1
 と同様な方法で本発明の徐放性薬剤含有セラミックス
多孔体、また、同じく実施例1 と同様な方法でプレオ
マイシンを含有した従来の薬剤含有セラミックス多孔体
をそれぞれ1 個づつ作製した。前者のプレオマイシン
含有量は多孔体1cm 3 当たり22mg、後者は2
5mgであったが、これらを用いて実施例1 と同様に
累計溶出率を経時的に調べた。その結果を図5 に示す
[0032] 2 g of chitosan and 1 g of gelatin at pH 5.0
was dissolved in 50 ml of acetic acid solution, and 2 g of pleomycin, an anticancer agent, was mixed with this solution. Others, Example 1
One sustained-release drug-containing ceramic porous body of the present invention was prepared in the same manner as in Example 1, and one conventional drug-containing porous ceramic body containing pleomycin was prepared in the same manner as in Example 1. The pleomycin content of the former is 22 mg per cm 3 of the porous material, and the latter is 22 mg per cm 3 of the porous material.
The total dissolution rate was examined over time in the same manner as in Example 1 using these samples. The results are shown in Figure 5.

【0033】図5から明らかなように、本発明の徐放性
薬剤含有セラミックス多孔体は40日を経過しても累計
溶出率が約60%であり、薬剤の徐放性を示すことが判
る。
As is clear from FIG. 5, the cumulative dissolution rate of the sustained-release drug-containing ceramic porous body of the present invention is approximately 60% even after 40 days, indicating sustained drug release properties. .

【0034】比較例 ヒドロキシアパタイトをボールミルにて泥漿状態にし、
約1cm 3の#10 のウレタンフォームに含浸され
た後、1300℃にて焼成し、気孔率97%、平均孔径
350 μm のヒドロキシアパタイトから成るセラミ
ックス多孔体を作製した。次に、キチン5g、コラーゲ
ン1gをPH 3.0の塩酸溶液50mlに溶解し、こ
の複合溶液に抗生物質のカナマイシン2gを混和させた
。その他、実施例1 と同様な方法でカナマイシンの含
有量が多孔体1cm 3 当たり12mgであるカナマ
イシンがキトサンに分散保持されている薬剤含有のセラ
ミックス多孔体を作製し、同じく実施例1 と同様な方
法でカナマイシンの累計溶出率を経時的に調べた。その
結果を図6 に示す。
Comparative Example: Hydroxyapatite was made into a slurry using a ball mill.
After being impregnated with approximately 1 cm 3 of #10 urethane foam, it was fired at 1300° C. to produce a ceramic porous body made of hydroxyapatite with a porosity of 97% and an average pore diameter of 350 μm. Next, 5 g of chitin and 1 g of collagen were dissolved in 50 ml of a hydrochloric acid solution with a pH of 3.0, and 2 g of kanamycin, an antibiotic, was mixed with this composite solution. In addition, a drug-containing ceramic porous body in which kanamycin was dispersed and retained in chitosan and had a kanamycin content of 12 mg per cm 3 of the porous body was prepared in the same manner as in Example 1. The cumulative elution rate of kanamycin was investigated over time. The results are shown in Figure 6.

【0035】図6より明らかなように、この薬剤含有の
セラミックス多孔体では約15日で90%の累計溶出率
があり、前記の幾つかの従来の薬剤含有セラミックス多
孔体とほとんと差が認められなかった。
As is clear from FIG. 6, this drug-containing ceramic porous material had a cumulative dissolution rate of 90% in about 15 days, which was hardly different from the several conventional drug-containing porous ceramic materials mentioned above. I couldn't.

【0036】以上、述べてきたように生体分解性基材と
してのキチン、キトサン及びその誘導体、コラーゲンは
生体材料として安全性が高く、そしてこれらの生体分解
性基材の濃度をかえることによって本発明の多孔体セラ
ミックスは徐放する薬剤の量、徐放時間を調整、制御す
ることができる。また、上記多孔体セラミックスの骨格
であるリン酸カルシウム系材料は骨との親和性に優れ抗
生物質等の薬剤を含有した骨補填材料として最適なもの
である。
As described above, chitin, chitosan and its derivatives, and collagen as biodegradable base materials are highly safe as biomaterials, and the present invention can be achieved by changing the concentration of these biodegradable base materials. With porous ceramics, it is possible to adjust and control the amount and time of sustained release of the drug. Furthermore, the calcium phosphate material that forms the framework of the porous ceramic has excellent affinity with bones and is optimal as a bone replacement material containing drugs such as antibiotics.

【0037】[0037]

【発明の効果】本発明のセラミックス多孔体を患部に適
用した場合、薬剤の長時間にわたる安定した徐放、すな
わち薬効の長期持続が可能で薬剤の集中的溶出による副
作用を防ぐとともに生体内において安全性の高い材料を
骨材、薬剤の保持材料を使用しているので生体に悪影響
を与える心配がなく患者の心理的不安を取り除くことが
できる。
Effects of the Invention: When the porous ceramic material of the present invention is applied to the affected area, it is possible to achieve stable sustained release of the drug over a long period of time, that is, to maintain the drug's efficacy for a long period of time, to prevent side effects caused by concentrated elution of the drug, and to ensure safety in vivo. Since highly durable materials are used for the aggregate and the drug holding material, there is no risk of adverse effects on the living body, and the psychological anxiety of the patient can be alleviated.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のセラミックス多孔体を示す部分破断断
面図である。
FIG. 1 is a partially cutaway sectional view showing a porous ceramic body of the present invention.

【図2】表2の結果をグラフ化した図である。FIG. 2 is a graph showing the results of Table 2.

【図3】表4の結果をグラフ化した図である。FIG. 3 is a graph showing the results of Table 4.

【図4】実施例3の結果をグラフ化した図でる。FIG. 4 is a graph showing the results of Example 3.

【図5】実施例4の結果をグラフ化した図でる。FIG. 5 is a graph showing the results of Example 4.

【図6】比較例の結果をグラフ化した図でる。FIG. 6 is a graph showing the results of a comparative example.

【符号の説明】[Explanation of symbols]

1:カナマイシン 2:キチン・コラーゲン生体分解性基材3:多孔体 4:孔 5:本発明のセラミックス多孔体 1: Kanamycin 2: Chitin/collagen biodegradable base material 3: Porous material 4: Hole 5: Ceramic porous body of the present invention

Claims (1)

【特許請求の範囲】[Claims] 薬剤を分散保持した、キチン及びその誘導体もしくはコ
ラーゲンから選ばれる少なくとも一種を含む生体分解性
基材が、セラミックス多孔体の孔内壁面及び外側表面に
付着して成る徐放性薬剤含有セラミックス多孔体。
A sustained-release drug-containing ceramic porous body comprising a biodegradable base material containing at least one selected from chitin, its derivatives, or collagen, in which a drug is dispersed and adhered to the inner wall surface and outer surface of the pores of the porous ceramic body.
JP3097747A 1991-04-26 1991-04-26 Ceramic porous body containing sustained-release drug Expired - Fee Related JP2922667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3097747A JP2922667B2 (en) 1991-04-26 1991-04-26 Ceramic porous body containing sustained-release drug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3097747A JP2922667B2 (en) 1991-04-26 1991-04-26 Ceramic porous body containing sustained-release drug

Publications (2)

Publication Number Publication Date
JPH04327525A true JPH04327525A (en) 1992-11-17
JP2922667B2 JP2922667B2 (en) 1999-07-26

Family

ID=14200483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3097747A Expired - Fee Related JP2922667B2 (en) 1991-04-26 1991-04-26 Ceramic porous body containing sustained-release drug

Country Status (1)

Country Link
JP (1) JP2922667B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035126A1 (en) * 2001-10-09 2003-05-01 Techno Network Shikoku Co., Ltd. Process for producing biological material, drug, food, medical instrument, cell culture instrument and tissue-inducible material
WO2003084571A1 (en) * 2002-04-08 2003-10-16 Denki Kagaku Kogyo Kabushiki Kaisha Therapeutic composition for bone infectious disease
WO2004000270A1 (en) * 2002-06-20 2003-12-31 Ltt Bio-Pharma Co., Ltd. Sustained-release composition, process for producing the same and preparation thereof
WO2004112751A1 (en) * 2003-06-18 2004-12-29 Ltt Bio-Pharma Co., Ltd. Drug-containing sustained release microparticle, process for producing the same and preparation containing the microparticle
JP2005046530A (en) * 2003-07-31 2005-02-24 National Institute Of Advanced Industrial & Technology Porous calcium phosphate hardened body, method of manufacturing the same, and artificial bone and medicine controlled release body using the same
JP2009101174A (en) * 2001-03-02 2009-05-14 Stryker Corp POROUS GRANULE OF beta-TRICALCIUM PHOSPHATE, AND METHOD FOR PRODUCING THE SAME
US7585521B2 (en) 2000-02-21 2009-09-08 Australian Nuclear Science & Technology Organisation Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use
WO2010067604A1 (en) * 2008-12-11 2010-06-17 国立大学法人京都大学 Material for bone-regeneration and manufacturing method therefor
US8101268B2 (en) 2003-08-12 2012-01-24 University Of Bath Bone substitute material
US8603184B2 (en) 2002-04-03 2013-12-10 DePuy Synthes Products, LLC Kneadable and pliable bone replacement material
JP2019126667A (en) * 2018-01-26 2019-08-01 国立大学法人 岡山大学 Controlled release device
CN113244446A (en) * 2021-05-17 2021-08-13 广东省科学院健康医学研究所 Magnesium alloy composite material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161299B (en) * 2006-10-09 2011-07-06 乐普(北京)医疗器械股份有限公司 Medicament release structure carrying apertured and polyalcohol as well as its preparing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585521B2 (en) 2000-02-21 2009-09-08 Australian Nuclear Science & Technology Organisation Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use
JP2009101174A (en) * 2001-03-02 2009-05-14 Stryker Corp POROUS GRANULE OF beta-TRICALCIUM PHOSPHATE, AND METHOD FOR PRODUCING THE SAME
WO2003035126A1 (en) * 2001-10-09 2003-05-01 Techno Network Shikoku Co., Ltd. Process for producing biological material, drug, food, medical instrument, cell culture instrument and tissue-inducible material
US9050390B2 (en) 2002-04-03 2015-06-09 DePuy Synthes Products, LLC Kneadable and pliable bone replacement material
US8603184B2 (en) 2002-04-03 2013-12-10 DePuy Synthes Products, LLC Kneadable and pliable bone replacement material
WO2003084571A1 (en) * 2002-04-08 2003-10-16 Denki Kagaku Kogyo Kabushiki Kaisha Therapeutic composition for bone infectious disease
WO2004000270A1 (en) * 2002-06-20 2003-12-31 Ltt Bio-Pharma Co., Ltd. Sustained-release composition, process for producing the same and preparation thereof
US8313767B2 (en) 2003-06-18 2012-11-20 Independent Administrative Institution, National Institute For Materials Science Drug-containing sustained release microparticle, process for producing the same and preparation containing the microparticle
WO2004112751A1 (en) * 2003-06-18 2004-12-29 Ltt Bio-Pharma Co., Ltd. Drug-containing sustained release microparticle, process for producing the same and preparation containing the microparticle
JPWO2004112751A1 (en) * 2003-06-18 2006-08-31 株式会社Lttバイオファーマ Drug-containing sustained-release fine particles, process for producing the same, and preparations containing the same
JP4709007B2 (en) * 2003-06-18 2011-06-22 独立行政法人物質・材料研究機構 Drug-containing sustained-release fine particles, process for producing the same, and preparations containing the same
JP2005046530A (en) * 2003-07-31 2005-02-24 National Institute Of Advanced Industrial & Technology Porous calcium phosphate hardened body, method of manufacturing the same, and artificial bone and medicine controlled release body using the same
US8101268B2 (en) 2003-08-12 2012-01-24 University Of Bath Bone substitute material
WO2010067604A1 (en) * 2008-12-11 2010-06-17 国立大学法人京都大学 Material for bone-regeneration and manufacturing method therefor
JP2019126667A (en) * 2018-01-26 2019-08-01 国立大学法人 岡山大学 Controlled release device
CN113244446A (en) * 2021-05-17 2021-08-13 广东省科学院健康医学研究所 Magnesium alloy composite material and preparation method and application thereof
CN113244446B (en) * 2021-05-17 2022-11-11 广东省科学院健康医学研究所 Magnesium alloy composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2922667B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
Eivazzadeh‐Keihan et al. Metal‐based nanoparticles for bone tissue engineering
US5607685A (en) Protracted-release adminstration forms containing clindamycin palmitate
Lee et al. A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration
Shadjou et al. Silica‐based mesoporous nanobiomaterials as promoter of bone regeneration process
JPH04327525A (en) Sustained release medicine-containing ceramic porous substance
Shi et al. Gentamicin‐impregnated chitosan/nanohydroxyapatite/ethyl cellulose microspheres granules for chronic osteomyelitis therapy
Wan et al. Investigating a new drug delivery nano composite membrane system based on PVA/PCL and PVA/HA (PEG) for the controlled release of biopharmaceuticals for bone infections
Zahid et al. Biological behavior of bioactive glasses and their composites
Kolanthai et al. Effect of solvent; enhancing the wettability and engineering the porous structure of a calcium phosphate/agarose composite for drug delivery
Zhao et al. Construction of macroporous magnesium phosphate-based bone cement with sustained drug release
JP2010046249A (en) Hard tissue filling material
Xue et al. A novel controlled-release system for antibacterial enzyme lysostaphin delivery using hydroxyapatite/chitosan composite bone cement
Jacquart et al. Injectable bone cement containing carboxymethyl cellulose microparticles as a silver delivery system able to reduce implant-associated infection risk
CN110124100A (en) A kind of drug-loaded artificial bone bracket and preparation method thereof that achievable drug orientation quantitatively discharges
Moussi et al. Injectable macromolecule-based calcium phosphate bone substitutes
Stanić Boron-containing bioactive glasses for bone regeneration
KR100588534B1 (en) Drug delivery system of ceramic coated by biodegradable and porous silica and process for preparing the same
Mudhafar et al. The natural and commercial sources of hydroxyapatite/collagen composites For biomedical applications: A review study
Ying et al. Shape-memory ECM-mimicking heparin-modified nanofibrous gelatin scaffold for enhanced bone regeneration in sinus augmentation
JPH0930988A (en) Sustained release porous ceramic molding for medicine and its production
Heybeli et al. Low-cost antibiotic loaded systems for developing countries
Pamfil et al. Collagen‐Based Materials for Pharmaceutical Applications
Ruphuy et al. New insights into nanohydroxyapatite/chitosan nanocomposites for bone tissue regeneration
Abdelkader et al. Alginate-based composite scaffolds loaded with streptomycin sulfate for bone regeneration: In vitro studies
Rajkumar et al. Chitosan-Based Biomaterial in Wound Healing: A Review

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees