JPH04327022A - Static pressure bearing testing device - Google Patents

Static pressure bearing testing device

Info

Publication number
JPH04327022A
JPH04327022A JP12479491A JP12479491A JPH04327022A JP H04327022 A JPH04327022 A JP H04327022A JP 12479491 A JP12479491 A JP 12479491A JP 12479491 A JP12479491 A JP 12479491A JP H04327022 A JPH04327022 A JP H04327022A
Authority
JP
Japan
Prior art keywords
shaft
casing
liquid hydrogen
bearing
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12479491A
Other languages
Japanese (ja)
Other versions
JP3062835B2 (en
Inventor
Kazuyuki Tono
和幸 東野
Shunichiro Nakai
俊一郎 中井
Kazutaka Iwama
岩間 一敬
Minoru Tada
稔 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP3124794A priority Critical patent/JP3062835B2/en
Publication of JPH04327022A publication Critical patent/JPH04327022A/en
Application granted granted Critical
Publication of JP3062835B2 publication Critical patent/JP3062835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a static pressure bearing testing device which can seize a characteristic of a static pressure bearing alone with accuracy. CONSTITUTION:An impeller 3 of a turbine 1 fixed to a casing 2 is supported by a shaft 4 housed in the casing 2. Static pressure bearings 7, 8 which rotatably journal supported portions 5, 6 of the shaft 4 through a fluid pressure is arranged in the casing 2. A thrust flange 18 is formed on a required portion of the shaft 4. A thrust bearing 20 which holds both ends of the thrust flange 10 through the fluid pressure is arranged in the casing 2. A radial loader which gives a fluid pressure to the shaft 4 between the static pressure bearings 7, 8 in a radial direction is provided on a required portion of the casing 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は静圧軸受試験装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic bearing testing device.

【0002】0002

【従来の技術】現在、スペースシャトルのメインエンジ
ン等にはポンプ式液体ロケットエンジンが用いられてい
るが、該ポンプ式液体ロケットエンジンの長寿命化を妨
げている大きな要因の1つとしてターボポンプ軸受の摩
耗の問題がある。
[Prior Art] Currently, pump-type liquid rocket engines are used in the main engines of space shuttles, etc., but one of the major factors that hinders the longevity of the pump-type liquid rocket engines is the lack of turbo pump bearings. There is a wear problem.

【0003】そこで、この問題を解決する方法として、
軸受を従来のボール軸受から非接触式の静圧軸受に変更
することが考えられている。
[0003] Therefore, as a method to solve this problem,
Consideration has been given to changing the bearing from a conventional ball bearing to a non-contact hydrostatic bearing.

【0004】0004

【発明が解決しようとする課題】斯かるポンプ式液体ロ
ケットエンジンのターボポンプ用の静圧軸受を設計する
為には、該静圧軸受の基礎データを得る必要があるが、
従来、静圧軸受だけの特性を精度良く把握し得る試験装
置はなかった。
[Problem to be Solved by the Invention] In order to design a hydrostatic bearing for the turbo pump of such a pump type liquid rocket engine, it is necessary to obtain basic data of the hydrostatic bearing.
Until now, there has been no testing equipment that can accurately determine the characteristics of hydrostatic bearings.

【0005】本発明は上述の実情に鑑みてなしたもので
、静圧軸受だけの特性を精度良く把握し得る静圧軸受試
験装置を提供することを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a hydrostatic bearing testing device that can accurately grasp the characteristics of only a hydrostatic bearing.

【0006】[0006]

【課題を解決するための手段】本発明は一端にタービン
の羽根車が接続されてケーシング内に収容されたシャフ
トと、該シャフトの軸心方向複数箇所を流体圧によって
回転自在に軸支する静圧軸受と、前記シャフトの所要位
置に形成したスラストつばの軸心方向両端面を流体圧に
よって保持するスラスト軸受と、前記静圧軸受間のシャ
フトに半径方向から流体圧を付与することにより静圧軸
受の負荷荷重量を調整するラジアルローダとを備えたこ
とを特徴とする静圧軸受試験装置にかかるものである。
[Means for Solving the Problems] The present invention comprises a shaft which is housed in a casing and has a turbine impeller connected to one end thereof, and a static shaft which rotatably supports the shaft at a plurality of locations in the axial direction by fluid pressure. A static pressure is created by applying fluid pressure from the radial direction to the shaft between a pressure bearing, a thrust bearing that holds both axial end surfaces of a thrust collar formed at a predetermined position of the shaft by fluid pressure, and the hydrostatic pressure bearing. This invention relates to a hydrostatic bearing testing device characterized by comprising a radial loader that adjusts the amount of load applied to the bearing.

【0007】[0007]

【作用】従って本発明では、シャフトがケーシング側に
対し固体接触することなく軸支されるので、静圧軸受だ
けの特性を精度良く試験することが可能となる。
[Operation] Therefore, in the present invention, since the shaft is supported without solid contact with the casing side, it is possible to accurately test the characteristics of only the hydrostatic bearing.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0009】図1〜図4は本発明の一実施例であり、以
下に述べる静圧軸受試験装置は、ロケット用極低温推薬
である液体水素を軸受用の流体として使用した例である
FIGS. 1 to 4 show one embodiment of the present invention, and the hydrostatic bearing testing device described below is an example in which liquid hydrogen, which is a cryogenic propellant for rockets, is used as the bearing fluid.

【0010】図中1はケーシング2に固定されたタービ
ンを示し、該タービン1の羽根車3は、前記ケーシング
2内に収容されたシャフト4の一端に一体的に形成され
ている。
In the figure, reference numeral 1 indicates a turbine fixed to a casing 2, and an impeller 3 of the turbine 1 is integrally formed with one end of a shaft 4 housed within the casing 2.

【0011】前記シャフト4の軸心方向複数箇所(図示
する例では二箇所)には、凸状断面の被支持部5,6が
シャフト4の周方向全周にわたって形成されており、各
被支持部5,6はケーシング2側に設けられた供試軸受
である静圧軸受7,8によって回転自在に軸支されてい
る。
Supported portions 5 and 6 having convex cross sections are formed at a plurality of locations (two locations in the illustrated example) in the axial direction of the shaft 4 over the entire circumferential direction of the shaft 4. The parts 5 and 6 are rotatably supported by static pressure bearings 7 and 8, which are test bearings provided on the casing 2 side.

【0012】即ち、前記静圧軸受7,8は、前記被支持
部5,6外周部に所要のクリアランスを有して外嵌して
おり、ケーシング2内の所要位置に形成された液体水素
導入室9,10から導入流路11,12を介してクリア
ランスに導かれる液体水素13の流体圧によって、前記
シャフト4の被支持部5,6を非接触状態で軸支するよ
うになっている。
That is, the hydrostatic bearings 7 and 8 are fitted onto the outer peripheries of the supported parts 5 and 6 with a required clearance, and liquid hydrogen introduction holes formed at predetermined positions in the casing 2 are provided. The supported parts 5 and 6 of the shaft 4 are supported in a non-contact manner by the fluid pressure of the liquid hydrogen 13 introduced from the chambers 9 and 10 to the clearance via the introduction channels 11 and 12.

【0013】又、前記各静圧軸受7,8とシャフト4の
被支持部5,6との間の流体圧は、ケーシング2側に穿
設した検圧用流路14,15を介してケーシング2外部
に備えた圧力計16,17で検出されるようになってい
る。
Further, the fluid pressure between each of the hydrostatic bearings 7, 8 and the supported parts 5, 6 of the shaft 4 is transferred to the casing 2 through pressure detection passages 14, 15 formed on the casing 2 side. The pressure is detected by external pressure gauges 16 and 17.

【0014】更に、前記シャフト4の他端側には、図3
及び図4に拡大して示す如く外周部を略T字状断面とし
たスラストつば18がシャフト4の周方向全周にわたっ
て形成されており、このスラストつば18と、その周囲
に形成された保持室19とにより前記シャフト4に生じ
るスラスト荷重を支える為のスラスト軸受20が構成さ
れている。
Furthermore, on the other end side of the shaft 4, there is a
As shown in an enlarged view in FIG. 4, a thrust collar 18 whose outer periphery has a substantially T-shaped cross section is formed all around the shaft 4 in the circumferential direction, and this thrust collar 18 and a holding chamber formed around it. 19 constitutes a thrust bearing 20 for supporting the thrust load generated on the shaft 4.

【0015】即ち、前記スラスト軸受20は、ケーシン
グ2内の所要位置に形成された液体水素導入室21から
導入流路22,23を介して保持室19に導かれる液体
水素13の流体圧によって、前記スラストつば18の端
面18a,18bを非接触状態で保持し得るようにして
ある。
That is, the thrust bearing 20 is operated by the fluid pressure of the liquid hydrogen 13 introduced from the liquid hydrogen introduction chamber 21 formed at a predetermined position in the casing 2 to the holding chamber 19 via the introduction channels 22 and 23. The end surfaces 18a and 18b of the thrust collar 18 can be held in a non-contact state.

【0016】又、前記シャフト4の他端近傍位置には、
該シャフト4の他端に対向させた非接触式の変位計24
が配設されており、シャフト4の軸心方向の変位を監視
し得るようにしてある。
[0016] Also, at a position near the other end of the shaft 4,
A non-contact displacement meter 24 facing the other end of the shaft 4
is arranged so that displacement of the shaft 4 in the axial direction can be monitored.

【0017】更に、前記ケーシング2の所要位置には、
前記静圧軸受7,8間のシャフト4に、該シャフト4の
半径方向から液体水素13の流体圧を付与することによ
って前記静圧軸受7,8の負荷荷重量を調整し得るよう
にしたラジアルローダ25が設けてある。
[0017]Furthermore, at required positions of the casing 2,
A radial which can adjust the load amount of the hydrostatic pressure bearings 7 and 8 by applying fluid pressure of liquid hydrogen 13 to the shaft 4 between the hydrostatic pressure bearings 7 and 8 from the radial direction of the shaft 4. A loader 25 is provided.

【0018】即ち、前記ラジアルローダ25は、押さえ
部材26を介して圧縮ばね27によりシャフト4に向け
付勢された中空ロッド28と、前記押さえ部材26に穿
設された連通孔29を介して前記中空ロッド28の中空
部30に連通する液体水素導入室31と、前記中空ロッ
ド28の下端部に形成された圧力室32とからなり、前
記液体水素導入室31から連通孔29及び中空部30を
介して圧力室32に導かれる液体水素13の流体圧をシ
ャフト4に付与し得るようにしてある。
That is, the radial loader 25 has a hollow rod 28 which is biased toward the shaft 4 by a compression spring 27 via a holding member 26, and a hollow rod 28 which is biased toward the shaft 4 by a compression spring 27 via a holding member 26. It consists of a liquid hydrogen introduction chamber 31 communicating with the hollow part 30 of the hollow rod 28 and a pressure chamber 32 formed at the lower end of the hollow rod 28. The fluid pressure of the liquid hydrogen 13 introduced into the pressure chamber 32 through the shaft 4 can be applied to the shaft 4.

【0019】前記中空ロッド28の上方位置、シャフト
4の側方位置、シャフト4の下方位置には、夫々シャフ
ト4の軸心に向けた非接触式の変位計33,34,35
が配設されており、該各変位計33,34,35によっ
て検出される各方向の変位量に基づいてシャフト4の振
動特性、剛性、安定性等を調べ得るようになっている。
Non-contact displacement meters 33, 34, 35 are provided at the upper position of the hollow rod 28, at the side position of the shaft 4, and at the lower position of the shaft 4, respectively.
are arranged, so that the vibration characteristics, rigidity, stability, etc. of the shaft 4 can be investigated based on the amount of displacement in each direction detected by the displacement meters 33, 34, 35.

【0020】又、図示しない別に設けた回転計にて、シ
ャフト4の回転数も計測可能となっている。
[0020] Furthermore, the rotational speed of the shaft 4 can also be measured using a separately provided tachometer (not shown).

【0021】更に、前述した各液体水素導入室9,10
,21,31には、図示しない外部設備から液体水素導
入ライン36,37,38,39を介して液体水素13
が供給されるようになっており、又、静圧軸受7,8・
ラジアルローダ25・スラスト軸受20にて使用された
液体水素13は、所要位置に形成された液体水素排出室
40,41,42,43,44,45から夫々液体水素
排出ライン46,47,48,49,50,51,55
を介して随時ケーシング2外に排出されるようになって
いる。
Furthermore, each of the liquid hydrogen introduction chambers 9 and 10 described above
, 21, 31 are supplied with liquid hydrogen 13 from external equipment (not shown) via liquid hydrogen introduction lines 36, 37, 38, 39.
The hydrostatic bearings 7, 8, and
The liquid hydrogen 13 used in the radial loader 25 and thrust bearing 20 is transferred from liquid hydrogen discharge chambers 40, 41, 42, 43, 44, 45 formed at required positions to liquid hydrogen discharge lines 46, 47, 48, respectively. 49, 50, 51, 55
It is designed to be discharged out of the casing 2 at any time via.

【0022】尚、図中52はバルブ、53はオリフィス
、54はラビンスシールを示す。
In the figure, 52 is a valve, 53 is an orifice, and 54 is a lavence seal.

【0023】以下、作動を説明する。The operation will be explained below.

【0024】液体水素導入ライン36,38により静圧
軸受7,8の液体水素導入室9及び10に液体水素13
を供給すると、該液体水素13は導入流路11,12を
介して静圧軸受7,8とシャフト4の被支持部5,6と
の間に圧送され、該被支持部5,6を流体圧により静圧
軸受7,8側から浮かせた状態で軸支し、順次供給され
てくる新たな液体水素13により液体水素排出室40,
41及び43,44に流れ込んで液体水素排出ライン4
6,47及び49,50からケーシング2外へ排出され
る。
Liquid hydrogen 13 is introduced into the liquid hydrogen introduction chambers 9 and 10 of the hydrostatic bearings 7 and 8 through the liquid hydrogen introduction lines 36 and 38.
When the liquid hydrogen 13 is supplied, the liquid hydrogen 13 is fed between the hydrostatic bearings 7, 8 and the supported parts 5, 6 of the shaft 4 through the introduction channels 11, 12, and the supported parts 5, 6 are filled with fluid. The new liquid hydrogen 13 is supported in a floating state from the hydrostatic bearings 7 and 8 by pressure, and the liquid hydrogen discharge chamber 40,
41, 43, 44 and liquid hydrogen discharge line 4.
6, 47 and 49, 50 to the outside of the casing 2.

【0025】又、液体水素導入ライン39によりスラス
ト軸受20の液体水素導入室21に液体水素13を供給
すると、該液体水素13は導入流路22及び23を介し
てケーシング2とスラストつば18の軸心方向両端面1
8a,18bとの間に夫々圧送され、該スラストつば1
8の両端面18a,18bをケーシング2側から浮かせ
た状態で保持し、順次供給されてくる新たな液体水素1
3により液体水素排出室45に流れ込んで液体水素排出
ライン51からケーシング2外へ排出される。
Furthermore, when liquid hydrogen 13 is supplied to the liquid hydrogen introduction chamber 21 of the thrust bearing 20 through the liquid hydrogen introduction line 39, the liquid hydrogen 13 passes through the introduction channels 22 and 23 to the shaft of the casing 2 and the thrust collar 18. Both end faces in the center direction 1
8a and 18b, respectively, and the thrust collar 1
Both end surfaces 18a and 18b of 8 are held in a floating state from the casing 2 side, and new liquid hydrogen 1 is sequentially supplied.
3 flows into the liquid hydrogen discharge chamber 45 and is discharged from the liquid hydrogen discharge line 51 to the outside of the casing 2.

【0026】この時、前述した静圧軸受7,8に使用さ
れる液体水素13のシャフト4軸心方向における圧力分
布の不釣合等により前記シャフト4にスラスト荷重が生
じていて、該シャフト4が例えば図3に示すようにター
ビン1側(図中左側)に移動していたとしても、タービ
ン1側の導入流路22から液体水素排出室45へ向う液
体水素13の流れがスラストつば18外周部の略T字状
断面形状により阻害されるので、前記スラストつば18
のタービン1側の端面18aに作用する流体圧が高まっ
て前記シャフト4をスラスト荷重に対し反対方向に押し
戻す力が生じ、スラストつば18はケーシング2側に対
して非接触状態となる位置に押し戻されて保持される。
At this time, a thrust load is generated on the shaft 4 due to an imbalance in the pressure distribution of the liquid hydrogen 13 used in the hydrostatic bearings 7 and 8 in the axial direction of the shaft 4, and the shaft 4 is, for example, Even if the liquid hydrogen 13 moves toward the turbine 1 side (left side in the figure) as shown in FIG. The thrust collar 18 is obstructed by the approximately T-shaped cross-sectional shape.
The fluid pressure acting on the end face 18a on the turbine 1 side increases, generating a force that pushes the shaft 4 back in the opposite direction to the thrust load, and the thrust collar 18 is pushed back to a position where it is out of contact with the casing 2 side. is retained.

【0027】尚、このスラスト軸受20のスラスト荷重
に対するバランス機能は、図4に示すようにタービン1
と反対側(図中右側)に向けてスラスト荷重が生じてい
る場合にも同様に作用し、又、後述するタービン1駆動
時に生じるスラスト荷重に対しても同様に作用するので
、スラストつば18は常に非接触状態で保持されること
になる。
The balance function of the thrust bearing 20 with respect to the thrust load is as shown in FIG.
The thrust collar 18 acts in the same way when a thrust load is generated toward the opposite side (the right side in the figure), and also acts in the same way on the thrust load generated when the turbine 1 is driven, which will be described later. It will always be maintained in a non-contact state.

【0028】更に、液体水素導入ライン37によりラジ
アルロ−ダ25の液体水素導入室31に液体水素13を
供給すると、該液体水素13は連通孔29及び中空ロッ
ド28の中空部30を通されて圧力室32に至り、該圧
力室32内の流体圧がシャフト4に付与されて前記静圧
軸受7,8に負荷荷重がかけられる。
Furthermore, when the liquid hydrogen 13 is supplied to the liquid hydrogen introduction chamber 31 of the radial loader 25 through the liquid hydrogen introduction line 37, the liquid hydrogen 13 is passed through the communication hole 29 and the hollow part 30 of the hollow rod 28, and is then pressurized. The fluid pressure in the pressure chamber 32 is applied to the shaft 4 and a load is applied to the hydrostatic bearings 7 and 8.

【0029】このとき、前記圧力室32内の液体水素1
3は順次供給されてくる新たな液体水素13によりシャ
フト4との境界部から漏出するので、中空ロッド28の
下端はシャフト4に対して僅かに浮き上がり非接触状態
となる。
At this time, the liquid hydrogen 1 in the pressure chamber 32
3 leaks from the boundary with the shaft 4 due to the new liquid hydrogen 13 that is successively supplied, so the lower end of the hollow rod 28 rises slightly with respect to the shaft 4 and is in a non-contact state.

【0030】圧力室32から漏出した液体水素13は液
体水素排出室42に流れ込んで液体水素排出ライン48
からケーシング2外へ排出される。
The liquid hydrogen 13 leaked from the pressure chamber 32 flows into the liquid hydrogen discharge chamber 42 and flows into the liquid hydrogen discharge line 48.
is discharged from the casing 2.

【0031】次いで、タービン1に水素ガス等の駆動ガ
スを供給して羽根車3を回転駆動することによってシャ
フト4を回転させ、前記ラジアルローダ25による負荷
荷重量の調整やタービン1の回転数調整、液体水素13
の供給圧力の調整等を行いつつ静圧軸受7,8の特性を
試験する。
Next, a driving gas such as hydrogen gas is supplied to the turbine 1 to rotationally drive the impeller 3 to rotate the shaft 4, and the radial loader 25 adjusts the load amount and the rotational speed of the turbine 1. , liquid hydrogen 13
The characteristics of the hydrostatic bearings 7 and 8 are tested while adjusting the supply pressure.

【0032】従って上記実施例によれば、シャフト4を
ケーシング2側に対し固体接触させないで軸支すること
ができるので、供試軸受である静圧軸受7,8だけの特
性を精度良く把握することができる。
Therefore, according to the above embodiment, since the shaft 4 can be supported without making solid contact with the casing 2 side, the characteristics of only the hydrostatic bearings 7 and 8, which are the test bearings, can be accurately grasped. be able to.

【0033】尚、本発明の静圧軸受試験装置は、上述の
実施例にのみ限定されるものではなく、静圧軸受・ラジ
アルローダ・スラスト軸受に使用される流体は液体水素
以外に液体酸素、液化メタン等の流体を選択しても良い
こと、その他本発明の要旨を逸脱しない範囲内において
種々変更を加え得ることは勿論である。
The hydrostatic bearing testing apparatus of the present invention is not limited to the above-described embodiments, and fluids used in the hydrostatic bearings, radial loaders, and thrust bearings include liquid oxygen, liquid oxygen, and liquid hydrogen in addition to liquid hydrogen. Of course, a fluid such as liquefied methane may be selected, and various other changes may be made without departing from the gist of the present invention.

【0034】[0034]

【発明の効果】以上説明したように、本発明の静圧軸受
試験装置によれば、シャフトをケーシング側に対し固体
接触させないで軸支することができるので、静圧軸受だ
けの特性を精度良く把握することができる。
[Effects of the Invention] As explained above, according to the hydrostatic bearing testing device of the present invention, the shaft can be supported without solid contact with the casing side, so the characteristics of the hydrostatic bearing can be accurately measured. can be grasped.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】図1のII−II方向の矢視図である。FIG. 2 is a view taken along arrow II-II in FIG. 1;

【図3】図1のスラスト軸受の拡大図である。FIG. 3 is an enlarged view of the thrust bearing of FIG. 1;

【図4】図1のスラスト軸受の拡大図である。FIG. 4 is an enlarged view of the thrust bearing in FIG. 1;

【符号の説明】[Explanation of symbols]

1 タービン 2 ケーシング 3 羽根車 4 シャフト 7 静圧軸受 8 静圧軸受 18 スラストつば 20 スラスト軸受 25 ラジアルローダ 1 Turbine 2 Casing 3 Impeller 4 Shaft 7 Static pressure bearing 8 Static pressure bearing 18 Thrust brim 20 Thrust bearing 25 Radial loader

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  一端にタービンの羽根車が接続されて
ケーシング内に収容されたシャフトと、該シャフトの軸
心方向複数箇所を流体圧によって回転自在に軸支する静
圧軸受と、前記シャフトの所要位置に形成したスラスト
つばの軸心方向両端面を流体圧によって保持するスラス
ト軸受と、前記静圧軸受間のシャフトに半径方向から流
体圧を付与することにより静圧軸受の負荷荷重量を調整
するラジアルローダとを備えたことを特徴とする静圧軸
受試験装置。
1. A shaft having one end connected to a turbine impeller and housed in a casing; a hydrostatic bearing rotatably supporting the shaft at multiple locations in the axial direction by fluid pressure; The amount of load applied to the hydrostatic bearing is adjusted by applying fluid pressure from the radial direction to the shaft between the thrust bearing, which holds both axial end surfaces of the thrust collar formed in the required position using fluid pressure, and the hydrostatic bearing. A hydrostatic bearing testing device characterized by being equipped with a radial loader.
JP3124794A 1991-04-27 1991-04-27 Hydrostatic bearing test equipment Expired - Fee Related JP3062835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3124794A JP3062835B2 (en) 1991-04-27 1991-04-27 Hydrostatic bearing test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3124794A JP3062835B2 (en) 1991-04-27 1991-04-27 Hydrostatic bearing test equipment

Publications (2)

Publication Number Publication Date
JPH04327022A true JPH04327022A (en) 1992-11-16
JP3062835B2 JP3062835B2 (en) 2000-07-12

Family

ID=14894290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3124794A Expired - Fee Related JP3062835B2 (en) 1991-04-27 1991-04-27 Hydrostatic bearing test equipment

Country Status (1)

Country Link
JP (1) JP3062835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057156A1 (en) * 2003-12-10 2005-06-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Pivotally supporting device for correcting balance of rotating body
JP4553215B2 (en) * 1999-07-01 2010-09-29 株式会社Ihiエアロスペース Turbo pump with hydrostatic bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553215B2 (en) * 1999-07-01 2010-09-29 株式会社Ihiエアロスペース Turbo pump with hydrostatic bearing
WO2005057156A1 (en) * 2003-12-10 2005-06-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Pivotally supporting device for correcting balance of rotating body
US7658107B2 (en) 2003-12-10 2010-02-09 Ishikawajima-Harima Heavy Industries Co., Ltd. Rotatably supporting device for correcting balance of rotating body
AU2004297431B2 (en) * 2003-12-10 2010-09-23 Ihi Corporation Pivotally supporting device for correcting balance of rotating body

Also Published As

Publication number Publication date
JP3062835B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US5791868A (en) Thrust load compensating system for a compliant foil hydrodynamic fluid film thrust bearing
JP6562953B2 (en) Gas or liquid hydrostatic bearing seal assembly
US5248239A (en) Thrust control system for fluid handling rotary apparatus
US2671700A (en) Air bearing apparatus
JPS6313002B2 (en)
CN101457658A (en) Turbocharger center housing and rotating assembly
EP3236091A1 (en) System and method for a variable squeeze film damper
US20190353543A1 (en) Axial thrust force balancing apparatus for an integrally geared compressor
US20040119239A1 (en) Bearing pressure balance apparatus
JPS6314205B2 (en)
JPH04327022A (en) Static pressure bearing testing device
US3669514A (en) Gaseous bearing with stabilizer
US3763700A (en) Hydraulic thrust indicator for rotatable shaft
HANNUM et al. The performance and application of high speed long life LH2 hybrid bearings for reusable rocket engine turbomachinery
CN112502859A (en) High-speed dynamic sealing element test device for rocket engine
US7360420B2 (en) Method and bearing for balancing rotors without journals
CN214196502U (en) High-speed dynamic sealing element test device
CN113864341A (en) Static and dynamic mixed air-bearing rotor system and operation method
US7658107B2 (en) Rotatably supporting device for correcting balance of rotating body
JP2001041856A (en) Apparatus for testing efficiency of differential carbon seal
San Andrés et al. Revamping and Preliminary Operation of a Thrust Bearing Test Rig
Scharrer et al. A study of the transient performance of hydrostatic journal bearings: Part i-Test apparatus and facility
Spica et al. Evaluation of a hybrid hydrostatic bearing for cryogenic turbopump application
US2444659A (en) Thrust balancing means
Buckmann et al. Design and test of an oxygen turbopump for a dual expander cycle rocket engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees