JPH04326096A - Producing method of target body for particle accelerator and radioactive isotope - Google Patents

Producing method of target body for particle accelerator and radioactive isotope

Info

Publication number
JPH04326096A
JPH04326096A JP9687491A JP9687491A JPH04326096A JP H04326096 A JPH04326096 A JP H04326096A JP 9687491 A JP9687491 A JP 9687491A JP 9687491 A JP9687491 A JP 9687491A JP H04326096 A JPH04326096 A JP H04326096A
Authority
JP
Japan
Prior art keywords
target
target body
silver
particle accelerator
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9687491A
Other languages
Japanese (ja)
Inventor
Teruo Inoue
井上 照夫
Takao Yamamoto
山本 卓男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm RI Pharma Co Ltd
Original Assignee
Fujifilm RI Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm RI Pharma Co Ltd filed Critical Fujifilm RI Pharma Co Ltd
Priority to JP9687491A priority Critical patent/JPH04326096A/en
Publication of JPH04326096A publication Critical patent/JPH04326096A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recover condensed isotopes easily with high efficiency by plating a target matter on the surface of a target body for a particle accelerator which is made of silver or plated with silver, and using it as the target for the particle accelerator. CONSTITUTION:On the surface of a target body plated with silver on a copper base, <68>Zn is plated to make it a target for producing <67>Ga. It is irradiated by proton beam at about 30MeV for 20h, solved in HCl and then <67>Ga is separated and purified with a chemical separation method. The radioactivity of <65>Zn included in the remaining liquid <68>Zn recovery solution) after separating Ga is about 5m Ci/target body and is 1/4 to 1/5 of the case copper is made a target body. And due to the existence of silver plate layer, the target base copper is not solved in HCl. As the result, only Zn element is included in <68>Zn recovery solution and so chemical separation is not required for recovering <68>Zn and thus very easy and highly efficient recovery is possible.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はサイクロトロン等の粒子
加速器用ターゲット本体及び該ターゲット本体を用いる
放射性同位元素の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a target body for a particle accelerator such as a cyclotron, and a method for producing radioisotopes using the target body.

【0002】0002

【従来の技術】従来、斯かるターゲット本体の素材とし
ては、エネルギー照射時に発生する熱を考慮し、冷却効
果を上げるため、熱伝導に優れた銅が多く使用されてい
る。而して、放射性同位元素の製造に際しては、一般に
はターゲットの冷却効率の点から銅板をターゲット本体
とし、その表面にターゲット物質をメッキして安定な金
属としたものが通常固体ターゲットとして用いられてい
る。
BACKGROUND OF THE INVENTION Conventionally, copper, which has excellent thermal conductivity, has often been used as a material for such target bodies in order to increase the cooling effect in consideration of the heat generated during energy irradiation. Therefore, in the production of radioactive isotopes, from the point of view of target cooling efficiency, a copper plate is generally used as the target body, and a target material is plated on the surface to make it a stable metal, which is usually used as a solid target. There is.

【0003】0003

【発明が解決しようとする課題】放射性同位元素を高純
度かつ高収率で製造するために、多くの場合、濃縮同位
体がターゲット物質として使用される。然るとき、濃縮
同位体は、その製造に多大の労力と時間を必要とする結
果、価格が極めて高価なものである。そのため、ターゲ
ット物質に荷電粒子を照射し、目的の放射性同位元素を
分離した後に、濃縮同位体を化学的に分離・精製する回
収作業が必要となる。
In order to produce radioactive isotopes with high purity and high yield, enriched isotopes are often used as target materials. However, since enriched isotopes require a great deal of labor and time to produce, they are extremely expensive. Therefore, after the target material is irradiated with charged particles and the target radioactive isotope is separated, recovery work is required to chemically separate and purify the enriched isotope.

【0004】然るところ、従来の如き銅製ターゲット本
体を用いた場合には、陽子との低エネルギー側での核反
応により、銅による65Cu(p,n)65Zn反応に
よって半減期244日と長く、しかもγ線放出エネルギ
ーが1115keV と高い65Znが生成するので、
濃縮同位体の回収作業上、大きな問題となっていた。
However, when a conventional copper target body is used, the half-life is as long as 244 days due to the 65Cu(p,n)65Zn reaction caused by the copper due to the low energy nuclear reaction with protons. Moreover, since 65Zn with a high gamma ray emission energy of 1115 keV is generated,
This has been a major problem in the recovery of enriched isotopes.

【0005】特に、67Gaを製造する場合には、濃縮
同位体である68Zn中への65Znの混入が避けられ
ないところ、68Znと65Znの化学分離は事実上不
可能であり、放射性同位元素製造上大きな障害となって
いたのが実状であった。
In particular, when producing 67Ga, the contamination of 65Zn into 68Zn, which is an enriched isotope, is unavoidable, and chemical separation of 68Zn and 65Zn is virtually impossible, making it difficult to produce radioactive isotopes. The reality was that this was a major obstacle.

【0006】そこで、本発明者は斯かる銅製ターゲット
本体がもたらす問題を解決すべく種々研究を重ねた結果
、ターゲット本体を銀製又は銀メッキ製とすれば、優れ
た熱伝導性によりターゲット本体の冷却効果を上げ得る
と共に、陽子との核反応によって長半減期の核種が生成
せず、しかも物理・化学的に安定(HCl などの酸に
よって溶解されない)であるため、核反応によって生成
した核種が酸によるターゲット本体処理の際に溶解され
ず、極めて工業的に有利に放射性同位元素を製造し得る
ことを見い出し、本発明を完成した。
[0006] Therefore, the inventor of the present invention conducted various studies to solve the problems caused by such a copper target body, and found that if the target body is made of silver or silver plating, the target body can be cooled due to its excellent thermal conductivity. In addition to being effective, the nuclear reaction with protons does not produce long-half-life nuclides, and it is physically and chemically stable (not dissolved by acids such as HCl), so the nuclides produced by the nuclear reaction do not react with acids. The present invention has been completed based on the discovery that radioactive isotopes can be manufactured very industrially advantageously without being dissolved during treatment of the target body.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は銀製
又は銀メッキ製としたことを特徴とする粒子加速器用タ
ーゲット本体及び該ターゲット本体表面に目的とする放
射性同位元素に対応するターゲット原料をメッキして得
た粒子加速器用ターゲットを用いることを特徴とする放
射性同位元素の製造方法である。
[Means for Solving the Problems] That is, the present invention provides a target body for a particle accelerator characterized by being made of silver or silver plating, and a target material corresponding to a target radioisotope plated on the surface of the target body. This is a method for producing a radioactive isotope, which is characterized by using a particle accelerator target obtained by the above method.

【0008】本発明に於てターゲット本体を銀メッキ製
として実施する場合、その基体は銅製、換言すれば銅製
基体の表面に銀メッキを施してターゲット本体とするの
が好ましい。ここに銀メッキ層の厚さとしては10〜2
0μm程度で十分である。
In the present invention, when the target body is made of silver plating, it is preferable that the base body is made of copper, in other words, the surface of the copper base body is plated with silver to form the target body. Here, the thickness of the silver plating layer is 10 to 2
A thickness of about 0 μm is sufficient.

【0009】尚、本発明に於て、ターゲット本体を銀メ
ッキ製とした場合には、コストの面のみならず副反応に
よって生成する放射性核種の生成率の点で全てを銀製と
したターゲット本体に比し良い結果が得られる。
[0009] In the present invention, when the target body is made of silver plating, it is preferable to use a target body made entirely of silver, not only in terms of cost but also in terms of the production rate of radionuclides produced by side reactions. Comparatively better results can be obtained.

【0010】本発明によれば、斯かる銀製又は銀メッキ
製ターゲット本体の表面に、目的とする放射性同位元素
に対応するターゲット原料をそれぞれメッキして得たタ
ーゲットを用いることにより、常法に従い各種の放射性
同位元素が製造される。
According to the present invention, by using a target obtained by plating the surface of such a silver or silver-plated target body with a target raw material corresponding to the target radioisotope, various types of of radioisotopes are produced.

【0011】特に、上記の如き本発明ターゲット本体表
面に、ターゲット原料として68Znをメッキして得た
ターゲットを用いれば、67Gaを効率的に製造するこ
とができると共に、68Znを高収率で回収することが
できる。
In particular, if a target obtained by plating 68Zn as a target raw material on the surface of the target main body of the present invention as described above is used, 67Ga can be efficiently produced and 68Zn can be recovered at a high yield. be able to.

【0012】また、同様に本発明ターゲット本体表面に
、ターゲット原料として112Cdをメッキして得たタ
ーゲットを用いれば、111Inを効率的に製造するこ
とができると共に、112Cdを高収率で回収すること
ができる。
[0012] Similarly, by using a target obtained by plating 112Cd as a target raw material on the surface of the target body of the present invention, 111In can be efficiently produced and 112Cd can be recovered at a high yield. Can be done.

【0013】[0013]

【実施例】以下実施例及び比較例を挙げて本発明を更に
説明する。
[Examples] The present invention will be further explained below with reference to Examples and Comparative Examples.

【0014】実施例1 銅製基体の表面に銀メッキ(厚さ約10μm)を施して
得たターゲット本体を使用し、その表面に68Znメッ
キを施して67Ga製造用ターゲットとし、常法に従い
約30MeV の陽子ビームで20時間照射した。照射
終了後、当該68Znターゲット物質をHCl によっ
て溶解せしめた後、当該溶液中から化学分離方法に従い
67Gaを分離・精製した。
Example 1 A target body obtained by silver plating (thickness: about 10 μm) on the surface of a copper substrate was used, and the surface was plated with 68Zn to make a target for producing 67Ga. It was irradiated with a proton beam for 20 hours. After the irradiation, the 68Zn target material was dissolved with HCl, and 67Ga was separated and purified from the solution according to a chemical separation method.

【0015】67Gaの分離後の残液(68Zn回収用
溶液)中に含まれる65Znの放射能量は約5mCi/
ターゲット本体であった。因に、銀メッキ製ターゲット
本体を用いることにより、本実施例の場合理論的には6
5Znは含まれないが、濃縮同位体自体に含まれている
不純物の66Zn、64Znとの核反応によって65Z
nが若干生成するものの、後述の比較例から明らかな如
く、その生成量は従来の1/4〜1/5程度と極めて微
量であった。
The amount of radioactivity of 65Zn contained in the residual solution after separation of 67Ga (68Zn recovery solution) is approximately 5 mCi/
It was the target itself. Incidentally, by using a silver-plated target body, theoretically in this example, 6
Although 5Zn is not included, 65Z is produced through a nuclear reaction with impurities 66Zn and 64Zn contained in the enriched isotope itself.
Although a small amount of n was produced, as is clear from the comparative example described later, the amount produced was extremely small, about 1/4 to 1/5 of the conventional amount.

【0016】また、銀メッキ層の存在によりターゲット
基体たる銅がHCl により溶解されない結果、68Z
n回収用溶液中には元素として、Znのみが含まれてい
るので、68Znを回収する際には化学分離操作を必要
とせず、極めて簡単に、かつ高収率で回収することがで
きた(回収率99.8%)。
Furthermore, due to the presence of the silver plating layer, the copper serving as the target base is not dissolved by HCl, and as a result, the 68Z
Since the n-recovery solution contains only Zn as an element, no chemical separation operation was required to recover 68Zn, and it was possible to recover it extremely easily and with a high yield ( Recovery rate 99.8%).

【0017】尚、回収された68Znは67Ga製造用
ターゲットとして銀メッキ製ターゲット本体にメッキさ
れ再使用される。
The recovered 68Zn is plated on a silver-plated target body and reused as a target for producing 67Ga.

【0018】比較例1 銅製ターゲット本体(銀メッキ処理なし)を使用した以
外は実施例1と同様にして67Gaを分離・精製した。
Comparative Example 1 67Ga was separated and purified in the same manner as in Example 1 except that a copper target body (without silver plating) was used.

【0019】67Gaの分離後の残液(68Zn回収用
溶液)中に含まれる65Znの放射能量は約20mCi
/ターゲット本体であった。
The amount of radioactivity of 65Zn contained in the residual solution after separation of 67Ga (68Zn recovery solution) is approximately 20 mCi.
/ It was the target itself.

【0020】また、68Zn回収溶液中には、68Zn
ターゲット物質をHCl によって溶解する際に、HC
l とターゲット本体である銅との化学反応の結果、6
8Znと同時に銅も溶解されるので、Cu、Znの2元
素が含まれているため、イオン交換分離により、68Z
nを回収した(回収率85〜95%)。
[0020] Also, in the 68Zn recovery solution, 68Zn
When dissolving a target substance with HCl, HC
As a result of the chemical reaction between l and the target body copper, 6
Since copper is also dissolved at the same time as 8Zn, since it contains two elements, Cu and Zn, 68Z can be dissolved by ion exchange separation.
n was recovered (recovery rate 85-95%).

【0021】[0021]

【発明の効果】本発明によれば、ターゲット本体の冷却
効果に優れ、しかも陽子との核反応によって長半減期の
核種が生成せず、かつ核反応によって生成した核種が酸
によるターゲット本体処理の際に溶解されることがない
ので、高価な濃縮同位体を容易かつ高収率で回収し得、
工業的に極めて有利に放射性同位元素を製造することが
できる。
Effects of the Invention According to the present invention, the cooling effect of the target body is excellent, and in addition, nuclides with a long half-life are not generated due to the nuclear reaction with protons, and the nuclides generated by the nuclear reaction cannot be treated with acid. Expensive concentrated isotopes can be recovered easily and in high yields because they are not dissolved during the process.
Radioactive isotopes can be produced industrially with great advantage.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  銀製又は銀メッキ製としたことを特徴
とする粒子加速器用ターゲット本体。
1. A target body for a particle accelerator, characterized in that it is made of silver or silver plating.
【請求項2】  請求項1記載のターゲット本体の表面
に、目的とする放射性同位元素に対応するターゲット原
料をメッキして得た粒子加速器用ターゲットを用いるこ
とを特徴とする放射性同位元素の製造方法。
2. A method for producing a radioisotope, comprising using a target for a particle accelerator obtained by plating a target raw material corresponding to a target radioisotope on the surface of the target body according to claim 1. .
【請求項3】  銅製基体の表面に銀メッキして得たタ
ーゲット本体の表面に、ターゲット原料として68Zn
をメッキして得た粒子加速器用ターゲットを用いること
を特徴とする67Gaの製造方法。
3. 68Zn as a target raw material is applied to the surface of a target body obtained by silver plating the surface of a copper base.
A method for producing 67Ga, characterized by using a particle accelerator target obtained by plating 67Ga.
【請求項4】  銅製基体の表面に銀メッキして得たタ
ーゲット本体の表面に、ターゲット原料として112C
dをメッキして得た粒子加速器用ターゲットを用いるこ
とを特徴とする111Inの製造方法。
4. 112C as a target raw material is applied to the surface of a target body obtained by silver plating the surface of a copper base.
A method for producing 111In, characterized by using a particle accelerator target obtained by plating 111In.
JP9687491A 1991-04-26 1991-04-26 Producing method of target body for particle accelerator and radioactive isotope Pending JPH04326096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9687491A JPH04326096A (en) 1991-04-26 1991-04-26 Producing method of target body for particle accelerator and radioactive isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9687491A JPH04326096A (en) 1991-04-26 1991-04-26 Producing method of target body for particle accelerator and radioactive isotope

Publications (1)

Publication Number Publication Date
JPH04326096A true JPH04326096A (en) 1992-11-16

Family

ID=14176573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9687491A Pending JPH04326096A (en) 1991-04-26 1991-04-26 Producing method of target body for particle accelerator and radioactive isotope

Country Status (1)

Country Link
JP (1) JPH04326096A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508531A (en) * 2003-10-13 2007-04-05 アクチニウム ファーマシューティカルズ,インコーポレイティド Radium target and production method thereof
JP2009007633A (en) * 2007-06-28 2009-01-15 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Method for recovering cadmium-112 isotope
US8153087B2 (en) 2006-09-08 2012-04-10 Actinium Pharmaceuticals Inc. Method for the purification of radium from different sources
US8349391B2 (en) 2004-05-05 2013-01-08 Actinium Pharmaceuticals Inc. Radium target and method for producing it
JP2014115229A (en) * 2012-12-11 2014-06-26 Sumitomo Heavy Ind Ltd Radioisotope refiner
US9534277B1 (en) 2006-02-21 2017-01-03 Actinium Pharmaceuticals, Inc. Method for purification of 225AC from irradiated 226RA-targets
CN111133842A (en) * 2017-07-31 2020-05-08 斯蒂芬·泽塞尔 System, apparatus and method for producing gallium radioisotopes on a particle accelerator using a solid target, and Ga-68 compositions produced thereby

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508531A (en) * 2003-10-13 2007-04-05 アクチニウム ファーマシューティカルズ,インコーポレイティド Radium target and production method thereof
JP4690328B2 (en) * 2003-10-13 2011-06-01 アクチニウム ファーマシューティカルズ,インコーポレイティド Radium target and production method thereof
US8349391B2 (en) 2004-05-05 2013-01-08 Actinium Pharmaceuticals Inc. Radium target and method for producing it
US9534277B1 (en) 2006-02-21 2017-01-03 Actinium Pharmaceuticals, Inc. Method for purification of 225AC from irradiated 226RA-targets
US9790573B2 (en) 2006-02-21 2017-10-17 Actinium Pharmaceuticals Inc. Method for purification of 225AC from irradiated 226RA-targets
US8153087B2 (en) 2006-09-08 2012-04-10 Actinium Pharmaceuticals Inc. Method for the purification of radium from different sources
US8715598B2 (en) 2006-09-08 2014-05-06 Actinium Pharmaceuticals Inc. Method for the purification of radium from different sources
JP2009007633A (en) * 2007-06-28 2009-01-15 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Method for recovering cadmium-112 isotope
JP2014115229A (en) * 2012-12-11 2014-06-26 Sumitomo Heavy Ind Ltd Radioisotope refiner
CN111133842A (en) * 2017-07-31 2020-05-08 斯蒂芬·泽塞尔 System, apparatus and method for producing gallium radioisotopes on a particle accelerator using a solid target, and Ga-68 compositions produced thereby

Similar Documents

Publication Publication Date Title
US20030016775A1 (en) Production of high specific activity copper-67
US9058908B2 (en) Method for producing actinium-225 and isotopes of radium and target for implementing same
US20060023829A1 (en) Medical radioisotopes and methods for producing the same
KR102490805B1 (en) A method for purifying a solution containing 226Ra, a method for producing a 226Ra target, and a method for producing 225Ac
AU2001251607B2 (en) A method for isolating and purifying 90Y from 90strontium in multi-curie quantities
US7569192B2 (en) System for recovery of daughter isotopes from a source material
JPH04326096A (en) Producing method of target body for particle accelerator and radioactive isotope
AU2001251607A1 (en) A method for isolating and purifying 90Y from 90strontium in multi-curie quantities
Kondo et al. Cyclotron isotopes and radiopharmaceuticals—XXII. Improved targetry and radiochemistry for production of 123I and 124I
Cieszykowska et al. Separation of Ytterbium from 177 Lu/Yb mixture by electrolytic reduction and amalgamation
US9102997B2 (en) Method of purification for recycling of gallium-69 isotope
Madhusudhan et al. Cyclotron isotopes and radiopharmaceuticals XXXI. Improvements in 77 Br production and radiochemical separation from enriched 78 Se+
CN113470843A (en) Method for producing radioactive isotope
US8802041B1 (en) Decontamination of radioactive metals
Das et al. A cation exchange method for separation of 111In from inactive silver, copper, traces of iron and radioactive gallium and zinc isotopes
US2887358A (en) Large scale method for the production and purification of curium
US3519385A (en) Method for separating molybdenum from technetium
US5966583A (en) Recovery of strontium activity from a strontium-82/rubidium-82 generator
US3573165A (en) Production of high purity nickel-66
JPH01102397A (en) Manufacture of carrier free radioactive isotope yttrium-88
US5482687A (en) Separation of sodium-22 from irradiated targets
Duffield et al. Preparation of High Specific Induced Radioactivity by Neutron Bombardment of Metal Chelate Compounds
US5487880A (en) Production of sodium-22 from proton irradiated aluminum
RU2102125C1 (en) Method of recovering from metals radioactive isotopes formed in nuclear transformation
RU2084980C1 (en) Method for separating product radioactive nuclide from parent one

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990223