JPH04326778A - Microwave-excited vapor laser - Google Patents

Microwave-excited vapor laser

Info

Publication number
JPH04326778A
JPH04326778A JP12290991A JP12290991A JPH04326778A JP H04326778 A JPH04326778 A JP H04326778A JP 12290991 A JP12290991 A JP 12290991A JP 12290991 A JP12290991 A JP 12290991A JP H04326778 A JPH04326778 A JP H04326778A
Authority
JP
Japan
Prior art keywords
microwave
tube
cavity resonator
discharge
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12290991A
Other languages
Japanese (ja)
Inventor
Tetsuya Ikeda
哲哉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12290991A priority Critical patent/JPH04326778A/en
Publication of JPH04326778A publication Critical patent/JPH04326778A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To improve an output and an oscillation efficiency of a laser by uniformly exciting to discharge laser gas medium in a discharge tube only with a TM010 mode adapted for a laser oscillation from a various microwave electromagnetic field mode in a cylindrical cavity resonator in a laser oscillator to be excited to be discharged by an electromagnetic wave of a microwave range. CONSTITUTION:A microwave to be output from a microwave oscillator 2 is transmitted to a cylindrical cavity resonator 4 through a waveguide 3. The waveguide 3 is connected to the resonator 4 through a coaxial tube made of an outer conductor 10 and an inner conductor 11. A totally reflecting mirror 5 and an output mirror 6 are oppositely arranged at both ends of a discharge tube 1. The conductors 10, 11 of the coaxial tube are connected by a looplike antenna 12 at its lower end. The tube is so movable that at least one of the conductors 10, 11 is adjustable in an insertion length into the resonator 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、マイクロ波領域の電磁
波によって放電励起されるレーザー発振器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser oscillator that is discharge-excited by electromagnetic waves in the microwave region.

【0002】0002

【従来の技術】従来のレーザ装置を図5、図6および図
7を参照して説明する。図5は従来のレーザ装置の構成
を示す正面断面図、図6は円筒型空洞共振器の側面図で
ある。また図7は円筒型空洞共振器内の電界ベクトルを
示す図である。
2. Description of the Related Art A conventional laser device will be explained with reference to FIGS. 5, 6 and 7. FIG. 5 is a front sectional view showing the configuration of a conventional laser device, and FIG. 6 is a side view of a cylindrical cavity resonator. Further, FIG. 7 is a diagram showing an electric field vector within a cylindrical cavity resonator.

【0003】図5、図6において、放電管1は、マイク
ロ波発振器2から導波管3を経て接続された円筒型空洞
共振器4の中に軸方向に挿入、設置されており、その両
端に全反射ミラー5と出力ミラー6が設置されており、
マイクロ波発振器2から出力されたマイクロ波が導波管
3の中を伝搬し、図5に示す伝送導波管のサイズで開口
された結合部分8を経て円筒型空洞共振器4に伝送され
、放電管1内のレーザーガスがマイクロ波の電界により
放電励起される。これによってレーザーガス媒質からの
誘導放出光を得て、光共振器を構成する全反射ミラー5
と出力ミラー6の間の往復反射によって増幅し、出力ミ
ラー6を透過したレーザー光7を取り出す。
In FIGS. 5 and 6, a discharge tube 1 is inserted and installed in the axial direction into a cylindrical cavity resonator 4 connected to a microwave oscillator 2 via a waveguide 3, and its both ends are connected to a cylindrical cavity resonator 4. A total reflection mirror 5 and an output mirror 6 are installed in the
Microwaves output from the microwave oscillator 2 propagate in the waveguide 3, and are transmitted to the cylindrical cavity resonator 4 via the coupling portion 8 opened to the size of the transmission waveguide shown in FIG. Laser gas within the discharge tube 1 is excited to discharge by the electric field of the microwave. As a result, stimulated emission light is obtained from the laser gas medium, and the total reflection mirror 5 that forms the optical resonator
The laser beam 7 is amplified by reciprocating reflection between the output mirror 6 and the output mirror 6, and the laser beam 7 transmitted through the output mirror 6 is taken out.

【0004】マイクロ波によるレーザーガスの放電励起
法はHandy  andBrandelik,J.A
ppl.Phys.,49,3753−3756(19
78).によりすでに公知である。しかし、マイクロ波
を封入した空洞内を使った場合レーザー媒質を放電励起
することは可能であるが、通常の空洞内で形成しうるマ
イクロ波の定在波としてはTMあるいはTEモード(T
ransverseElectric  Mode)と
して知られているように多数が混在するため、伝送導波
管と円筒型空洞共振器の結合部分における空洞の開口が
伝送導波管のサイズと同じ場合、図7に示すように、放
電に作用するマイクロ波の電磁界が複雑多岐な波動とな
ることによりマイクロ波電界強度は放電管軸方向に一定
とならない。したがって、放電管全体のレーザーガス媒
質を放電励起できないことと、放電の電界が放電管内の
局所空間に集中するため、生成する放電プラズマの温度
が上昇することにより、レーザー発振に寄与するエネル
ギー準位の反転分布が成立しにくくなるため、レーザー
出力および発振効率が低いなどの不具合点がある。
[0004] A discharge excitation method of a laser gas using microwaves is described by Handy and Brandelik, J. A
ppl. Phys. , 49, 3753-3756 (19
78). It is already known by. However, when using a cavity sealed with microwaves, it is possible to discharge excite the laser medium, but the microwave standing waves that can be formed in a normal cavity are TM or TE mode (T
(transverse Electric Mode), in which a large number of devices coexist, so if the opening of the cavity at the coupling part between the transmission waveguide and the cylindrical cavity resonator is the same as the size of the transmission waveguide, as shown in Fig. 7. Since the microwave electromagnetic field acting on the discharge has complex and diverse wave motions, the microwave electric field strength is not constant in the axial direction of the discharge tube. Therefore, since the laser gas medium in the entire discharge tube cannot be discharge-excited and the electric field of the discharge is concentrated in a local space within the discharge tube, the temperature of the generated discharge plasma increases, which increases the energy level that contributes to laser oscillation. Since population inversion becomes difficult to establish, there are drawbacks such as low laser output and oscillation efficiency.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来のレ
ーザ装置の不具合点を解決するためなされたもので、円
筒型空洞共振器内で多様なマイクロ波電磁界モードの中
からレーザー発振に適するTM010 モードだけで、
放電管内のレーザーガス媒質を均一に放電励起させ、レ
ーザー出力及び発振効率を向上させることができるマイ
クロ波励起気体レーザ装置を提供することを目的として
いる。
[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned problems of the conventional laser device. Only in TM010 mode,
An object of the present invention is to provide a microwave-excited gas laser device that can uniformly discharge-excite a laser gas medium in a discharge tube and improve laser output and oscillation efficiency.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明のマイクロ波励起気体レーザ装置は、筒状の空洞
共振器と、マイクロ波発振器と、同マイクロ波発振器で
発振されたマイクロ波を上記空洞共振器に供給する導波
管と、前記空洞共振器へ軸方向に挿入された放電管と、
同放電管の両端側に配置されたミラーよりなる光共振器
とを具備するマイクロ波励起気体レーザ装置において、
前記導波管と空洞共振器とを同軸管を介して連通すると
共に、該同軸管の内筒もしくは外筒の少なくともどちら
か一方の前記空洞共振器への挿入長さを調節可能となる
よう可動に構成し、かつ、前記同軸管内筒の先端部と外
筒の一部を導体により接続し、ループ状のアンテナ化し
たことを特徴としている
[Means for Solving the Problems] In order to achieve the above object, the microwave excited gas laser device of the present invention includes a cylindrical cavity resonator, a microwave oscillator, and a microwave oscillated by the microwave oscillator. a waveguide that supplies the cavity resonator; a discharge tube inserted into the cavity resonator in the axial direction;
In a microwave-excited gas laser device comprising an optical resonator made of mirrors arranged at both ends of the discharge tube,
The waveguide and the cavity resonator are communicated through a coaxial tube, and the coaxial tube is movable so that the insertion length of at least one of the inner tube and the outer tube into the cavity resonator can be adjusted. The present invention is characterized in that the tip of the coaxial inner tube and a part of the outer tube are connected by a conductor to form a loop-shaped antenna.

【0007】[0007]

【作用】本発明のマイクロ波励起気体レーザ装置は、マ
イクロ波発振器から出力されたマイクロ波を円筒型空洞
共振器の中に導入し、その電界によって放電を発生させ
る放電管と、全反射ミラー及び出力ミラーから成る光共
振器とにより構成されるレーザー発振器において、マイ
クロ波発振器からのマイクロ波の伝送導波管と円筒型空
洞共振器の結合部に同軸管を設置し、空洞内で同軸管の
内導体を外導体の一部と接触接続させることでループ状
のアンテナとすることにより、伝送マイクロ波を当該空
洞共振器の内部で放電管軸方向に均一なマイクロ波電界
となるTM010 モード(Transverse  
Magnetic  Mode  ;010は第1種の
ベッセル関数で表される添え字)を形成させて単一の共
振モードによる放電を得、当該円筒型空洞共振器中の放
電管内のレーザーガス全体を放電励起させることができ
る。
[Operation] The microwave-excited gas laser device of the present invention introduces microwaves output from a microwave oscillator into a cylindrical cavity resonator, and includes a discharge tube that generates a discharge by the electric field, a total reflection mirror, and In a laser oscillator configured with an optical resonator consisting of an output mirror, a coaxial tube is installed at the coupling part of the microwave transmission waveguide from the microwave oscillator and the cylindrical cavity resonator, and the coaxial tube is connected inside the cavity. By making a loop-shaped antenna by contacting the inner conductor with a part of the outer conductor, the transmitted microwave becomes a uniform microwave electric field in the axial direction of the discharge tube inside the cavity resonator in the TM010 mode (Transverse mode).
Magnetic Mode (010 is a subscript expressed by a Bessel function of the first type) is formed to obtain a discharge in a single resonance mode, and the entire laser gas in the discharge tube in the cylindrical cavity resonator is excited by discharge. be able to.

【0008】また、当該同軸管の空洞内部への挿入長を
調節することにより、空洞内部へのマイクロ波パワーが
制御できるため、放電管内のプラズマ密度の変動に起因
する負荷変動に影響されない。
Furthermore, by adjusting the insertion length of the coaxial tube into the cavity, the microwave power into the cavity can be controlled, so that it is not affected by load fluctuations caused by fluctuations in plasma density within the discharge tube.

【0009】そして上記した同軸管で結合した円筒型空
洞共振器を用いて、放電管軸方向の放電の局在化および
放電プラズマの温度の上昇を抑制し、放電管内の全ての
レーザーガス媒質の放電励起およびプラズマ温度の設定
によるレーザー発振に適したエネルギー準位の反転分布
形成が達成できる。
Then, by using the cylindrical cavity resonator coupled with the above-mentioned coaxial tube, the localization of the discharge in the axial direction of the discharge tube and the rise in temperature of the discharge plasma are suppressed, and all of the laser gas medium in the discharge tube is suppressed. Population inversion formation of energy levels suitable for laser oscillation can be achieved by discharge excitation and plasma temperature setting.

【0010】0010

【実施例】以下図面により本発明の1実施例装置につい
て説明する。図1は空洞共振器として円筒型空洞共振器
を用いた場合の気体レーザ装置の正面断面図、図2は伝
送導波管と結合した円筒型空洞共振器の側面図、図4は
同軸管の内筒と外筒の接続状態を示す斜視図である。ま
た図3は本実施例装置によるマイクロ波電磁界モードの
模式図を示す。これらの図において前述した図5〜図7
と同一部分には同一符号を付している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A device according to an embodiment of the present invention will be explained below with reference to the drawings. Figure 1 is a front sectional view of a gas laser device using a cylindrical cavity as the cavity, Figure 2 is a side view of the cylindrical cavity coupled to a transmission waveguide, and Figure 4 is a coaxial tube. FIG. 3 is a perspective view showing a connected state of an inner cylinder and an outer cylinder. Further, FIG. 3 shows a schematic diagram of the microwave electromagnetic field mode according to the apparatus of this embodiment. 5 to 7 described above in these figures.
The same parts are given the same symbols.

【0011】図1、図2及び図4において、円筒型空洞
共振器4内部にはその軸方向に放電管1が挿入設置され
ている。放電管1の両端には全反射ミラー5と出力ミラ
ー6が対向配置されており、マイクロ波発振器2から出
力されたマイクロ波は、導波管3を経て円筒型空洞共振
器4内に伝送される。この場合導波管3と空洞共振器4
とは図4に示すように同軸管の外導体10と内導体11
よりなる同軸管を介して接続するよう構成されており、
かつ該同軸管の外導体10の下端部と内導体11の下端
部とはループ状アンテナ12により接触接続されている
ので、伝送されるマイクロ波が空洞共振器4の内部で放
電管軸方向に均一なマイクロ波電界強度を構成し、空洞
内の放電管全体が均一に放電する。
In FIGS. 1, 2 and 4, a discharge tube 1 is inserted into a cylindrical cavity resonator 4 in the axial direction thereof. A total reflection mirror 5 and an output mirror 6 are arranged opposite to each other at both ends of the discharge tube 1, and the microwave output from the microwave oscillator 2 is transmitted into the cylindrical cavity resonator 4 via the waveguide 3. Ru. In this case the waveguide 3 and the cavity resonator 4
As shown in Figure 4, the outer conductor 10 and inner conductor 11 of the coaxial tube
It is configured to connect via a coaxial tube consisting of
In addition, since the lower end of the outer conductor 10 and the lower end of the inner conductor 11 of the coaxial tube are connected in contact with each other by the loop antenna 12, the transmitted microwave is transmitted inside the cavity resonator 4 in the axial direction of the discharge tube. A uniform microwave electric field strength is created, and the entire discharge tube within the cavity is uniformly discharged.

【0012】図2に示す円筒型空洞共振器4を内径8.
6cm、長さ20cmに、又伝送導波管と円筒型空洞共
振器の結合部に取り付けて同軸管の外導体10の一部と
内導体11を導体で接触させたループ状アンテナ12の
挿入長1.0cmとすると、円筒型空洞共振器4内の電
磁界強度は図3に示す電界ベクトル9からわかるように
、放電管1の軸方向に一定となるため、空洞内の放電管
全体が均一に放電する。この同軸管挿入条件では円筒型
空洞共振器に対して、マイクロ波発振器へのマイクロ波
の反射がほぼ0となり、マイクロ波が効率良く空洞内に
伝送されていることがわかった。炭酸ガスレーザーガス
媒体を対象として得られたレーザー出力及び発振効率を
表1に示す。
The cylindrical cavity resonator 4 shown in FIG. 2 has an inner diameter of 8.
6 cm, length 20 cm, and the insertion length of the loop antenna 12, which is attached to the coupling part of the transmission waveguide and the cylindrical cavity resonator, and a part of the outer conductor 10 of the coaxial tube and the inner conductor 11 are brought into contact with the conductor. 1.0 cm, the electromagnetic field strength inside the cylindrical cavity resonator 4 is constant in the axial direction of the discharge tube 1, as seen from the electric field vector 9 shown in FIG. 3, so that the entire discharge tube inside the cavity is uniform. discharge to. It was found that under these coaxial tube insertion conditions, the reflection of microwaves to the microwave oscillator in the cylindrical cavity resonator was almost zero, and the microwaves were efficiently transmitted into the cavity. Table 1 shows the laser output and oscillation efficiency obtained using a carbon dioxide laser gas medium.

【0013】[0013]

【表1】[Table 1]

【0014】一方、伝送導波管と円筒型空洞共振器側面
の結合部に同軸管を設けず、従来装置の図6に示すよう
に、マイクロ波発振器からの導波管をそのまま空洞側面
に結合させた場合のレーザー出力及び発振効率を比較の
ため表1に示す。従来装置の場合は、図7に示されるよ
うに放電管軸方向に電界が一定とならず、放電は不均一
となる。また、この条件では空洞共振器からの反射マイ
クロ波量が大きいため、表1に示すようにレーザー出力
及び発振効率は低い。
On the other hand, no coaxial pipe is provided at the connection between the transmission waveguide and the side surface of the cylindrical cavity resonator, and as shown in FIG. 6 of the conventional device, the waveguide from the microwave oscillator is directly coupled to the side surface of the cavity. Table 1 shows the laser output and oscillation efficiency for comparison. In the case of the conventional device, as shown in FIG. 7, the electric field is not constant in the axial direction of the discharge tube, and the discharge is non-uniform. Furthermore, under this condition, the amount of reflected microwaves from the cavity resonator is large, so as shown in Table 1, the laser output and oscillation efficiency are low.

【0015】本実施例装置では、さらに同軸管の外筒(
外導体10)もしくは内筒(内導体11)の少なくとも
一方を空洞共振器4内部へ挿入長さを調節できるように
図4矢印方向に上下に可動に構成しているので、空洞共
振器4内部へのマイクロ波パワーを制御できる。なお1
3は円筒型空洞共振器4の外側壁に固設したスリーブで
、該スリーブ13により同軸管は案内される。図4の場
合は同軸管の内筒と外筒とが共に上下するよう構成され
た例を示したものである。
In the device of this embodiment, the outer cylinder of the coaxial tube (
At least one of the outer conductor 10) or the inner cylinder (inner conductor 11) is configured to be movable up and down in the direction of the arrow in FIG. 4 so that the length of insertion into the cavity resonator 4 can be adjusted. Microwave power can be controlled. Note 1
A sleeve 3 is fixed to the outer wall of the cylindrical cavity resonator 4, and the coaxial tube is guided by the sleeve 13. In the case of FIG. 4, an example is shown in which the inner cylinder and the outer cylinder of the coaxial tube are configured to move up and down together.

【0016】[0016]

【発明の効果】本発明によれば、レーザ装置において、
その放電管軸方向にレーザーガスの均一な放電を発生さ
せることができ、円筒型空洞共振器内に設置した放電管
内のレーザーガスの放電励起を有効に行うことができる
[Effects of the Invention] According to the present invention, in the laser device,
A uniform discharge of laser gas can be generated in the axial direction of the discharge tube, and the discharge excitation of the laser gas in the discharge tube installed in the cylindrical cavity resonator can be effectively performed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の1実施例レーザ装置の正面断面図であ
る。
FIG. 1 is a front sectional view of a laser device according to an embodiment of the present invention.

【図2】図1のレーザ装置における円筒型空洞共振器の
側面図である。
FIG. 2 is a side view of a cylindrical cavity resonator in the laser device of FIG. 1;

【図3】本発明の実施例におけるマイクロ波電磁界モー
ドの模式図である。
FIG. 3 is a schematic diagram of a microwave electromagnetic field mode in an embodiment of the present invention.

【図4】本発明の1実施例装置における同軸管の取付け
状態を示す斜視図である。
FIG. 4 is a perspective view showing how a coaxial tube is attached in an apparatus according to an embodiment of the present invention.

【図5】従来のレーザ装置の概略を示す正面断面図であ
る。
FIG. 5 is a front sectional view schematically showing a conventional laser device.

【図6】同装置における円筒型空洞共振器の側面図であ
る。
FIG. 6 is a side view of a cylindrical cavity resonator in the device.

【図7】従来装置における電界モードの模式図である。FIG. 7 is a schematic diagram of an electric field mode in a conventional device.

【符号の説明】[Explanation of symbols]

1    放電管 2    マイクロ波発振器 3    導波管 4    円筒型空洞共振器 5    全反射ミラー 6    出力ミラー 7    レーザー光 8    導波管と空洞共振器の結合部9    電界
ベクトル 10    同軸管(外導体) 11    同軸管(内導体) 12    ループ状アンテナ 13    スリーブ
1 Discharge tube 2 Microwave oscillator 3 Waveguide 4 Cylindrical cavity resonator 5 Total reflection mirror 6 Output mirror 7 Laser beam 8 Waveguide and cavity resonator coupling part 9 Electric field vector 10 Coaxial tube (outer conductor) 11 Coaxial Tube (inner conductor) 12 Loop antenna 13 Sleeve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  筒状の空洞共振器と、マイクロ波発振
器と、同マイクロ波発振器で発振されたマイクロ波を上
記空洞共振器に供給する導波管と、前記空洞共振器へ軸
方向に挿入された放電管と、同放電管の両端側に配置さ
れたミラーよりなる光共振器とを具備するマイクロ波励
起気体レーザ装置において、前記導波管と空洞共振器と
を同軸管を介して連通すると共に、該同軸管の内筒もし
くは外筒の少なくともどちらか一方の前記空洞共振器へ
の挿入長さを調節可能となるよう可動に構成し、かつ、
前記同軸管内筒の先端部と外筒の一部を導体により接続
し、ループ状のアンテナ化したことを特徴とするマイク
ロ波励起気体レーザ装置。
1. A cylindrical cavity resonator, a microwave oscillator, a waveguide for supplying the microwave oscillated by the microwave oscillator to the cavity resonator, and axially inserted into the cavity resonator. In a microwave-excited gas laser device, the waveguide and the cavity resonator are communicated via a coaxial tube in a microwave-excited gas laser device comprising a discharge tube and an optical resonator made of mirrors arranged at both ends of the discharge tube. At the same time, the length of insertion of at least one of the inner tube and the outer tube of the coaxial tube into the cavity resonator can be adjusted, and
A microwave-excited gas laser device characterized in that the tip of the coaxial tube inner tube and a part of the outer tube are connected by a conductor to form a loop-shaped antenna.
JP12290991A 1991-04-26 1991-04-26 Microwave-excited vapor laser Withdrawn JPH04326778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12290991A JPH04326778A (en) 1991-04-26 1991-04-26 Microwave-excited vapor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12290991A JPH04326778A (en) 1991-04-26 1991-04-26 Microwave-excited vapor laser

Publications (1)

Publication Number Publication Date
JPH04326778A true JPH04326778A (en) 1992-11-16

Family

ID=14847615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12290991A Withdrawn JPH04326778A (en) 1991-04-26 1991-04-26 Microwave-excited vapor laser

Country Status (1)

Country Link
JP (1) JPH04326778A (en)

Similar Documents

Publication Publication Date Title
US3602837A (en) Method and apparatus for exciting an ion laser at microwave frequencies
US4004249A (en) Optical waveguide laser pumped by guided electromagnetic wave
US5379317A (en) Microwave-excited slab waveguide laser with all metal sealed cavity
JPH04326778A (en) Microwave-excited vapor laser
JP2871217B2 (en) Microwave pumped gas laser device
Ikeda et al. TM/sub 010/-mode microwave excited high power CO/sub 2/laser using a cylindrical resonant cavity
JPH09172214A (en) Rectangular emission gas laser
JP2989296B2 (en) Microwave discharge excitation method for laser gas
KR100500360B1 (en) High efficient-atmospheric microwave plasma system
JPH04326777A (en) Microwave-excited vapor laser
JP3281823B2 (en) Microwave discharge excitation method for laser gas
JP2659800B2 (en) Laser equipment
JPH04326779A (en) Exciting method for microwave of gas laser and microwave-excited gas laser
JPH06152029A (en) Exciting method for laser gas by use of microwave discharge
JP2001357999A (en) Plasma generation device
JP2640345B2 (en) Gas laser oscillation device
JPH10190102A (en) Method for exciting discharge of gas laser and gas laser device
KR100620539B1 (en) A gas laser device using a microwave
JPH0936465A (en) Microwave gas laser and microwave discharge pumping method therefor
RU2164048C1 (en) Device for microwave firing of gas-discharge laser and for lasing process maintenance by producing coaxial plasma line
JP2871218B2 (en) Method and apparatus for microwave excitation of gas laser
JPH0936463A (en) Microwave gas laser and microwave discharge pumping method therefor
JPH0563277A (en) Laser oscillator apparatus
RU2017290C1 (en) Waveguide gas laser
JPH07105537B2 (en) Plasma equipment

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711