JPH04326788A - Distribution feedback type semiconductor laser - Google Patents

Distribution feedback type semiconductor laser

Info

Publication number
JPH04326788A
JPH04326788A JP9773591A JP9773591A JPH04326788A JP H04326788 A JPH04326788 A JP H04326788A JP 9773591 A JP9773591 A JP 9773591A JP 9773591 A JP9773591 A JP 9773591A JP H04326788 A JPH04326788 A JP H04326788A
Authority
JP
Japan
Prior art keywords
layer
algaas
semiconductor laser
light
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9773591A
Other languages
Japanese (ja)
Inventor
Masato Doi
正人 土居
Shoji Hirata
照二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9773591A priority Critical patent/JPH04326788A/en
Publication of JPH04326788A publication Critical patent/JPH04326788A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Abstract

PURPOSE:To enable the stable single longitudinal mode oscillation of only the objective wavelength light by providing a light absorbing layer, where the quantum effect changes cyclically in the direction of light wave guide. CONSTITUTION:A first clad layer 2 consisting of AlGaAs or the like, an active layer 4 consisting of GaAs or the like, and a guide layer 5 consisting of AlGaAs or the like are epitaxially grown on a substrate 1 consisting of GaAs or the like. A diffraction gratings 10 at required pitches, which consist of parallel- arranged grooves where the sectional form in the direction of light wave guide is saw-toothed, is made on the guide layer 5 by etching. A light absorbing layer 6 consisting of AlGaAs or the like and the second clad layer 7 consisting of AlGaAs or the like are grown epitaxially in order thereon to have such thickness as to bring about quantum effect, that is, quantum well structure. A diffraction grating 10 is provided in the vicinity of the active layer 4, and hereon a light absorbing layer 6 is provided, which performs light absorption in cycles by quantum effect. Hereby, periodical gain coupling is performed, and single longitudinal mode oscillation becomes possible.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は分布帰還型半導体レーザ
いわゆるDFB(Distributed Feedb
ack)レーザに係わる。
[Industrial Application Field] The present invention relates to a distributed feedback semiconductor laser, so-called DFB (Distributed Feedb).
ack) Related to lasers.

【0002】0002

【従来の技術】DFBレーザは、レーザダイオード内に
回折格子を組み込んで特定の波長、即ち単一縦モードを
より選択的に発振発光し得るようになされたものであり
、近年例えば光ファイバー通信の広帯域伝送の応用化等
のために、各方面での研究開発が著しい。
BACKGROUND OF THE INVENTION A DFB laser is a laser diode that incorporates a diffraction grating to enable selective oscillation of a specific wavelength, that is, a single longitudinal mode. Research and development in various fields is remarkable for the application of transmission.

【0003】従来のDFBレーザの一例の要部の略線的
拡大断面図を図3に示す。図3に示すように、この場合
n型の第1のクラッド層21上に活性層22、p型のガ
イド層23が形成され、このp型のガイド層23の表面
にエッチング等によって例えば断面鋸歯状の凹凸より成
る所定のピッチΛの回折格子24が形成され、これの上
にp型の第2のクラッド層25がエピタキシャル成長さ
れてインデックス結合型DFB構成が採られる。この場
合、回折格子24のピッチΛはブラッグ反射条件によっ
て選定され、例えばホログラフィックエクスポージャ(
二光束干渉露光法)により形成したフォトレジストをマ
スクとするエッチングによって凹凸が形成される。26
は劈開等によって形成される端面である。
FIG. 3 shows a schematic enlarged cross-sectional view of the main parts of an example of a conventional DFB laser. As shown in FIG. 3, in this case, an active layer 22 and a p-type guide layer 23 are formed on the n-type first cladding layer 21, and the surface of the p-type guide layer 23 is etched, for example, with a sawtooth cross section. A diffraction grating 24 having a predetermined pitch Λ is formed, and a p-type second cladding layer 25 is epitaxially grown thereon to form an index-coupled DFB structure. In this case, the pitch Λ of the diffraction grating 24 is selected depending on the Bragg reflection condition, for example the holographic exposure (
The unevenness is formed by etching using a photoresist formed by a two-beam interference exposure method (two-beam interference exposure method) as a mask. 26
is an end face formed by cleavage or the like.

【0004】このようにして、回折格子24を設けるこ
とによって単一波長化をはかることができるが、この場
合ブラッグ反射を利用するためにレーザ光が単一波長と
はならない場合が生じ、両端面26の反射率をなくした
状態では、図4にその模式的な発振スペクトル図を示す
ように、2つのモードと複数のサイドモードとなる。従
って、このようなインデックス結合型DFBでは、位相
シフト構造を導入する等して目的とする波長モードを発
振するレーザを安定して得られるようにしており、その
製造工程が複雑となって、生産性に劣る等の問題がある
In this way, it is possible to achieve a single wavelength by providing the diffraction grating 24, but in this case, the laser beam may not have a single wavelength due to the use of Bragg reflection, and both end faces In a state where the reflectance of 26 is eliminated, there are two modes and a plurality of side modes, as shown in a schematic oscillation spectrum diagram in FIG. Therefore, in such an index-coupled DFB, a phase shift structure is introduced to stably obtain a laser that oscillates in the desired wavelength mode, but the manufacturing process becomes complicated and production slows down. There are problems such as being inferior in gender.

【0005】一方、より効果的に単一波長モードの発振
を行うために、利得結合型構成のDFBレーザも提案さ
れている。この利得結合型構成は、活性層の厚さを周期
的に変化させて周期的に利得を変化させるもので、ブラ
ッグ反射を用いないためノイズの低減化をはかることが
でき、また戻り光による影響が少ない等の利点がある。 この利得結合型半導体レーザとしては、例えば図5にそ
の略線的拡大断面図を示すように、半導体基体41上に
第1のクラッド層42がエピタキシャル成長され、その
表面を所定のピッチに例えば断面鋸歯状の凹凸面47を
エッチングによって形成し、この凹凸を埋込むようにこ
れの上に第1のガイド層43と、続いて活性層44をエ
ピタキシャル成長することによって、周期的に厚さの異
なる活性層44を形成し、第2のガイド層45、クラッ
ド層46をエピタキシャル成長した構成をとる。
On the other hand, a DFB laser having a gain-coupled structure has also been proposed in order to more effectively perform oscillation in a single wavelength mode. This gain-coupled configuration changes the gain periodically by periodically changing the thickness of the active layer, and because it does not use Bragg reflection, it can reduce noise and is also affected by the effects of returned light. There are advantages such as less In this gain-coupled semiconductor laser, for example, as shown in a schematic enlarged cross-sectional view in FIG. By etching an uneven surface 47 in the form of a shape, and epitaxially growing a first guide layer 43 and then an active layer 44 on the uneven surface so as to fill the unevenness, an active layer having periodically different thicknesses is formed. 44 is formed, and a second guide layer 45 and a cladding layer 46 are epitaxially grown.

【0006】上述の凹凸面47による回折格子のピッチ
Λは、例えばフォトリソグラフィによる露光、或いはマ
スクを介したX線露光等によってフォトレジストマスク
を形成し、これをマスクとしてエッチングを施す等の方
法がとられるが、この場合そのピッチは2000Å程度
のサブミクロンオーダーであることから、均一な溝の傾
きや周期を有する凹凸面の形成は難しく、これの上にガ
イド層43を介して形成する活性層44の周期的厚さ制
御を再現性良く得ることは難しい。
The pitch Λ of the diffraction grating formed by the above-mentioned uneven surface 47 can be determined by, for example, forming a photoresist mask by exposure by photolithography or by X-ray exposure through the mask, and performing etching using this as a mask. However, in this case, since the pitch is on the submicron order of about 2000 Å, it is difficult to form an uneven surface with a uniform groove inclination and period. It is difficult to obtain 44 periodic thickness control with good reproducibility.

【0007】更にこの場合、凹凸面47はエッチングに
よって形成されるため、その結晶性に劣る。従って、こ
の上にエピタキシャル成長されるガイド層43と更に活
性層44も良好な結晶性をもって成長することができな
いため、半導体レーザとして特性が安定しない恐れがあ
ることや、不良品が発生し易いなど信頼性に問題を残し
ており、実用化に種々問題がある。
Furthermore, in this case, since the uneven surface 47 is formed by etching, its crystallinity is poor. Therefore, the guide layer 43 and the active layer 44 that are epitaxially grown on this layer cannot be grown with good crystallinity, so there is a risk that the characteristics of the semiconductor laser will not be stable, and that there will be problems with reliability, such as the possibility of defective products. There are still problems in terms of performance, and there are various problems in practical application.

【0008】[0008]

【発明が解決しようとする課題】本発明は、単一縦モー
ド発振を安定して得ることのできる利得結合型が支配的
に生じるようにした分布帰還型半導体レーザを得ること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to obtain a distributed feedback type semiconductor laser in which a gain-coupled type semiconductor laser that can stably obtain single longitudinal mode oscillation occurs predominantly.

【0009】[0009]

【課題を解決するための手段】本発明分布帰還型半導体
レーザの一例の略線的拡大斜視図を図1に示す。本発明
は図1に示すように、活性層4の近傍に、量子効果が光
導波方向に周期的に変化する光吸収層6を設けて構成す
る。
[Means for Solving the Problems] FIG. 1 shows a schematic enlarged perspective view of an example of the distributed feedback semiconductor laser of the present invention. As shown in FIG. 1, the present invention is constructed by providing a light absorption layer 6 near the active layer 4 in which the quantum effect changes periodically in the optical waveguide direction.

【0010】0010

【作用】上述したように、本発明分布帰還型半導体レー
ザでは、活性層4の近傍に量子効果が光導波方向に周期
的に変化する即ちバンドギャップが周期的に変化して活
性層からの光の吸収が周期的に変化し、利得が周期的に
変化する構造が得られ、これによって目的とする波長の
光のみの単一縦モード発振を安定に行い得る分布帰還型
半導体レーザを得ることができる。
[Function] As described above, in the distributed feedback semiconductor laser of the present invention, the quantum effect changes periodically in the optical waveguide direction in the vicinity of the active layer 4, that is, the bandgap changes periodically, causing the light from the active layer to change periodically. A structure in which the absorption of light changes periodically and the gain changes periodically can be obtained, thereby making it possible to obtain a distributed feedback semiconductor laser that can stably perform single longitudinal mode oscillation of only light of the desired wavelength. can.

【0011】[0011]

【実施例】以下本発明分布帰還型半導体レーザの一例を
図1及び図2を参照して詳細に説明する。この場合、A
lGaAs系の半導体レーザに適用した場合で、図1に
示すように、GaAs等より成る基体1上に、AlGa
As等より成る第1のクラッド層2、GaAs等より成
る活性層4、AlGaAs等より成るガイド層5が順次
例えばMOCVD(有機金属による化学的気相成長)法
によってエピタキシャル成長されて成り、このガイド層
5上に、周知の例えばホログラフィックエクプロージャ
等によって、例えば光導波方向断面における断面形状が
鋸歯状とされた平行配列溝より成る所要のピッチの回折
格子10がエッチング形成されて成り、更にこの上に量
子効果即ち量子井戸構造が生じるような厚さの150Å
程度以下の平均膜厚をもって、AlGaAs等より成る
光吸収層6と、更にAlGaAs等より成る第2のクラ
ッド層7が順次エピタキシャル成長されて成る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the distributed feedback semiconductor laser of the present invention will be explained in detail below with reference to FIGS. 1 and 2. In this case, A
When applied to an lGaAs-based semiconductor laser, as shown in FIG.
A first cladding layer 2 made of As or the like, an active layer 4 made of GaAs or the like, and a guide layer 5 made of AlGaAs or the like are epitaxially grown in sequence by, for example, MOCVD (metal organic chemical vapor deposition), and this guide layer 5, a diffraction grating 10 having a required pitch is formed by etching, for example, a parallel array groove having a serrated cross-sectional shape in the optical waveguide direction, using a well-known method such as a holographic explosion. 150 Å thick enough to produce a quantum effect, that is, a quantum well structure.
A light absorption layer 6 made of AlGaAs or the like and a second cladding layer 7 made of AlGaAs or the like are successively epitaxially grown to have an average film thickness of about 100% or less.

【0012】このような構成における分布帰還型半導体
レーザの要部の略線的拡大断面図を図2に示す。図2に
おいて、tはガイド層5の厚さを示し、結合効率の設定
によって1000Å〜3000Å程度に選定される。ま
たdは回折格子10の頂部6Tと谷部6Vとの間の深さ
を示し、例えば1000Åとする。またこの回折格子1
0のピッチΛは例えば2000Åとする。
FIG. 2 shows a schematic enlarged cross-sectional view of the main parts of a distributed feedback semiconductor laser having such a configuration. In FIG. 2, t indicates the thickness of the guide layer 5, and is selected from about 1000 Å to 3000 Å depending on the setting of the coupling efficiency. Further, d indicates the depth between the top portion 6T and the valley portion 6V of the diffraction grating 10, and is, for example, 1000 Å. Also, this diffraction grating 1
The pitch Λ of 0 is, for example, 2000 Å.

【0013】そして光吸収層6の厚さは150Å程度以
下の量子効果を生じる厚さとするものであるが、このよ
うに回折格子10上にMOCVD法等によってエピタキ
シャル成長する場合、頂部6Tにおける厚さをt1,谷
部6Vにおける厚さをt2 とすると、t1 <t2 
となって、従ってこの頂部6Tと谷部6Vとのバンドギ
ャップをそれぞれEg1 ,Eg2 とするとEg1 
>Eg2 となる。
The thickness of the light absorption layer 6 is set to be about 150 Å or less to produce a quantum effect, but when epitaxially growing on the diffraction grating 10 by the MOCVD method or the like, the thickness at the top portion 6T is t1 and the thickness at the valley 6V is t2, then t1 < t2
Therefore, if the band gaps between the top 6T and the valley 6V are Eg1 and Eg2, respectively, Eg1
>Eg2.

【0014】従って、これら光吸収層6、活性層4及び
この活性層4上のガイド層5の組成即ちこの場合Al含
有量を適切に選定することによって、活性層4のバンド
ギャップをEg3 とし、ガイド層5のバンドギャップ
をEg4 とすると、Eg1 >Eg4 >Eg3 >
Eg2 となるように構成することができる。
Therefore, by appropriately selecting the composition of the light absorption layer 6, the active layer 4, and the guide layer 5 on the active layer 4, that is, the Al content in this case, the band gap of the active layer 4 can be set to Eg3. When the band gap of the guide layer 5 is Eg4, Eg1 >Eg4 >Eg3 >
Eg2.

【0015】従って、活性層4からガイド層5に漏れる
光は、このガイド層5を介して、これの上方に周期的に
構成される光吸収層6の谷部6Vにおいてのみ吸収され
るようになすことができて、周期的な利得結合を行い得
る分布帰還型半導体レーザを得ることができる。
Therefore, the light leaking from the active layer 4 to the guide layer 5 is absorbed only in the troughs 6V of the light absorption layer 6 which are periodically formed above the guide layer 5. Thus, a distributed feedback semiconductor laser capable of performing periodic gain coupling can be obtained.

【0016】このように、活性層4の近傍に回折格子1
0を設け、これの上に量子効果により周期的に光吸収を
行う光吸収層6を設けることによって、周期的な利得結
合を支配的に行わしめることができ、これにより、確実
に単一縦モード発振を行うようになすことができる。
In this way, the diffraction grating 1 is placed near the active layer 4.
By providing a light absorbing layer 6 on which light absorption layer 6 periodically absorbs light due to a quantum effect, periodic gain coupling can be dominantly performed. It is possible to perform mode oscillation.

【0017】また上述したように、活性層4をエピタキ
シャル成長した後、この上のガイド層5に回折格子10
を設けた後光吸収層5を設ける構成とすることによって
、活性層4の結晶性を良好に保持することができる。
Further, as described above, after the active layer 4 is epitaxially grown, the diffraction grating 10 is formed on the guide layer 5 thereon.
By providing the light absorption layer 5 after the formation of the active layer 4, the crystallinity of the active layer 4 can be maintained well.

【0018】更に、上述したように回折格子10上に光
吸収層6をエピタキシャル成長する場合は、その厚さを
特に制御することなく自然発生的に周期的に変化するよ
うになすことができるため製造工程が簡易であり、従来
の位相シフト構造を有する分布帰還型半導体レーザ等に
比して生産性の向上をはかることができる。
Furthermore, when the light absorption layer 6 is epitaxially grown on the diffraction grating 10 as described above, the thickness can be made to change spontaneously and periodically without any particular control. The process is simple, and productivity can be improved compared to conventional distributed feedback semiconductor lasers having a phase shift structure.

【0019】尚、本発明は上述したAlGaAs系半導
体レーザに限らず、InGaAsP系等種々の分布帰還
型半導体レーザに適用することができる。また、本発明
は上述の製法による構成に限らず、光吸収層6の量子効
果が光導波方向に周期的に変化する構造であればよく、
また例えばガイド層を多層構造として夫々の屈折率を適
当に選定することによって、平均的屈折率を各部におい
て均一になるようにする場合は、よりインデックス結合
型の影響を回避することができて、より単一波長化をは
かることができる。
The present invention is not limited to the above-mentioned AlGaAs-based semiconductor laser, but can be applied to various distributed feedback semiconductor lasers such as InGaAsP-based semiconductor lasers. Further, the present invention is not limited to the structure according to the above-mentioned manufacturing method, but may be any structure in which the quantum effect of the light absorption layer 6 changes periodically in the optical waveguide direction.
In addition, for example, if the guide layer has a multilayer structure and the refractive index of each layer is appropriately selected so that the average refractive index is made uniform in each part, the influence of the index coupling type can be further avoided. It is possible to achieve a more single wavelength.

【0020】[0020]

【発明の効果】上述したように、本発明分布帰還型半導
体レーザによれば、利得結合によって、確実にかつ効果
的に単一縦モード発振を行うことができる。
As described above, according to the distributed feedback semiconductor laser of the present invention, single longitudinal mode oscillation can be performed reliably and effectively by gain coupling.

【0021】また、活性層を良好な結晶性をもって構成
することができるため、信頼性の向上をはかって即ち不
良品の発生を抑制し、歩留りの向上をはかることができ
る。
Furthermore, since the active layer can be constructed with good crystallinity, reliability can be improved, that is, generation of defective products can be suppressed, and yield can be improved.

【0022】更に、上述したように回折格子10を形成
してこの上に光吸収層6をエピタキシャル成長して構成
することによって、製造工程の簡易化をはかって生産性
の向上をはかることができる。
Furthermore, by forming the diffraction grating 10 and epitaxially growing the light absorption layer 6 thereon as described above, it is possible to simplify the manufacturing process and improve productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明分布帰還型半導体レーザの一例の略線的
拡大斜視図である。
FIG. 1 is a schematic enlarged perspective view of an example of a distributed feedback semiconductor laser according to the present invention.

【図2】本発明分布帰還型半導体レーザの一例の要部の
略線的拡大断面図である。
FIG. 2 is a schematic enlarged cross-sectional view of a main part of an example of the distributed feedback semiconductor laser of the present invention.

【図3】従来の分布帰還型半導体レーザの一例の略線的
拡大断面図である。
FIG. 3 is a schematic enlarged cross-sectional view of an example of a conventional distributed feedback semiconductor laser.

【図4】分布帰還型半導体レーザの発振スペクトル図で
ある。
FIG. 4 is an oscillation spectrum diagram of a distributed feedback semiconductor laser.

【図5】従来の分布帰還型半導体レーザの一例の略線的
拡大断面図である。
FIG. 5 is a schematic enlarged cross-sectional view of an example of a conventional distributed feedback semiconductor laser.

【符号の説明】[Explanation of symbols]

1  基板 2  第1のクラッド層 4  活性層 5  ガイド層 6  光吸収層 7  第2のクラッド層 10  回折格子 1 Board 2 First cladding layer 4 Active layer 5 Guide layer 6 Light absorption layer 7 Second cladding layer 10 Diffraction grating

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  活性層近傍に、量子効果が光導波方向
に周期的に変化する光吸収層が設けられて成ることを特
徴とする分布帰還型半導体レーザ。
1. A distributed feedback semiconductor laser characterized in that a light absorption layer in which a quantum effect changes periodically in the optical waveguide direction is provided in the vicinity of an active layer.
JP9773591A 1991-04-26 1991-04-26 Distribution feedback type semiconductor laser Pending JPH04326788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9773591A JPH04326788A (en) 1991-04-26 1991-04-26 Distribution feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9773591A JPH04326788A (en) 1991-04-26 1991-04-26 Distribution feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH04326788A true JPH04326788A (en) 1992-11-16

Family

ID=14200157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9773591A Pending JPH04326788A (en) 1991-04-26 1991-04-26 Distribution feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH04326788A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147458A (en) * 1993-08-19 1995-06-06 Matsushita Electric Ind Co Ltd Distributed feedback type semiconductor laser and manufacture thereof
US5539766A (en) * 1993-08-19 1996-07-23 Matsushita Electric Industrial Co., Ltd. Distributed feedback semiconductor laser
US6104738A (en) * 1995-12-28 2000-08-15 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and process for producing the same
JP2012195433A (en) * 2011-03-16 2012-10-11 Fujitsu Ltd Optical semiconductor element, semiconductor laser, and method of manufacturing optical semiconductor element
JP2014220386A (en) * 2013-05-08 2014-11-20 富士通株式会社 Optical semiconductor device and method of manufacturing optical semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147458A (en) * 1993-08-19 1995-06-06 Matsushita Electric Ind Co Ltd Distributed feedback type semiconductor laser and manufacture thereof
US5539766A (en) * 1993-08-19 1996-07-23 Matsushita Electric Industrial Co., Ltd. Distributed feedback semiconductor laser
US5764682A (en) * 1993-08-19 1998-06-09 Matsushita Electric Industrial Co., Ltd. Distributed feedback semiconductor laser and method for fabricating the same
US5960257A (en) * 1993-08-19 1999-09-28 Matsushita Electric Industrial Co., Ltd. Method distributed feedback semiconductor laser for fabricating
US6104738A (en) * 1995-12-28 2000-08-15 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and process for producing the same
JP2012195433A (en) * 2011-03-16 2012-10-11 Fujitsu Ltd Optical semiconductor element, semiconductor laser, and method of manufacturing optical semiconductor element
JP2014220386A (en) * 2013-05-08 2014-11-20 富士通株式会社 Optical semiconductor device and method of manufacturing optical semiconductor device

Similar Documents

Publication Publication Date Title
JP3714430B2 (en) Distributed feedback semiconductor laser device
CA1105598A (en) Semiconductor laser device
EP0706243A2 (en) Distributed feedback semiconductor laser and method for producing the same
US5143864A (en) Method of producing a semiconductor laser
US5274660A (en) Semiconductor device and method of making it
US4775980A (en) Distributed-feedback semiconductor laser device
JPH06338659A (en) Laser element
JPH04326788A (en) Distribution feedback type semiconductor laser
JP2932868B2 (en) Semiconductor optical integrated device
US6084901A (en) Semiconductor laser device
JPH0337874B2 (en)
US20010005391A1 (en) Laser elements having different wavelengths formed from one semiconductor substrate
JP3707846B2 (en) Distributed feedback semiconductor laser device
JP2763090B2 (en) Semiconductor laser device, manufacturing method thereof, and crystal growth method
JP2700312B2 (en) Distributed feedback semiconductor laser device
JPH06313818A (en) Light reflector
JPS6114787A (en) Distributed feedback type semiconductor laser
JPS63213383A (en) Semiconductor laser
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
JP3773880B2 (en) Distributed feedback semiconductor laser
JPS62199085A (en) Semiconductor laser
JP2552504B2 (en) Semiconductor laser array device
JPH0770781B2 (en) Semiconductor laser array
JPH0642583B2 (en) Semiconductor laser device
JPH04322485A (en) Distributed-feedback semiconductor laser