JPH04326082A - Ultrasonic wave receiving and phasing circuit - Google Patents

Ultrasonic wave receiving and phasing circuit

Info

Publication number
JPH04326082A
JPH04326082A JP3096859A JP9685991A JPH04326082A JP H04326082 A JPH04326082 A JP H04326082A JP 3096859 A JP3096859 A JP 3096859A JP 9685991 A JP9685991 A JP 9685991A JP H04326082 A JPH04326082 A JP H04326082A
Authority
JP
Japan
Prior art keywords
directivity
signal
ultrasonic
circuits
received signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3096859A
Other languages
Japanese (ja)
Inventor
Yuichi Miwa
祐一 三和
Hiroshi Ikeda
宏 池田
Shinichi Kondo
真一 近藤
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP3096859A priority Critical patent/JPH04326082A/en
Publication of JPH04326082A publication Critical patent/JPH04326082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize the title circuit suppressing the generation of a large side lobe and simultaneously forming a plurality of beams in relatively reduced apparatus cost. CONSTITUTION:The receiving signals of arranged elements e0-e9 are selected by switches w0-w9, w10-w19 to be connected to signal bundling circuits 1, 2 at every groups mutually having overlap. Delay distribution is imparted to the outputs respectively set to single signals by the bundling circuits 1, 2 in delay part 4, 5 and the signals after delay processing are mutually added in adder parts 6, 7 to form two receiving beams bm2, bm3 mutually different in polarizing direction. The directional side lobe of the element group itself bundled by the signal bundling circuits can be shifted from the directional side lobe due to the delay processing between bundling outputs and the side lobe of the receiving beam determined by the product of both directivities can be suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電子走査型超音波診断
装置および超音波撮像装置に関し、特に、複数の超音波
ビ−ムを同時に形成する超音波受波整相回路に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic scanning ultrasonic diagnostic apparatus and an ultrasonic imaging apparatus, and more particularly to an ultrasonic receiving phasing circuit that simultaneously forms a plurality of ultrasonic beams.

【0002】0002

【従来の技術】従来より、電気音響変換素子から体内に
向って超音波信号を放射し、組織の境界で反射されて戻
ってきた超音波信号を電気音響変換素子で受け、これを
超音波整相回路で遅延させて超音波ビ−ムを形成してい
た。特開昭62−12852号公報には、配列する電気
音響変換素子のそれぞれから得る受波信号の複数本の群
毎にそれぞれ一定のビーム形成処理を行ない、各群の信
号に対する遅延処理により、同時に複数方向の受信ビ−
ムを形成する方法が述べられている。
[Prior Art] Conventionally, an electroacoustic transducer emits an ultrasonic signal toward the inside of the body, and the electroacoustic transducer receives the returned ultrasonic signal after being reflected at tissue boundaries. The ultrasonic beam was formed by delaying it using a phase circuit. JP-A-62-12852 discloses that a certain beam forming process is performed on each group of received signals obtained from each of the arrayed electroacoustic transducer elements, and delay processing is applied to the signals of each group to simultaneously generate signals. Receive beams in multiple directions
A method for forming a system is described.

【0003】0003

【発明が解決しようとする課題】上記従来技術において
は、受波信号の複数本を複数群に分割する際に、1つの
受波信号は1つの群にのみ属する。また、受波信号を群
に分割する際に、重み付けが行えない。その結果、不要
応答(すなわちサイドロ−ブ)が強力に生じるという問
題があった。これを、図を用いて説明する。図2は、受
波信号を束ね、束ねた信号に対して整相処理を行い、複
数ビ−ムを同時に形成する場合の従来技術による装置構
成図である。図2では、8本の信号(s1〜s8)を2
群(A1,A2)に分割する場合を示す。図2において
、1、2は信号束ね回路、3は加算部、4、5は遅延部
、6、7は加算部である。例えば、8本の信号線を4本
ずつ束ねることにより2群(A1、A2)に分割したと
する。このとき、束ねられた信号は同一の信号とされ、
以降は2本の信号に対する処理となる。これにより、8
本の信号を独立に扱う場合に比べて信号遅延部の装置規
模が1/4になるので、装置をコンパクトにできる。
In the prior art described above, when a plurality of received signals are divided into a plurality of groups, one received signal belongs to only one group. Furthermore, weighting cannot be performed when dividing the received signal into groups. As a result, there is a problem in that unnecessary responses (ie, side lobes) occur strongly. This will be explained using figures. FIG. 2 is a diagram showing the configuration of a device according to the prior art in which received signals are bundled, a phasing process is performed on the bundled signals, and a plurality of beams are simultaneously formed. In Figure 2, eight signals (s1 to s8) are
The case of dividing into groups (A1, A2) is shown. In FIG. 2, 1 and 2 are signal bundling circuits, 3 is an addition section, 4 and 5 are delay sections, and 6 and 7 are addition sections. For example, assume that eight signal lines are divided into two groups (A1, A2) by bundling four signal lines each. At this time, the bundled signals are considered to be the same signal,
After that, processing will be performed on two signals. As a result, 8
Since the device size of the signal delay section is reduced to 1/4 compared to the case where real signals are handled independently, the device can be made compact.

【0004】図2に示す装置では、加算部3により正面
方向に指向性を有する超音波ビ−ムbm1が形成される
。なお、本実施例では、2群の変換素子からの2本の信
号から正面方向の超音波ビ−ムを形成するので、単に2
信号を遅延時間差なしに加算する。ただし一般的には、
3群以上の変換素子群の受信信号から有限の距離に収束
する超音波ビ−ムを形成するので、正面方向のビ−ム形
成にも遅延時間差を与えることが必要であり、したがっ
て加算部3の部分に遅延部を設ける場合もある。このと
きbm1の指向性は、相乗則より分割した各群に対応す
る指向性と、各群の中点に配置された点音源列(厳密に
言えば点状の受波素子の列)により正面方向にフォ−カ
スを結ばせた場合の指向性との積として求まる。  こ
のとき各群に対応する指向性とは、束ねた信号数分の素
子幅を持つ線音源の指向性のことである。ここではA1
、A2どちらにおいても4本の信号を束ねたので、4素
子分の幅を持つ線音源の指向性であり、この幅をDとお
く。また、各群の中点に配置された点音源列とは、各群
で束ねた信号に対応する素子群の中央の位置にそれぞれ
配置された点音源列のことでり、したがってここでは距
離Dで並ぶ2つの点音源となる。分割した各群に対応す
る指向性をR1、各群の中点に配置された点音源列によ
り正面方向にフォ−カスを結ばせた場合の指向性をR2
とおくと、   R1=|sinx/x|    ・・・・・・・・
・・・・・・・・・・・(1)  R2=|sin2x
/2sinx|=|cosx|  ・・・・・・・・・
・・(2)である。ただし、x=πDsinγ/λ、λ
は波長、γは正面方向からの角度である。
In the apparatus shown in FIG. 2, an adding section 3 forms an ultrasonic beam bm1 having directivity in the front direction. In addition, in this example, since a frontal ultrasound beam is formed from two signals from two groups of conversion elements, only two
Add signals without any delay time difference. However, in general,
Since an ultrasonic beam is formed that converges within a finite distance from the received signals of three or more conversion element groups, it is necessary to give a delay time difference to the beam formation in the front direction. In some cases, a delay section is provided in the section. At this time, the directivity of bm1 is determined by the directivity corresponding to each group divided according to the multiplier law, and the point sound source array (strictly speaking, the point-shaped array of wave receiving elements) placed at the midpoint of each group. It is found as the product of the directivity when focusing in the direction. At this time, the directivity corresponding to each group is the directivity of a line sound source having an element width equal to the number of bundled signals. Here A1
, A2, since four signals are bundled together, this is the directivity of a line sound source with a width of four elements, and this width is set as D. Furthermore, the point sound source array placed at the midpoint of each group refers to the point sound source array placed at the center position of the element group corresponding to the signal bundled in each group. There are two point sound sources lined up. The directivity corresponding to each divided group is R1, and the directivity when focusing in the front direction by a point sound source array placed at the midpoint of each group is R2.
Then, R1=|sinx/x|・・・・・・・・・
・・・・・・・・・・・・(1) R2=|sin2x
/2sinx|=|cosx| ・・・・・・・・・
...(2). However, x=πDsinγ/λ, λ
is the wavelength, and γ is the angle from the front direction.

【0005】前式のR1の特性を図4に、R2の特性を
図5に示す。なお指向性は正面方向を1として規格化し
てあり、横軸はsinγとした。bm1の指向性をR3
とおくと、 R3=R1×R2=|sin2x/2x|  ・・・・
・・・・・・・・・(3)である。R3の特性を図6に
示す。図6において、Mはメインロ−ブ、Gは不要応答
であるサイドロ−ブであり、Mに対してGは十分に小さ
くする必要がある。このときサイドロ−ブの最大の原因
は、R2における正面方向(sinγ=0)以外の極大
値であるが、bm1に超音波ビ−ムを形成する場合はR
2の正面方向以外の極大値は全てR1の零点と一致して
いるので打ち消され、その結果R3には大きなサイドロ
−ブが発生しない。一方これと同時に、図2における遅
延部4、5および加算部6、7により、正面方向から微
小角δで右と左にふられた超音波ビ−ムbm2、bm3
を作る。つまり、上述した各群の中心の点に受信素子が
あるときに、それぞれの指向性を得るように遅延部4お
よび5は2つの信号に遅延時間差を与える。bm2の指
向性に着目すると、ここでも相乗則より、分割した各群
に対応する指向性と、各群の中点に配置された点音源列
により正面から角度δ右方向にフォ−カスを結ばせた場
合の指向性との積として求まる。このとき分割した各群
に対応する指向性は先に示したR1に等しい。また各群
の中点に配置された点音源列により正面から角度δ右方
向にフォ−カスを結ばせた場合の指向性R4は図7に示
した通り、R2をsinδ右にシフトさせた指向性と等
しい。つまり、  R4=|cos(x−πDsinδ
/λ)|  ・・・・・・・・・・・・・・(4)であ
る。よってbm2の指向性をR5とすると、  R5=
R1×R4       =|(sinx/x)cos(x−πDs
inδ/λ)|  ・・・・・・・・(5)である。例
えば、δ=0.2(deg)、周波数3.5MHz、口
径30mmとすればsinδ≒λ/4Dとなり、R5は
図8のようになる。R5はR3に比べて、サイドロ−ブ
が大きくなる。これはR4では指向性の極大値がR2よ
り右にずれるので、R1の零点で打ち消されなくなるた
めである。ビ−ムをbm3に作る場合も、左右対称に全
く同じことが成立する。このように複数ビ−ム同時形成
では、ビ−ムbm2,bm3を形成する際に、サイドロ
−ブが大きな問題となる。
The characteristics of R1 in the above equation are shown in FIG. 4, and the characteristics of R2 are shown in FIG. Note that the directivity is normalized with the front direction as 1, and the horizontal axis is sin γ. bm1 directivity to R3
Then, R3=R1×R2=|sin2x/2x|...
......(3). The characteristics of R3 are shown in FIG. In FIG. 6, M is a main lobe and G is a side lobe which is an unnecessary response, and G needs to be made sufficiently smaller than M. At this time, the biggest cause of sidelobes is the maximum value in R2 other than the front direction (sin γ = 0), but when forming an ultrasonic beam on bm1, R
The local maximum values other than those in the front direction of R2 are all canceled because they coincide with the zero point of R1, and as a result, no large side lobe is generated in R3. Meanwhile, at the same time, the delay units 4, 5 and addition units 6, 7 in FIG.
make. That is, when the receiving element is located at the center point of each group described above, the delay units 4 and 5 give a delay time difference to the two signals so as to obtain respective directivities. Focusing on the directivity of bm2, from the multiplier law, the directivity corresponding to each divided group and the point sound source array placed at the midpoint of each group connect the focus to the right at an angle δ from the front. It can be found as the product of the directivity when At this time, the directivity corresponding to each divided group is equal to R1 shown above. Furthermore, when the point sound source array placed at the midpoint of each group is focused from the front to the right at an angle δ, the directivity R4 is obtained by shifting R2 to the right by sin δ, as shown in Figure 7. Equal to gender. In other words, R4=|cos(x−πDsinδ
/λ) | ・・・・・・・・・・・・・・・(4). Therefore, if the directivity of bm2 is R5, then R5=
R1×R4 = | (sinx/x)cos(x−πDs
inδ/λ) | (5). For example, if δ=0.2 (deg), frequency is 3.5 MHz, and diameter is 30 mm, sin δ≈λ/4D, and R5 becomes as shown in FIG. 8. R5 has larger side lobes than R3. This is because the local maximum value of directivity in R4 is shifted to the right compared to R2, so that it is no longer canceled out at the zero point of R1. Even when the beam is made into BM3, the same thing holds true for left-right symmetry. In this way, in simultaneous formation of a plurality of beams, side lobes become a major problem when forming beams bm2 and bm3.

【0006】また、複数ビ−ム同時形成を行う装置構成
として、図3のような構成も知られている。図3におい
て、8は第1の遅延部a、9は第1の遅延部bである。 このときは、2つの第1の遅延部によりbm2とbm3
に2本同時に超音波ビ−ムが作られる。  この場合b
m1に超音波ビ−ムを形成することはしないが、bm2
の指向性はやはりR5であり、大きなサイドロ−ブが発
生する。本発明の目的は、このような大きなサイドロ−
ブの発生を抑制し、しかも比較的少ない装置コストで複
数ビ−ム同時形成を行う超音波受波整相回路を実現する
ことにある。
Furthermore, as an apparatus configuration for simultaneously forming a plurality of beams, a configuration as shown in FIG. 3 is also known. In FIG. 3, 8 is a first delay section a, and 9 is a first delay section b. At this time, bm2 and bm3 are generated by the two first delay sections.
Two ultrasonic beams are created simultaneously. In this case b
No ultrasonic beam is formed on m1, but bm2
The directivity is still R5, and large side lobes occur. The purpose of the present invention is to
The object of the present invention is to realize an ultrasonic wave receiving phasing circuit that suppresses the occurrence of beams and simultaneously forms a plurality of beams at a relatively low device cost.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
、本発明の超音波受波整相回路では、(イ)個々の配列
素子からの受波信号を複数本束ねて、複数群に分割する
際に、1つの素子の受波信号を任意の1個以上の群に属
させることができる超音波受波整相回路に特徴がある。 具体的には、(ロ)配列する素子群からの個々の受信信
号をそれぞれ互いに重なりを持つ素子グループからの複
数の受信信号群毎に束ねる信号束ね回路を有し、さらに
得られた複数の信号に遅延時間分布を与えて加算する遅
延部、および加算部を複数組設け、それぞれの加算出力
から指向性の異なる受波ビームを同時に得る超音波受波
整相回路にも特徴がある。さらに、(ハ)複数の受波信
号のグループ毎にそれぞれ素子配列に対応した重み付け
を行なう重み付け回路と、重み付けされた受波信号グル
ープをそれぞれ束ねる信号束ね回路と、束ねられた複数
の信号に遅延時間分布を与えて加算する複数組の遅延部
、加算部を有する構成にも特徴がある。
[Means for Solving the Problems] In order to achieve the above object, the ultrasonic wave reception phasing circuit of the present invention has the following features: (a) A plurality of reception signals from individual array elements are bundled and divided into a plurality of groups. When doing so, the ultrasonic reception phasing circuit is characterized in that it can assign the reception signal of one element to any one or more groups. Specifically, (b) it has a signal bundling circuit that bundles individual received signals from arrayed element groups into multiple received signal groups from element groups that overlap with each other, and further includes a signal bundling circuit that bundles individual received signals from arrayed element groups into multiple received signal groups from element groups that overlap each other, and Another feature of the ultrasonic reception phasing circuit is that it is provided with a plurality of sets of delay units and addition units that add a delay time distribution to the ultrasonic reception beams, and simultaneously obtains reception beams with different directivity from the respective addition outputs. Furthermore, (c) a weighting circuit that performs weighting corresponding to the element arrangement for each group of multiple received signals, a signal bundling circuit that bundles the weighted received signal groups, and a delay for the multiple bundled signals. Another feature is the configuration that includes multiple sets of delay units and addition units that add time distributions.

【0008】[0008]

【作用】本発明においては、複数素子からの受波信号を
複数の受波信号のグループ毎に束ねるために、1つの素
子の受波信号が任意の1個以上の群に属するようにする
。このようにすれば、それぞれの束ねられた出力に遅延
時間分布を与えて正面からずれた所望の方位に収束する
超音波ビーム(受波ビーム)を形成する際に、個々のグ
ループの中央に点音源(点状の受信素子)があると仮定
して上記遅延時間分布により生じる指向性のサイドロ−
ブを、各素子グル−プの指向性の谷の部分と合わせるこ
とができ、双方の指向性の積で定まる超音波ビームの不
要応答(サイドロ−ブ)を小さくできる。従って、方位
の異なる複数の超音波ビームを同時に得るために、束ね
により遅延部分の装置規模を小さくしながら、不要応答
(サイドロ−ブ)の小さい超音波整相装置を実現するこ
とができる。また、各グループ毎に重み付け回路を設け
た構成では、各素子グループ自体の指向性のサイドロ−
ブを小さくできるので、同じように不要応答(サイドロ
−ブ)の小さい超音波整相装置を得ることができる。
In the present invention, in order to bundle received signals from a plurality of elements into groups of received signals, the received signals of one element are made to belong to one or more arbitrary groups. In this way, when forming an ultrasonic beam (receiving beam) that gives a delay time distribution to each bundled output and converges in a desired direction away from the front, a point can be placed at the center of each group. Assuming that there is a sound source (a point-like receiving element), the side-low of the directionality caused by the above delay time distribution is
The beam can be aligned with the trough of the directivity of each element group, and unnecessary responses (side lobes) of the ultrasonic beam determined by the product of both directivities can be reduced. Therefore, in order to simultaneously obtain a plurality of ultrasonic beams having different directions, it is possible to realize an ultrasonic phasing device with small unnecessary responses (side lobes) while reducing the device size of the delay part by bundling. In addition, in a configuration in which a weighting circuit is provided for each group, the directivity side-lower of each element group itself is
Since the lobes can be made smaller, it is also possible to obtain an ultrasonic phasing device with small unnecessary responses (side lobes).

【0009】[0009]

【実施例】以下、本発明の実施例を、図面に基づいて詳
細に説明する。図1は、本発明の1実施例である超音波
受波整相回路の構成を示す図である。ここでは、10本
の信号を2群に分割する場合を示す。図1において、e
0〜e9は配列する電気音響変換素子、s0〜s9はそ
れぞれの素子から個々に得る受波信号、w0〜w19は
スイッチ、1及び2は信号束ね回路、A1、A2はそれ
ぞれ束ね回路1、2で束ねられる受波信号群の名称、4
及び5は遅延部、6及び7は加算部を示す。図1におい
ては、まずスイッチw0〜w19を選択的に閉路するこ
とにより、2つの信号束ね回路1、2に入力する信号を
決定する。従って、各々の素子の受波信号がA1、A2
のどちらにも入力できる。信号束ね回路1はスイッチw
0〜w9で選択された受波信号をそれぞれ個々に増幅し
た後に、電流加算により加え合わせて1つの信号にする
ことによって、受波信号の束ねを行なう。信号束ね回路
2は、スイッチw10〜w19で選択された受波信号に
ついて同じように束ねを行なう。遅延部4及び5は、信
号束ね回路1、2の出力から互いに異なる方位の超音波
ビ−ムbm2、bm3をそれぞれ形成する。つまり、遅
延部4では、A1の信号群に対応する素子群、A2の信
号群に対応する素子群のそれぞれ中央に位置する2つの
点状素子の受波信号から、超音波ビ−ムbm2が得られ
るだけの遅延時間差を、信号束ね回路1、2の出力に与
える。加算部6で、遅延部4を経た信号を加算すること
により、超音波ビ−ムbm2を形成する。また、遅延部
5でも、上記2つの点状素子から超音波ビ−ムbm3が
得られるだけの遅延時間差を信号束ね回路1、2の出力
に与え、さらに加算部7により超音波ビ−ムbm3を得
る。なおbm2とbm3は、正面方向(bm1)から微
小角δだけ右と左に偏向した超音波ビ−ムである。ここ
から先は、bm2の指向性に着目する。bm2の指向性
は、相乗則より、スイッチにより分割した各群に対応す
る指向性と、各群の中点に配置された点音源列により正
面から角度δだけ右方向にフォ−カスを結ばせた場合の
指向性との積として求まる。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing the configuration of an ultrasonic receiving phasing circuit which is an embodiment of the present invention. Here, a case is shown in which 10 signals are divided into two groups. In Figure 1, e
0 to e9 are electroacoustic transducer elements to be arranged, s0 to s9 are received signals obtained individually from each element, w0 to w19 are switches, 1 and 2 are signal bundling circuits, A1 and A2 are bundling circuits 1 and 2, respectively. Name of the received signal group bundled by 4
and 5 are delay units, and 6 and 7 are adder units. In FIG. 1, first, the signals to be input to the two signal bundling circuits 1 and 2 are determined by selectively closing the switches w0 to w19. Therefore, the received signals of each element are A1, A2
You can enter either. Signal bundling circuit 1 is a switch w
After amplifying the received signals selected in 0 to w9 individually, the received signals are combined into one signal by current addition. The signal bundling circuit 2 similarly bundles the received signals selected by the switches w10 to w19. The delay units 4 and 5 form ultrasonic beams bm2 and bm3 in different directions from the outputs of the signal bundling circuits 1 and 2, respectively. That is, in the delay unit 4, the ultrasonic beam bm2 is generated from the received signals of the two dot-like elements located at the center of the element group corresponding to the signal group A1 and the element group corresponding to the signal group A2. As much delay time difference as can be obtained is given to the outputs of the signal bundling circuits 1 and 2. An adding section 6 adds the signals that have passed through the delay section 4 to form an ultrasonic beam bm2. Further, the delay unit 5 also provides the outputs of the signal bundling circuits 1 and 2 with a delay time difference sufficient to obtain the ultrasonic beam bm3 from the two point-like elements, and furthermore, the adder 7 applies a delay time difference sufficient to obtain the ultrasonic beam bm3 from the two point elements. get. Note that bm2 and bm3 are ultrasonic beams deflected to the right and left by a small angle δ from the front direction (bm1). From here on, we will focus on the directivity of bm2. Based on the multiplier law, the directivity of bm2 is based on the directivity corresponding to each group divided by the switch, and the point sound source array placed at the midpoint of each group, which connects the focus to the right by an angle δ from the front. It can be found as the product of the directivity when

【0010】いまスイッチw0〜w5をオン、スイッチ
をw6〜w13オフ、さらにスイッチw14〜w19オ
ンにする。つまり素子列e0〜e9の内、e0〜e5か
らの受波信号は信号束ね回路1で束ねられ、e4〜e9
からの受波信号は信号束ね回路2で束ねられ、その結果
、e4とe5とは2つの素子群に重るようにする。そし
て、このときのbm2の指向性を求める。まず各群に対
応する指向性は、各々の信号束ね回路1または2に入力
する信号が6本であるため、6素子分の幅を持つ線音源
の指向性となる。図2においては4素子分の幅をDとし
たので、図1のこの場合は、幅3D/2の線音源の指向
性である。これをR6とおくと、R6の特性は、図9に
示すようになり、その式は   R6=|sin(3x/2)/(3x/2)|  
 ・・・・・・・・・・・・・(6)である。次に各素
子群の中央の点の距離は、図2の場合と同様に4素子分
の幅Dであるため、遅延部4によって正面からδだけ右
方向に偏向した角度にフォ−カスを結ばせるときの指向
性は先に示したR4である。よって、bm2の指向性を
R7とおくと、   R7=R6×R4       =|(sin(3x/2)/(3x/2)
)cos(x−πDsinδ/λ)|・・・・・・(7
)である。x=πDsinγ/λ、λは波長、γは正面
方向からの角度である。
Now, the switches w0 to w5 are turned on, the switches w6 to w13 are turned off, and the switches w14 to w19 are turned on. In other words, among the element arrays e0 to e9, the received signals from e0 to e5 are bundled by the signal bundling circuit 1, and e4 to e9
The received signals are bundled by the signal bundling circuit 2, and as a result, e4 and e5 are made to overlap in two element groups. Then, the directivity of bm2 at this time is determined. First, since the number of signals input to each signal bundling circuit 1 or 2 is six, the directivity corresponding to each group becomes the directivity of a line sound source having a width of six elements. In FIG. 2, the width of four elements is set as D, so in this case of FIG. 1, the directivity is that of a line sound source with a width of 3D/2. If this is designated as R6, the characteristics of R6 will be as shown in FIG. 9, and the formula is R6=|sin(3x/2)/(3x/2)|
・・・・・・・・・・・・(6). Next, since the distance between the center points of each element group is the width D of four elements as in the case of FIG. The directivity when it is set is R4 shown above. Therefore, if the directivity of bm2 is set as R7, R7=R6×R4 =|(sin(3x/2)/(3x/2)
)cos(x−πDsinδ/λ)|・・・・・・(7
). x=πDsinγ/λ, where λ is the wavelength and γ is the angle from the front direction.

【0011】R7の特性を、図10に示す。なお指向性
は正面方向を1として規格化してあり、横軸はsinγ
とした。また、sinδ=λ/4Dとした。R4とR6
とはサイドローブ同志の重なりが少なく、その結果R7
ではR5に比べてGで示すサイドロ−ブが小さくなるっ
ているのがわかる。このようなサイドロ−ブの低下は、
正面からδだけ左方向に偏向した角度にフォ−カスを結
ばせた超音波ビームbm3についても見られ、結局、不
要応答(サイドロ−ブ)の少ない2本の超音波ビームが
同時に形成でき、高画質の超音波像が得られる。以上の
実施例では2つの信号束ね回路を用い、素子群からの受
波信号を2つのグループごと束ねる例であったが、3個
以上の信号束ね回路を用い、素子群からの受波信号をそ
れぞれの束ね回路ごとに束ねる構成としても良い。一方
、これらの信号束ね回路の出力をもちいて同時に得る超
音波ビームの数、つまり併設する遅延部の数も3以上で
も良い。いずれにしても、複数素子からの受波信号を互
いに重なりがある複数のグループにごとに束ねることに
より上記の効果が得られる。ただし、形成する超音波ビ
ームの偏向角δによって最適なグループ幅、もしくは束
ねの重なりの幅が変化する。図1の実施例では、スイッ
チw0〜w19の採用によりこの最適なグループ幅、も
しくは束ねの重なりの幅を偏向角δに対応して選べる利
点を有する。
The characteristics of R7 are shown in FIG. The directivity is normalized with the front direction as 1, and the horizontal axis is sinγ.
And so. Moreover, sin δ=λ/4D. R4 and R6
, there is little overlap between the side lobes, and as a result, R7
It can be seen that the side lobe indicated by G is smaller than that of R5. This reduction in side lobes is caused by
This can also be seen with the ultrasonic beam bm3, which is focused at an angle deflected to the left by δ from the front.In the end, two ultrasonic beams with less unnecessary responses (side lobes) can be formed at the same time, resulting in high High-quality ultrasound images can be obtained. In the above embodiment, two signal bundling circuits are used to bundle the received signals from the element groups into two groups, but three or more signal bundling circuits are used to bundle the received signals from the element groups. It is also possible to have a configuration in which each bundled circuit is bundled. On the other hand, the number of ultrasonic beams simultaneously obtained by using the outputs of these signal bundling circuits, that is, the number of delay sections provided in parallel, may also be three or more. In any case, the above effect can be obtained by bundling received signals from a plurality of elements into a plurality of groups that overlap with each other. However, the optimum group width or the width of the overlap of the bundles changes depending on the deflection angle δ of the ultrasonic beam to be formed. The embodiment of FIG. 1 has the advantage that by employing the switches w0 to w19, the optimum group width or bundle overlap width can be selected in accordance with the deflection angle δ.

【0012】図11は、本発明の他の実施例の超音波受
波整相回路を示す図である。本実施例では、8個の配列
素子e1〜e8の受波信号s1〜s8を4本づつ信号束
ね回路1、2で束ねる。つまり、グループ毎の束ねに重
なりがない。その代り、受波信号s1〜s4は重み付け
回路10を介して信号束ね回路1に入力し、受波信号s
5〜s8は重み付け回路11を介して信号束ね回路2に
入力する構成となっている。遅延部以後の構成は図2と
同様である。重み付け回路10、11は、それぞれ受波
信号群に対して三角重みを与える。三角重みとは、第1
2図に示すように、中心が最も大きく端に行くに従って
直線的に減少する重みのことである。図12では、理解
を容易にするため5素子からの受波信号について示して
いる。遅延部4、5で、それぞれ信号束ね回路1、2の
二つの出力にそれぞれ左右にδだけ偏向した角度にフォ
−カスを結ばせるだけの遅延時間差を与えるのは、図2
の場合と同様である。したがって、各群の中点に位置し
た点音源列による指向性は、先の実施例と同様にR4(
図7)である。しかし、束ねられた各群の信号に対応す
る指向性は、各受波信号に三角重みが与えらえることに
より、束ねられた信号分の素子幅を持つ線音源の指向性
R1(図4)の2乗になる。つまり、各群の指向性R8
は、     R8=R12=|(sinx/x)2|  ・
・・・・・・・・・・・・・(8)となり、図13に示
す様にR1よりサイドローブが低下する。加算部6で得
る超音波ビームbm2の指向性R9は、相乗則により     R9=R8×R4         =|(sinx/x)2cos(x−
πDsinδ/λ)|  ・・・・・・・(9)となり
、図14に示すように三角重みを与えないでえ得られる
超音波ビームの指向性R5に比べて、サイドロ−ブGが
小さくなる。ただし、sinδ=λ/4Dとした。 このように、束ねられる複数の信号群にそれぞれ重み付
けを与えてビーム偏向に伴うサイドロ−ブの低下を図る
のは、三角重みにのみ限られるのでなく、束ねられるの
端の信号の重みを小さくする他の形状の重み付けでも効
果が得られる。
FIG. 11 is a diagram showing an ultrasonic receiving phasing circuit according to another embodiment of the present invention. In this embodiment, the received signals s1 to s8 of the eight array elements e1 to e8 are bundled by four signal bundle circuits 1 and 2 each. In other words, there is no overlap in the bundling of each group. Instead, the received signals s1 to s4 are input to the signal bundling circuit 1 via the weighting circuit 10, and the received signals s
5 to s8 are configured to be input to the signal bundling circuit 2 via the weighting circuit 11. The configuration after the delay section is the same as that in FIG. Weighting circuits 10 and 11 each apply triangular weights to the received signal group. The triangular weight is the first
As shown in Figure 2, this is a weight that is largest at the center and decreases linearly toward the ends. In FIG. 12, received signals from five elements are shown for ease of understanding. The delay units 4 and 5 give a delay time difference sufficient to focus the two outputs of the signal bundling circuits 1 and 2 at angles deflected left and right by δ, respectively, as shown in FIG.
The same is true for . Therefore, the directivity due to the point sound source array located at the midpoint of each group is R4 (
Figure 7). However, by giving triangular weights to each received signal, the directivity corresponding to each group of bundled signals is determined by the directivity R1 of a line sound source with an element width equal to the bundled signal (Fig. 4). It becomes the square of In other words, the directivity R8 of each group
is, R8=R12=|(sinx/x)2| ・
(8), and as shown in FIG. 13, the side lobe is lower than R1. The directivity R9 of the ultrasonic beam bm2 obtained by the adder 6 is determined by the multiplier law: R9=R8×R4 =|(sinx/x)2cos(x−
πDsinδ/λ) | (9), and the side lobe G is smaller than the directivity R5 of the ultrasonic beam obtained without giving triangular weights as shown in FIG. . However, sin δ=λ/4D. In this way, weighting multiple signal groups to be bundled to reduce side lobes due to beam deflection is not limited to triangular weighting, but also by reducing the weight of the signals at the ends of the bundle. Other shapes of weighting can also be effective.

【0013】図15は、本発明のさらに別の他の実施例
を示す図である。本実施例は、図1で採用した重なりを
有する束ねと、図11で採用した重み付け回路の両方を
併用したものである。つまり、素子e0〜e5の受波信
号は、重み付け回路10を介して信号束ね回路1で束ね
られる。また、素子e4〜e9の受波信号は、重み付け
回路11を介して信号束ね回路2で束ねられる。このよ
うに、信号群A1とA2とは重なりを有し、それぞれ重
み分布が与えれらる。この場合にも、加算部6で得る超
音波ビームbm2の指向性は相乗則より求められる。ま
ず、各群の中点に配置された点音源列により、正面より
δだけ右方向に偏向した角度にフォ−カスを結ばせた場
合の指向性はR4である。各群に対応する指向性(R1
0とおく)は、三角重みをかけない場合の各群の指向性
である幅3D/2の線音源の指向性R6の2乗であり、
  R10=R62=|(sin(3x/2)/(3x
/2))2|  ・・・・・・・(10)である。よっ
てbm2の指向性(R11とおく)は  R11=R1
0×R4         =|(sin(3x/2)/(3x/
2))2cos(x−πsinδ/λ)|  ・・・・
・(11)である。R10の特性を図16に、またR1
1の特性を図17に示す。ここでは、sinδ=λ/4
Dとした。この様に、互いに重なりを持つ信号群毎に束
ねる構成と、各信号群毎に所定の重み付けをすることの
併用により、サイドロ−ブGの強度を著しく低下させる
ことができる。
FIG. 15 is a diagram showing yet another embodiment of the present invention. This embodiment uses both the overlapping bundling employed in FIG. 1 and the weighting circuit employed in FIG. 11. That is, the received signals of the elements e0 to e5 are bundled by the signal bundling circuit 1 via the weighting circuit 10. Further, the received signals of the elements e4 to e9 are bundled by the signal bundling circuit 2 via the weighting circuit 11. In this way, the signal groups A1 and A2 overlap and are given weight distributions respectively. In this case as well, the directivity of the ultrasonic beam bm2 obtained by the adder 6 is determined by the multiplier law. First, when a point sound source array placed at the midpoint of each group is focused at an angle deflected to the right by δ from the front, the directivity is R4. Directivity corresponding to each group (R1
0) is the square of the directivity R6 of a line sound source with a width of 3D/2, which is the directivity of each group when no triangular weight is applied.
R10=R62=|(sin(3x/2)/(3x
/2))2| ......(10). Therefore, the directivity of bm2 (set as R11) is R11=R1
0xR4 = | (sin(3x/2)/(3x/
2))2cos(x-πsinδ/λ) | ・・・・
-(11). The characteristics of R10 are shown in Figure 16, and the characteristics of R1
The characteristics of No. 1 are shown in FIG. Here, sin δ=λ/4
It was set as D. In this way, the strength of the side lobe G can be significantly reduced by combining the configuration of bundling into signal groups that overlap with each other and applying a predetermined weight to each signal group.

【0014】以上の実施例において、サイドロ−ブを小
さくするために用いた手法に共通しているのは、各群(
A1,A2)に対応する指向性を変化させることにより
、各群の中点に配置された点音源列により正面から偏向
した方向にフォ−カスを結ばせた場合の指向性の極大値
(ただしメインローブの近傍のサイドロ−ブの極大値)
を打ち消すということである。なお信号線、分割する群
、遅延部、加算部、同時形成されるビ−ムの数は、実施
例で示した数に限るものではない。また重み付け部で与
える重みは、三角重みに限られるものでなく、ハニング
重み等でもかまわない。
[0014] In the above embodiments, the methods used to reduce the side lobes are common to each group (
By changing the directivity corresponding to A1, A2), the maximum value of the directivity (however, Maximum value of the side lobe near the main lobe)
It means canceling out. Note that the number of signal lines, dividing groups, delay sections, addition sections, and simultaneously formed beams are not limited to the numbers shown in the embodiments. Furthermore, the weights given by the weighting section are not limited to triangular weights, but may also be Hanning weights or the like.

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば、受
波信号の複数本を束ねることにより複数群に分割し、こ
れらの束ねられた受波信号に対しては遅延処理を行う複
数の遅延部を備えて、複数方向の超音波ビ−ムを同時に
形成する超音波受波整相回路において、信号の束ねおよ
びビームの偏向に伴うサイドロ−ブの増大を抑制するこ
とができるので、小さな回路規模で高画質の超音波像を
得ることが可能となる。
[Effects of the Invention] As described above, according to the present invention, a plurality of received signals are divided into a plurality of groups by bundling them, and a plurality of received signals are subjected to delay processing on these bundled received signals. In an ultrasonic receiving phasing circuit that is equipped with a delay section and forms ultrasonic beams in multiple directions simultaneously, it is possible to suppress increases in side lobes due to signal bundling and beam deflection. It becomes possible to obtain high-quality ultrasound images with a small circuit scale.

【0016】[0016]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の超音波受波整相回路のブロ
ック図である。
FIG. 1 is a block diagram of an ultrasonic receiving phasing circuit according to an embodiment of the present invention.

【図2】従来の超音波受波整相回路のブロック図である
FIG. 2 is a block diagram of a conventional ultrasonic receiving phasing circuit.

【図3】従来の超音波受波整相回路の別の例を示すブロ
ック図である。
FIG. 3 is a block diagram showing another example of a conventional ultrasonic receiving phasing circuit.

【図4】従来例の各素子グループの指向性を示す特性図
である。
FIG. 4 is a characteristic diagram showing the directivity of each element group in a conventional example.

【図5】従来例の加算部3による指向性を示す特性図で
ある。
FIG. 5 is a characteristic diagram showing the directivity of the adder 3 in the conventional example.

【図6】従来例により得られる正面の超音波ビームbm
1の指向性を示す特性図である。
[Fig. 6] Frontal ultrasound beam bm obtained by conventional example
FIG. 1 is a characteristic diagram showing the directivity of No. 1;

【図7】従来例の遅延部4による指向性を示す特性図で
ある。
FIG. 7 is a characteristic diagram showing the directivity of a conventional delay unit 4;

【図8】従来例により得る偏向した超音波ビームbm2
の指向性を示す特性図である。
[Fig. 8] Deflected ultrasonic beam bm2 obtained by conventional example
FIG.

【図9】図1の実施例の各素子グループの指向性を示す
特性図である。
9 is a characteristic diagram showing the directivity of each element group in the embodiment of FIG. 1. FIG.

【図10】図1の実施例により得られる偏向した超音波
ビームbm2の指向性を示す特性図である。
10 is a characteristic diagram showing the directivity of the deflected ultrasonic beam bm2 obtained by the embodiment of FIG. 1. FIG.

【図11】本発明の別の実施例の超音波受波整相回路の
ブロック図である。
FIG. 11 is a block diagram of an ultrasonic receiving phasing circuit according to another embodiment of the present invention.

【図12】図11の実施例における重み付け回路の重み
分布を示す特性図である。
FIG. 12 is a characteristic diagram showing the weight distribution of the weighting circuit in the embodiment of FIG. 11;

【図13】図11の実施例の各素子グループの指向性を
示す特性図である。
FIG. 13 is a characteristic diagram showing the directivity of each element group in the embodiment of FIG. 11;

【図14】図11の実施例により得られる偏向した超音
波ビームbm2の指向性を示す特性図である。
14 is a characteristic diagram showing the directivity of the deflected ultrasonic beam bm2 obtained by the embodiment of FIG. 11. FIG.

【図15】本発明の更に別の実施例の超音波受波整相回
路のブロック図である。
FIG. 15 is a block diagram of an ultrasonic receiving phasing circuit according to still another embodiment of the present invention.

【図16】図15の実施例の各素子グループの指向性を
示す特性図である。
16 is a characteristic diagram showing the directivity of each element group in the embodiment of FIG. 15. FIG.

【図17】図15の実施例により得る偏向した超音波ビ
ームbm2の指向性を示す特性図である。
17 is a characteristic diagram showing the directivity of the deflected ultrasonic beam bm2 obtained by the embodiment of FIG. 15. FIG.

【符号の説明】[Explanation of symbols]

bm1〜bm3:超音波ビ−ム、s0〜s9:信号線、
w0〜w19:スイッチ、A1,A2:分割した受波信
号群の名称、G:サイドロ−ブ、M:メインロ−ブ、T
:ビ−ム形成を行う素子、1、2:信号束ね回路、4、
5;:の遅延部、  6、7:加算部、10、11:重
み付け回路
bm1 to bm3: ultrasonic beam, s0 to s9: signal line,
w0 to w19: Switch, A1, A2: Name of divided received signal group, G: Side lobe, M: Main lobe, T
: Element that performs beam formation, 1, 2: Signal bundling circuit, 4,
5: delay section, 6, 7: addition section, 10, 11: weighting circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】配列する複数の電気音響変換素子からの複
数の受波信号に遅延分布を与えて、所定の方位に指向性
を持つ超音波ビームを形成する超音波受波整相回路にお
いて、前記複数の受波信号を複数群に束ねてそれぞれ単
一の信号とする複数の信号束ね回路と、前記複数の信号
束ね回路の出力にそれぞれ異なる遅延分布を与えて加算
し、それぞれ指向性の異なる超音波ビームを形成する複
数組の遅延部、及び加算部を備え、且つ前記複数の受波
信号の各々を前記複数の束ね回路の任意の一つ以上に同
時に接続可能な接続手段を設けたことを特徴とする超音
波受波整相回路。
1. An ultrasonic receiving phasing circuit that gives a delay distribution to a plurality of received signals from a plurality of arranged electroacoustic transducing elements to form an ultrasonic beam having directivity in a predetermined direction, comprising: a plurality of signal bundling circuits that bundle the plurality of received signals into a plurality of groups into a single signal; Connecting means comprising a plurality of sets of delay units and adder units for forming ultrasonic beams, and capable of simultaneously connecting each of the plurality of received signals to any one or more of the plurality of bundling circuits. An ultrasonic receiving phasing circuit featuring:
【請求項2】配列する複数の電気音響変換素子からの複
数の受波信号に遅延分布を与えて所定の方位に指向性を
持つ超音波ビームを形成する超音波受波整相回路におい
て、前記複数の受波信号を互いに重なりが生じる複数群
ごとに束ねてそれぞれ単一の信号とする複数の信号束ね
回路と、前記複数の信号束ね回路の出力にそれぞれ異な
る遅延分布を与えて加算し、それぞれ指向性の異なる超
音波ビームを形成する複数組の遅延部及び加算部を備え
てなることを特徴とする超音波受波整相回路。
2. An ultrasonic receiving phasing circuit that provides a delay distribution to a plurality of received signals from a plurality of arranged electroacoustic transducing elements to form an ultrasonic beam having directivity in a predetermined direction. a plurality of signal bundling circuits that bundle a plurality of received signals into groups that overlap each other to form a single signal; An ultrasonic receiving phasing circuit comprising a plurality of sets of delay sections and adder sections that form ultrasonic beams with different directivities.
【請求項3】配列する複数の電気音響変換素子からの複
数の受波信号に遅延分布を与えて所定の方位に指向性を
持つ超音波ビームを形成する超音波受波整相回路におい
て、前記複数の受波信号の複数群ごとにそれぞれ所定の
重み分布を与える複数の重み付け回路と、それぞれの重
み付け回路を経た信号群を束ねてそれぞれ単一の信号と
する複数の信号束ね回路と、前記複数の信号束ね回路の
出力にそれぞれ異なる遅延分布を与えて加算し、それぞ
れ指向性の異なる超音波ビームを形成する複数組の遅延
部及び加算部を備えてなることを特徴とする超音波受波
整相回路。
3. An ultrasonic receiving phasing circuit that provides a delay distribution to a plurality of received signals from a plurality of arranged electroacoustic transducing elements to form an ultrasonic beam having directivity in a predetermined direction. a plurality of weighting circuits that give predetermined weight distributions to each of the plurality of groups of the plurality of received signals; a plurality of signal bundling circuits that bundle the signal groups that have passed through the respective weighting circuits into a single signal; An ultrasonic receiving waveform generator comprising a plurality of sets of delay sections and addition sections that give different delay distributions to the outputs of the signal bundling circuits and add them to form ultrasonic beams each having a different directivity. phase circuit.
【請求項4】前記複数の重み付け回路には、前記複数の
受波信号が互いに重なりを有する複数群毎に入力し、も
ってそれぞれ重なりを持つ信号群の束ねが成されるとを
特徴とする請求項3に記載の超音波受波整相回路。
4. The plurality of received signals are inputted to the plurality of weighting circuits in groups having mutual overlap, thereby forming a bundle of signal groups having respective overlaps. The ultrasonic receiving phasing circuit according to item 3.
JP3096859A 1991-04-26 1991-04-26 Ultrasonic wave receiving and phasing circuit Pending JPH04326082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3096859A JPH04326082A (en) 1991-04-26 1991-04-26 Ultrasonic wave receiving and phasing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3096859A JPH04326082A (en) 1991-04-26 1991-04-26 Ultrasonic wave receiving and phasing circuit

Publications (1)

Publication Number Publication Date
JPH04326082A true JPH04326082A (en) 1992-11-16

Family

ID=14176192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3096859A Pending JPH04326082A (en) 1991-04-26 1991-04-26 Ultrasonic wave receiving and phasing circuit

Country Status (1)

Country Link
JP (1) JPH04326082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484440B2 (en) * 2009-03-04 2014-05-07 株式会社日立メディコ Ultrasonic diagnostic apparatus and ultrasonic probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484440B2 (en) * 2009-03-04 2014-05-07 株式会社日立メディコ Ultrasonic diagnostic apparatus and ultrasonic probe

Similar Documents

Publication Publication Date Title
JP6165855B2 (en) Two-dimensional ultrasonic transducer array operable with different ultrasonic systems
JP5371448B2 (en) Ultrasound imaging system and method for translating receiving aperture
JP5101529B2 (en) Ultrasound imaging system and method for translating receiving aperture
JP4428477B2 (en) Method and apparatus for rapid distributed calculation of time delay and apodization values for beamforming
US5510799A (en) Method and apparatus for digital signal processing
GB2293240A (en) Ultrasound system
JP2013255806A (en) Method and device for three-dimensional ultrasonic volume scanning utilizing two-dimensional arrangement transducer array
JPS6219757A (en) Method and device for scanning object by ultrasonic wave
JPS5848867B2 (en) Beam directing device
JP2015535480A (en) Ultrasonic transducer probe with microbeamformer for multi-line imaging
JPH1170110A (en) Ultrasonic three-dimensional image converting method using intersecting array and its device
JP4107840B2 (en) Refraction delay error correction using an agile beamformer.
GB2064118A (en) Ultrasonic imaging system
US4460987A (en) Variable focus sonar with curved array
JPH04326082A (en) Ultrasonic wave receiving and phasing circuit
JP7044723B2 (en) High-speed synthetic focused ultrasound imaging with large linear array
JP2010068957A (en) Ultrasonic diagnostic apparatus
JP3308655B2 (en) Ultrasonic signal processor
JP2019521753A5 (en)
JP3934844B2 (en) Ultrasonic diagnostic equipment
Yang et al. Beamwidth control in parametric acoustic array
JP2004313484A (en) Ultrasonic probe
US8506484B2 (en) Ultrasonic imaging device
JP2632846B2 (en) Phased Array Sonar
JP3685993B2 (en) Ultrasonic diagnostic equipment