JPH04326051A - Pulse nucleus four-pole resonance device - Google Patents

Pulse nucleus four-pole resonance device

Info

Publication number
JPH04326051A
JPH04326051A JP9713191A JP9713191A JPH04326051A JP H04326051 A JPH04326051 A JP H04326051A JP 9713191 A JP9713191 A JP 9713191A JP 9713191 A JP9713191 A JP 9713191A JP H04326051 A JPH04326051 A JP H04326051A
Authority
JP
Japan
Prior art keywords
coil
pulse
tuning circuit
receiving coil
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9713191A
Other languages
Japanese (ja)
Other versions
JP3100658B2 (en
Inventor
Jiro Tokita
鴇田 二郎
Takuya Maruizumi
丸泉 琢也
Yasuhiro Mitsui
泰裕 三井
Yasuo Nagasawa
長沢 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP03097131A priority Critical patent/JP3100658B2/en
Publication of JPH04326051A publication Critical patent/JPH04326051A/en
Application granted granted Critical
Publication of JP3100658B2 publication Critical patent/JP3100658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To enable a transmission pulse to be cut fully and a size, a shape, and a placement of a coil to be optimized by cutting off a tuning circuit for reception coil when a high-frequency pulse is applied to and then cutting off a tuning circuit for transmission coil when a high-frequency pulse is not applied to. CONSTITUTION:A switch 19 is added in series to a variable capacitor 18 for adjusting resonance frequency within a tuning circuit for transmission coil 6 and it is so controlled by a controller 4 that the switch 19 is closed 4 when a high-frequency pulse is applied to and is opened when it is not applied to. Also, a switch 20 is added in series to a variable capacitor for adjusting resonance frequency 21 within a tuning circuit for reception coil 11 and it is so controlled by the controller 4 that the switch 20 is opened when a high-frequency pulse is applied to and is closed when it is not applied to, thus enabling both coupling to be small even if axes of the transmission coil and the reception coil are in parallel each other and a high-frequency magnetic field signal to be received without causing the reception coil to be affected by the transmission coil.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、パルス核四極子共鳴(
Nuclear  Quadrupole  Reso
nance、以下NQRと記す)を用いて分析、検知を
行う装置にかかわり、特に、航空機積み込み荷物等の中
に隠されたプラスチック爆弾、麻薬、覚醒剤など取り締
まりの対象となる物質を高感度、高効率で遠隔検知する
のに好適なパルスNQR装置に関する。
[Industrial Application Field] The present invention relates to pulsed nuclear quadrupole resonance (
Nuclear Quadrupole Reso
It is a device that analyzes and detects substances that are subject to control, such as plastic bombs, narcotics, and stimulants hidden in aircraft cargo, etc., with high sensitivity and high efficiency. The present invention relates to a pulsed NQR device suitable for remote detection in the field.

【0002】0002

【従来の技術】パルスNQR法は、試料に固有な周波数
(共鳴周波数)をもつパルス状の高周波磁場を送信コイ
ルから試料に照射して核四極子を励起し、パルス後に誘
導されるNQR信号(高周波磁場)を受信コイルにより
受信、増幅して解析することにより、物質の同定や分析
を行う方法である。
[Prior Art] In the pulsed NQR method, a pulsed high-frequency magnetic field having a frequency (resonance frequency) unique to the sample is applied to the sample from a transmitting coil to excite a nuclear quadrupole, and the NQR signal ( This method identifies and analyzes substances by receiving, amplifying, and analyzing high-frequency magnetic fields (high-frequency magnetic fields) using a receiving coil.

【0003】従来のパルスNQR装置には、通常、例え
ば「新実験化学講座3  基礎技術2磁気」、丸善発行
(1976)、第489頁から第492頁に記載されて
いるように、送信と受信を同一コイルで行う「ブリッジ
法」や「単一コイル法」が用いられてきた。
[0003] Conventional pulsed NQR devices usually have transmission and reception functions, as described in, for example, "New Experimental Chemistry Course 3 Basic Technology 2 Magnetism", published by Maruzen (1976), pages 489 to 492. The ``bridge method'' and ``single coil method'' have been used in which both are performed using the same coil.

【0004】これに対して、送信コイルと受信コイルと
を別コイルとした例は、例えば「ジャーナル  オブ 
 モレキュラー  ストラクチャー」、第58巻(19
80)、第63頁から第77頁(Journal  o
f  Molecular  Structure、5
8、(1980)、pp63〜77)に記載されている
。この中には、コイル軸が互いに直交する別々のコイル
で送信と受信を行う「交差コイル法」を用いたコイルデ
ザイン例が示されている。
On the other hand, an example in which the transmitting coil and the receiving coil are separate coils, for example,
"Molecular Structure", Volume 58 (19
80), pp. 63 to 77 (Journal o
f Molecular Structure, 5
8, (1980), pp. 63-77). This document shows an example of a coil design using the "crossed coil method" in which transmission and reception are performed using separate coils whose coil axes are orthogonal to each other.

【0005】さらに、最近では、例えば「アプライド 
 フィジクス  レターズ」、第47巻(1985)、
第637頁から第639頁(Applied  Phy
sicsLetters、47(1985)、pp63
7〜639)に記載されているように、超伝導量子干渉
装置(Superconducting  Quant
umInterference  Device、略語
SQUID)をNQR信号の検出器として用いた装置の
中で、受信コイルと送信コイルの軸を平行に保ったまま
両者を分離した例も報告されている。この例では、受信
コイルを送信コイル内の同軸上に配置するが、受信コイ
ルに逆巻きのコイルを直列に接続して受信コイルと送信
コイルのカップリングを小さくすることにより、受信コ
イルと送信コイルの軸を平行に保ったまま両者の分離を
可能にしている。
Furthermore, recently, for example, “applied
Physics Letters, Volume 47 (1985),
Pages 637 to 639 (Applied Phy
sics Letters, 47 (1985), pp63
7-639), a superconducting quantum interference device (Superconducting Quant
Among devices using a umInterference Device (abbreviated as SQUID) as an NQR signal detector, an example has been reported in which the receiving coil and transmitting coil are separated while keeping their axes parallel. In this example, the receiving coil is placed coaxially within the transmitting coil, but by connecting a reversely wound coil in series with the receiving coil to reduce the coupling between the receiving coil and the transmitting coil, This allows the two to be separated while keeping their axes parallel.

【0006】[0006]

【発明が解決しようとする課題】パルスNQR法で受信
に用いる自由誘導減衰(Free  Inductio
nDecay、以下FIDと記す)信号は、送信パルス
の直後に発生する。しかしながら、送信するパルス信号
は、回路中に存在するインダクタンスやキャパシタンス
、あるいは送信コイルと受信コイルとの間の相互インダ
クタンスによって、直ぐにはゼロ電位に戻らず、この間
はFID信号は受信できない。従って、パルスNQR装
置を高感度化するためには、送信パルスの切れを良くし
、できるだけ早く信号を受信できるようにして、FID
信号の受信ロスをできるだけ小さくする必要がある。 また、NQRで遠隔検知を行う場合、送信コイルの最適
な大きさと形状は、主として送信する高周波磁場の強度
とそれを分布させる体積および投入電力によって決まり
、一方、受信コイルの最適な大きさと形状は、主として
サンプル量とそれを検知する体積および受信系の感度に
よって決まる。従って、送信効率および受信感度が高い
NQR遠隔検知装置を実現するためには、送信コイルと
受信コイルを別コイルにし、両者の大きさと形状を個別
に最適化する必要がある。
[Problem to be solved by the invention] Free induction attenuation used for reception in pulsed NQR method
The nDecay (hereinafter referred to as FID) signal is generated immediately after the transmit pulse. However, the pulse signal to be transmitted does not immediately return to zero potential due to inductance and capacitance existing in the circuit, or mutual inductance between the transmitting coil and the receiving coil, and the FID signal cannot be received during this time. Therefore, in order to make the pulse NQR device highly sensitive, it is necessary to improve the sharpness of the transmitted pulse so that the signal can be received as quickly as possible, and the FID
It is necessary to minimize signal reception loss. Furthermore, when performing remote sensing with NQR, the optimal size and shape of the transmitting coil are determined mainly by the strength of the high-frequency magnetic field to be transmitted, the volume in which it is distributed, and the input power, while the optimal size and shape of the receiving coil are , mainly determined by the amount of sample, the volume in which it is detected, and the sensitivity of the receiving system. Therefore, in order to realize an NQR remote sensing device with high transmission efficiency and high reception sensitivity, it is necessary to separate the transmitting coil and the receiving coil, and to individually optimize the size and shape of both coils.

【0007】しかし、上記第1の従来例では、送信コイ
ルと受信コイルに同一のコイルを用いているため、送信
パルスの切れが悪い上、送信コイルと受信コイルの大き
さや形状を個別に最適化することができないので、NQ
R遠隔検知装置の高感度化、高効率化に限界があるとい
う問題点があった。
However, in the first conventional example described above, since the same coil is used for the transmitting coil and the receiving coil, the transmitting pulse is difficult to cut, and the size and shape of the transmitting coil and receiving coil are individually optimized. Since it is not possible to do so, NQ
There is a problem in that there is a limit to how high the sensitivity and efficiency of the R remote detection device can be made.

【0008】また、上記第2の従来例のコイルデザイン
では、送信コイルと受信コイルの軸を互いに直交させて
コイルのカップリングを小さくすることにより送受信コ
イルを分離する「交差コイル法」が用いられている。し
かし、NQRでは、核磁気共鳴(Nuclear  M
agnetic  Resonance、略語NMR)
と異なり、受信する高周波磁場(NQR信号)の成分の
大部分が送信する高周波磁場と同一方向成分であるため
、NQR信号を効率良く受信できないという問題点があ
った。
[0008] Furthermore, in the coil design of the second conventional example, a ``crossed coil method'' is used in which the transmitting and receiving coils are separated by making the axes of the transmitting coil and receiving coil orthogonal to each other to reduce coupling between the coils. ing. However, in NQR, nuclear magnetic resonance (Nuclear M
agnetic resonance (abbreviation NMR)
However, most of the components of the received high-frequency magnetic field (NQR signal) are in the same direction as the transmitted high-frequency magnetic field, so there is a problem that the NQR signal cannot be efficiently received.

【0009】また、上記第3の従来例では、コイル軸を
平行に保ったまま送信コイルと受信コイルを別コイルと
することが可能であるが、送信コイルと受信コイルの大
きさ、形状、位置関係によってはコイル間のカップリン
グが大きくなり、送信パルスの切れが悪くなるとともに
、送信効率および受信感度が低下する。従って、送信コ
イルと受信コイルの大きさ、形状、位置関係に制約があ
り、やはりNQR遠隔検知装置の高感度化、高効率化に
限界があるという問題点があった。
Furthermore, in the third conventional example, it is possible to separate the transmitting coil and receiving coil while keeping the coil axes parallel; however, the size, shape, and position of the transmitting coil and receiving coil Depending on the relationship, the coupling between the coils becomes large, making it difficult to cut the transmission pulse, and reducing the transmission efficiency and reception sensitivity. Therefore, there are restrictions on the size, shape, and positional relationship of the transmitter coil and the receiver coil, and there is still a problem in that there is a limit to increasing the sensitivity and efficiency of the NQR remote detection device.

【0010】本発明の目的は、コイル軸を平行に保った
まま送信コイルと受信コイルを分離でき、しかも、送信
パルスの切れを良くすることに加えて、送信コイルと受
信コイルの大きさ、形状、配置を個別に最適化すること
が可能であるパルスNQR装置を提供し、高感度、高効
率のNQR遠隔検知装置を実現することにある。
An object of the present invention is to be able to separate the transmitter coil and receiver coil while keeping the coil axes parallel, and to improve the sharpness of the transmitter pulse, as well as to improve the size and shape of the transmitter coil and receiver coil. The object of the present invention is to provide a pulsed NQR device whose arrangement can be individually optimized, and to realize a highly sensitive and highly efficient NQR remote sensing device.

【0011】[0011]

【課題を解決するための手段】上記目的は、高周波パル
スが印加されているときに受信コイル用同調回路を切断
し、高周波パルスが印加されていないときに送信コイル
用同調回路を切断するスイッチまたは電気回路を付加す
ることにより、達成される。
[Means for Solving the Problems] The above object is to provide a switch or a switch that disconnects a receiving coil tuning circuit when a high frequency pulse is applied and disconnects a transmitting coil tuning circuit when a high frequency pulse is not applied. This is achieved by adding an electric circuit.

【0012】0012

【作用】上記構成において、高周波パルスが印加されて
いるときには、例えば、送信コイル用同調回路に付加し
たスイッチを閉じ、受信コイル用同調回路に付加したス
イッチを開くようにする。これにより、送信コイル用同
調回路は共振回路として作動するが、受信コイル用同調
回路は切断されているので共振回路として作動しない。 従って、送信コイルと受信コイルの軸が互いに平行であ
っても両者のカップリングは小さく、送信コイルは受信
コイルの影響を受けずに高周波磁場を送信することがで
きる。
[Operation] In the above structure, when a high frequency pulse is applied, for example, a switch added to the tuning circuit for the transmitting coil is closed, and a switch added to the tuning circuit for the receiving coil is opened. As a result, the transmitting coil tuning circuit operates as a resonant circuit, but the receiving coil tuning circuit does not operate as a resonant circuit because it is disconnected. Therefore, even if the axes of the transmitting coil and the receiving coil are parallel to each other, the coupling between the two is small, and the transmitting coil can transmit a high-frequency magnetic field without being influenced by the receiving coil.

【0013】逆に、高周波パルスが印加されていないと
きには、送信コイル用同調回路に付加したスイッチを開
き、受信コイル用同調回路に付加したスイッチを閉じる
ようにする。これにより、受信コイル用同調回路は通常
の共振回路として作動するが、送信コイル用同調回路は
切断されているので共振回路として作動しない。従って
、送信コイルと受信コイルの軸が互いに平行であっても
両者のカップリングは小さく、受信コイルは送信コイル
の影響を受けずにNQR信号を受信することができる。
Conversely, when no high-frequency pulse is applied, the switch added to the transmitting coil tuning circuit is opened, and the switch added to the receiving coil tuning circuit is closed. As a result, the receiving coil tuning circuit operates as a normal resonant circuit, but since the transmitting coil tuning circuit is disconnected, it does not operate as a resonant circuit. Therefore, even if the axes of the transmitting coil and the receiving coil are parallel to each other, the coupling between the two is small, and the receiving coil can receive the NQR signal without being influenced by the transmitting coil.

【0014】本発明によれば、送信コイルと受信コイル
の軸が平行であっても、両者の大きさ、形状、位置関係
にかかわらずカップリングは十分小さい。従って、パル
スの切れがよくなる上、送信効率、受信感度とも低下さ
せることなく送信コイルと受信コイルを個別に最適化で
き、高感度、高効率のNQR遠隔検知装置を実現するこ
とが可能となる。
According to the present invention, even if the axes of the transmitting coil and the receiving coil are parallel, the coupling is sufficiently small regardless of their size, shape, and positional relationship. Therefore, the pulse sharpness is improved, and the transmitting coil and receiving coil can be individually optimized without reducing either the transmitting efficiency or the receiving sensitivity, and it is possible to realize a highly sensitive and highly efficient NQR remote sensing device.

【0015】なお、上記説明では、付加されるスイッチ
または電気回路が、高周波パルスが印加されているとき
に受信コイル用同調回路を切断する機能と、高周波パル
スが印加されていないときに送信コイル用同調回路を切
断する機能の両機能を有するものとして述べたが、どち
らか一方の機能のみを有するものであっても、それなり
の効果があることは言うまでもない。
[0015] In the above explanation, the added switch or electric circuit has the function of disconnecting the receiving coil tuning circuit when a high frequency pulse is applied, and the function of disconnecting the receiving coil tuning circuit when a high frequency pulse is not applied. Although it has been described as having both the function of cutting off the tuned circuit, it goes without saying that even having only one of the functions has a certain effect.

【0016】[0016]

【実施例】以下、本発明の第1の実施例を図1を用いて
説明する。
Embodiment A first embodiment of the present invention will be described below with reference to FIG.

【0017】まず、高周波発生器2により発生させた高
周波と、コントローラ4の信号に同期してDCパルス発
生器3により発生させた矩形パルスとを高周波電力増幅
器5に入力して、高周波パルス列を作る。次に、このパ
ルス列を、送信コイル用同調回路6を通して送信コイル
7に入力し、パルス状の高周波磁場をシールドボックス
8の中に置かれた検査対象物9に照射する。
First, the high frequency generated by the high frequency generator 2 and the rectangular pulse generated by the DC pulse generator 3 in synchronization with the signal from the controller 4 are input to the high frequency power amplifier 5 to create a high frequency pulse train. . Next, this pulse train is input to the transmitting coil 7 through the transmitting coil tuning circuit 6, and a pulsed high-frequency magnetic field is irradiated onto the inspection object 9 placed in the shield box 8.

【0018】さらに、照射した高周波磁場によって検査
対象物9に含まれる対象物質1に誘起されたNQR信号
(高周波磁場)を、送信コイル7と軸が平行な受信コイ
ル10により受信し、受信コイル用同調回路11を通し
た後、低雑音増幅器12で増幅する。増幅した信号はさ
らに位相検波器13で位相検波した後、周波数フィルタ
14を通して周波数帯域を狭め、ディジタル加算器15
で加算して高い信号対雑音比が得られるようにする。こ
うして得られるNQRのFID信号をさらにデータ処理
装置16でフーリエ変換し、周波数スペクトル中に対象
物質1によるピークがあるかどうかによって、検査対象
物9内に対象物質1が含まれているかどうかを判定する
Furthermore, the NQR signal (high frequency magnetic field) induced in the target substance 1 contained in the inspection object 9 by the irradiated high frequency magnetic field is received by the receiving coil 10 whose axis is parallel to the transmitting coil 7, and After passing through a tuning circuit 11, the signal is amplified by a low noise amplifier 12. The amplified signal is further phase-detected by a phase detector 13, then passed through a frequency filter 14 to narrow the frequency band, and then sent to a digital adder 15.
to obtain a high signal-to-noise ratio. The NQR FID signal obtained in this way is further subjected to Fourier transform by the data processing device 16, and it is determined whether or not the target substance 1 is contained in the inspection target 9, depending on whether there is a peak due to the target substance 1 in the frequency spectrum. do.

【0019】ここで、送信コイル用同調回路6中には、
図1(b)に示すように、スイッチ19が共振周波数調
整用可変コンデンサ18に直列に付加されており、この
スイッチをコントローラ4によって、高周波パルスが印
加されているときは閉じ、印加されていないときには開
くように制御する。また、受信コイル用同調回路11中
にも、スイッチ20が共振周波数調整用可変コンデンサ
21に直列に付加されており、このスイッチをコントロ
ーラ4によって、高周波パルスが印加されているときは
開き、印加されていないときには閉じるように制御する
。なお、スイッチ19、20は必ずしも共振周波数調整
用可変コンデンサ18、21に直列に付加する必要はな
く、インピーダンス調整用可変コンデンサ17、22に
直列に付加してもよい。スイッチ19、スイッチ20を
このように制御することにより、送信コイル7と受信コ
イル10の軸が平行であっても両者のカップリングは小
さく、互いに影響を及ぼさないため、パルスの切れを良
くできる上、各々を個別に最適化できる。
Here, in the transmitting coil tuning circuit 6,
As shown in FIG. 1(b), a switch 19 is connected in series to the variable capacitor 18 for adjusting the resonant frequency, and the switch is closed by the controller 4 when a high-frequency pulse is applied, and closed when the high-frequency pulse is not applied. Sometimes it is controlled to open. Also, in the receiver coil tuning circuit 11, a switch 20 is added in series with a variable capacitor 21 for adjusting the resonance frequency, and the switch 20 is opened when a high frequency pulse is applied by the controller 4. control to close when not in use. Note that the switches 19 and 20 do not necessarily need to be added in series to the variable capacitors 18 and 21 for adjusting the resonance frequency, but may be added in series to the variable capacitors 17 and 22 for adjusting the impedance. By controlling the switches 19 and 20 in this manner, even if the axes of the transmitter coil 7 and the receiver coil 10 are parallel, the coupling between them is small and they do not affect each other, which improves the pulse cutting. , each can be optimized individually.

【0020】ここで、本実施例の装置の具体例を述べる
A specific example of the apparatus of this embodiment will now be described.

【0021】対象物質1がプラスチック爆弾の主成分で
あるRDX(hexahydro,1,3,5−tri
nitro,1,3,5−triazine)600g
、検査対象物9が航空機内持ち込み手荷物(容積50リ
ッター程度)の場合には、送信コイル7としては、検査
対象物9内に高周波磁場を小電力で効率よく照射できる
直径50cm、3ターン程度のソレノイドコイルが適当
である。また、受信コイル10としては、体積50リッ
ター以上の空間内に存在する対象物質であるRDX60
0gを高感度で検知可能な、直径100cm、3ターン
程度のソレノイドコイルを送信コイルと同軸上外側に配
置して用いると良い。ここで、検査対象物9の内部に含
まれている対象物質1は、必ずしも送信コイル7または
受信コイル10の内部になくてもよい。
Target substance 1 is RDX (hexahydro, 1,3,5-tri), which is the main component of plastic bombs.
nitro, 1,3,5-triazine) 600g
If the object to be inspected 9 is carry-on baggage on an airplane (capacity: about 50 liters), the transmitting coil 7 should be a coil with a diameter of about 50 cm and about 3 turns, which can efficiently irradiate a high-frequency magnetic field into the object to be inspected 9 with low power. A solenoid coil is suitable. In addition, as the receiving coil 10, RDX60, which is a target substance existing in a space with a volume of 50 liters or more, is used.
It is preferable to use a solenoid coil with a diameter of 100 cm and about 3 turns, which can detect 0 g with high sensitivity, and arranged on the outer side on the same axis as the transmitting coil. Here, the target substance 1 contained inside the test object 9 does not necessarily have to be inside the transmitting coil 7 or the receiving coil 10.

【0022】上記装置で、周波数5.2MHz、パルス
幅200μsec、パルス間隔30msec、パルス強
度2ガウス程度の高周波パルス列を送信し、パルス後の
FID信号を256回程度加算すれば、容積50リッタ
ーの検査対象物9内の対象物質RDX600gが検知可
能である。
[0022] With the above device, if a high-frequency pulse train with a frequency of 5.2 MHz, a pulse width of 200 μsec, a pulse interval of 30 msec, and a pulse strength of about 2 Gauss is transmitted, and the FID signals after the pulses are added about 256 times, a volume of 50 liters can be inspected. 600 g of the target substance RDX in the target object 9 can be detected.

【0023】なお、上記具体例と条件が異なる場合には
、送信コイルおよび受信コイルの大きさをそれぞれ最適
になるように変えてやれば良い。例えば、送信コイルに
投入する電力を大きくできる場合には、送信コイルをよ
り大きくした方が良いし、対象物質が少ない場合には受
信コイルをより小さくした方が良い。従って、条件によ
っては、送信コイルの方が受信コイルより大きくなる場
合もありうる。
[0023] If the conditions differ from those in the above specific example, the sizes of the transmitting coil and the receiving coil may be changed to be optimal. For example, if the power input to the transmitting coil can be increased, it is better to make the transmitting coil larger, and if there is less target material, it is better to make the receiving coil smaller. Therefore, depending on the conditions, the transmitting coil may be larger than the receiving coil.

【0024】本実施例によれば、送信パルスの切れを良
くすることができる上、送信コイルと受信コイルを個別
に最適化できるため、高感度、高効率のパルスNQR遠
隔検知装置を実現できるという効果がある。また、本実
施例では、スイッチの開閉制御をコントローラで能動的
に行なっているので、電気部品や回路の特性等に影響さ
れることなく、精密なタイミング制御ができるという効
果がある。
According to this embodiment, not only can the transmission pulse be sharply cut, but also the transmitter coil and the receiver coil can be individually optimized, making it possible to realize a highly sensitive and highly efficient pulsed NQR remote sensing device. effective. Furthermore, in this embodiment, since the opening/closing control of the switch is actively performed by the controller, there is an advantage that precise timing control can be performed without being influenced by the characteristics of electrical components or circuits.

【0025】次に、本発明の第2の実施例を図2を用い
て説明する。
Next, a second embodiment of the present invention will be explained using FIG. 2.

【0026】本実施例では、送信コイル用同調回路およ
び受信コイル用同調回路の中に付加するスイッチの代わ
りにコンデンサおよびコイルと、極性が互いに逆の組ダ
イオードとで構成された回路を用い、これらの制御にコ
ントローラを必要としない点が前記第1の実施例と異な
っている。本実施例で用いた送信コイル用同調回路およ
び受信コイル用同調回路の等価回路を図2(b)に示し
、以下、その動作を説明する。
In this embodiment, instead of the switches added in the transmitting coil tuning circuit and the receiving coil tuning circuit, a circuit composed of a capacitor, a coil, and a set of diodes with opposite polarities is used. This embodiment differs from the first embodiment in that a controller is not required for control. An equivalent circuit of the transmitting coil tuning circuit and the receiving coil tuning circuit used in this example is shown in FIG. 2(b), and the operation thereof will be described below.

【0027】送信パルスが印加されているときには、組
ダイオード23、26が導通状態になる。従って、送信
側の回路は、短絡してスイッチが閉じたのと同じ状態に
なる。一方、受信側の回路は、可変コンデンサ27、コ
イル28、コンデンサ29が並列共振回路を形成してイ
ンピーダンスが高くなってスイッチが開いたのと同じ状
態になる。
When a transmission pulse is being applied, the set diodes 23 and 26 are in a conductive state. Therefore, the circuit on the transmitting side is in the same state as if the switch had been shorted and closed. On the other hand, in the circuit on the receiving side, the variable capacitor 27, coil 28, and capacitor 29 form a parallel resonant circuit, and the impedance becomes high, resulting in the same state as if the switch were open.

【0028】逆に、送信パルスが印加されていないとき
には、組ダイオード23、26が非導通状態になる。従
って、送信側の回路は可変コンデンサ24、コイル25
が並列共振回路を形成してインピーダンスが高くなって
スイッチが開いたのと同じ状態になる。一方、受信側の
回路は可変コンデンサ27、コイル28が切り離され、
コンデンサ29、共振周波数調整用可変コンデンサ21
、インピーダンス調整用可変コンデンサ22、受信コイ
ル10により共振回路が形成されて、事実上スイッチが
閉じたのと同じ効果が得られる。なお、共振周波数調整
用可変コンデンサ21は、コンデンサ29を可変コンデ
ンサにして共振周波数調整用可変コンデンサの機能を兼
ねるようにすれば、これを省略することも可能である。
Conversely, when no transmission pulse is applied, the set diodes 23 and 26 are non-conductive. Therefore, the circuit on the transmitting side includes a variable capacitor 24 and a coil 25.
forms a parallel resonant circuit and the impedance becomes high, resulting in the same state as if the switch were open. On the other hand, in the receiving side circuit, the variable capacitor 27 and coil 28 are disconnected.
Capacitor 29, variable capacitor 21 for resonant frequency adjustment
, the variable impedance adjustment capacitor 22, and the receiving coil 10 form a resonant circuit, and the same effect as a closed switch can be obtained. Note that the variable capacitor 21 for adjusting the resonance frequency can be omitted if the capacitor 29 is made into a variable capacitor so that it also functions as a variable capacitor for adjusting the resonance frequency.

【0029】以上のように、これらの回路は送信パルス
の印加、非印加に同期して事実上スイッチの開閉と同じ
動作をするため、前記第1の実施例と同様の効果が得ら
れる。また、本実施例ではコントローラを必要としない
ため、装置構成がより簡単で済むという効果もある。
As described above, these circuits effectively operate in the same way as opening and closing a switch in synchronization with the application and non-application of transmission pulses, so that the same effects as in the first embodiment can be obtained. Furthermore, since this embodiment does not require a controller, it has the advantage that the device configuration can be simpler.

【0030】さらに、本発明の第3の実施例を図3を用
いて説明する。
Further, a third embodiment of the present invention will be explained using FIG. 3.

【0031】本実施例では、送信用コイルをN個のコイ
ル断片30に分割し、その間に(N−1)個の挿入コン
デンサ31を直列に接続した点が前記第1の実施例と異
なっている。(N−1)個の挿入コンデンサ31と周波
数調整用コンデンサ18の合成容量は、送信コイルを分
割しない場合の周波数調整用コンデンサの容量と等しく
し、同調周波数がずれないようにする。これにより、コ
イル片およびコンデンサの両端に加わる高電圧を1/N
に減らせるため、放電を起こすことなく送信コイルへ投
入できる電力を大きくできる。なお、分割は必ずしも等
分割である必要はないが、インダクタンスの大きいコイ
ル片と静電容量の小さいコンデンサに一番高い電圧が加
わるので、これらの部分で放電が起きないように留意す
る必要がある。また、本実施例では、同調回路にスイッ
チを付加した例を示したが、スイッチの代わりに第2の
実施例で用いた回路を用いてもよい。
This embodiment differs from the first embodiment in that the transmitting coil is divided into N coil segments 30, and (N-1) inserted capacitors 31 are connected in series between them. There is. The combined capacitance of the (N-1) insertion capacitors 31 and the frequency adjustment capacitor 18 is made equal to the capacitance of the frequency adjustment capacitor when the transmitting coil is not divided, so that the tuning frequency does not deviate. This reduces the high voltage applied across the coil piece and capacitor to 1/N.
The power that can be input to the transmitter coil can be increased without causing discharge. Note that the division does not necessarily have to be equal, but since the highest voltage is applied to the coil piece with large inductance and the capacitor with small capacitance, care must be taken to prevent discharge from occurring in these parts. . Furthermore, although this embodiment shows an example in which a switch is added to the tuning circuit, the circuit used in the second embodiment may be used instead of the switch.

【0032】本実施例によれば、前記第1、第2の実施
例と同様の効果に加えて、放電を起こすことなく送信コ
イルへ投入できる電力を大きくできるという効果がある
According to this embodiment, in addition to the same effects as those of the first and second embodiments, there is an effect that the power that can be input to the transmitting coil can be increased without causing discharge.

【0033】最後に、本発明の第4の実施例を図4によ
り説明する。
Finally, a fourth embodiment of the present invention will be explained with reference to FIG.

【0034】本実施例では、受信コイル10より小さく
、直列または並列に接続された2つの送信コイル7を検
査対象物9の両側に配置し、これらを図4の矢印方向に
移動することにより受信コイルの受信可能領域をカバー
するようにした。他の点は前記第1から第3の実施例と
同様である。なお、送信コイルは必ずしも2ついっしょ
に動かす必要はないし、動かし方も受信コイルの受信可
能領域をカバーするものであればこれ以外の方法でも良
い。また、例えば対象物質量が少なくてNQR信号が小
さい場合には、送信コイルの方を固定し、小さい受信コ
イルを移動させるようにしてもよい。
In this embodiment, two transmitting coils 7, which are smaller than the receiving coil 10 and connected in series or in parallel, are arranged on both sides of the object to be inspected 9, and by moving them in the direction of the arrow in FIG. Covers the coil's receivable area. Other points are similar to the first to third embodiments. Note that it is not necessary to move the two transmitting coils together, and other methods may be used as long as the method covers the receivable area of the receiving coil. Furthermore, for example, when the amount of target substance is small and the NQR signal is small, the transmitter coil may be fixed and the smaller receiver coil may be moved.

【0035】本実施例によれば、前記第1から第3の実
施例と同様の効果に加えて、安価で製造、入手が容易な
小電力の高周波アンプで大きな検査対象物を検査できた
り、対象物質が少量の場合でも大きな検査対象物を検査
できたりし、NQR遠隔検知装置をより高感度、高効率
にできるという効果がある。
According to this embodiment, in addition to the same effects as those of the first to third embodiments, a large object to be inspected can be inspected with a low-power high-frequency amplifier that is inexpensive, easy to manufacture, and easy to obtain. This has the effect of making it possible to inspect a large object even if the amount of the target substance is small, and making the NQR remote detection device more sensitive and efficient.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
パルス核四極子共鳴装置において、それぞれのコイル軸
を平行に保ったまま送信コイルと受信コイルを分離でき
、送信パルスの切れを良くできる上、送信コイルと受信
コイルの大きさ、形状、配置を個別に最適化できるので
、高感度、高効率のパルスNQR遠隔検知装置の実現に
顕著な効果がある。
[Effects of the Invention] As explained above, according to the present invention,
In a pulsed nuclear quadrupole resonator, the transmitting coil and receiving coil can be separated while keeping their respective coil axes parallel, allowing for better cutting of the transmitting pulse, and allowing the size, shape, and arrangement of the transmitting coil and receiving coil to be separated. This has a remarkable effect on realizing a highly sensitive and highly efficient pulsed NQR remote sensing device.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例の(a)装置構成図、(
b)送信コイル用同調回路と受信コイル用同調回路の等
価回路図である。
FIG. 1: (a) Device configuration diagram of a first embodiment of the present invention;
b) It is an equivalent circuit diagram of the tuning circuit for transmitting coils and the tuning circuit for receiving coils.

【図2】本発明の第2の実施例の(a)装置構成図、(
b)送信コイル用同調回路と受信コイル用同調回路の等
価回路図である。
FIG. 2: (a) Device configuration diagram of a second embodiment of the present invention;
b) It is an equivalent circuit diagram of the tuning circuit for transmitting coils and the tuning circuit for receiving coils.

【図3】本発明の第3の実施例の送信コイルと送信コイ
ル用同調回路の等価回路図である。
FIG. 3 is an equivalent circuit diagram of a transmitting coil and a tuning circuit for the transmitting coil according to a third embodiment of the present invention.

【図4】本発明の第4の実施例の送信コイルと受信コイ
ルの配置およびその動きを示す説明図である。
FIG. 4 is an explanatory diagram showing the arrangement and movement of a transmitter coil and a receiver coil in a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…対象物質                  2
…高周波発生器3…DCパルス発生器        
  4…コントローラ5…高周波電力増幅器     
     6…送信コイル用同調回路 7…送信コイル                8…
シールドボックス9…検査対象物          
    10…受信コイル11…受信コイル用同調回路
    12…低雑音増幅器13…位相検波器    
          14…周波数フィルタ15…ディ
ジタル加算器        16…データ処理装置1
7、22…インピーダンス調整用可変コンデンサ18、
21…共振周波数調整用可変コンデンサ19、20…ス
イッチ          23、26…組ダイオード 24、27…可変コンデンサ    25、28…コイ
ル29…コンデンサ              30
…コイル断片31…挿入コンデンサ
1...Target substance 2
...High frequency generator 3...DC pulse generator
4...Controller 5...High frequency power amplifier
6... Tuning circuit for transmitting coil 7... Transmitting coil 8...
Shield box 9...Object to be inspected
10... Receiving coil 11... Tuning circuit for receiving coil 12... Low noise amplifier 13... Phase detector
14...Frequency filter 15...Digital adder 16...Data processing device 1
7, 22... variable capacitor 18 for impedance adjustment,
21... Variable capacitor for resonant frequency adjustment 19, 20... Switch 23, 26... Group diode 24, 27... Variable capacitor 25, 28... Coil 29... Capacitor 30
…Coil fragment 31…Insert capacitor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】高周波パルスの発生手段と、送信コイル用
同調回路と、送信コイルと、受信コイルと、受信コイル
用同調回路と、高周波信号を増幅、処理する手段とから
なり、送信コイルの軸と受信コイルの軸とが互いに平行
であるパルス核四極子共鳴装置において、高周波パルス
が印加されているときに前記受信コイル用同調回路を切
断する機能と、高周波パルスが印加されていないときに
前記送信コイル用同調回路を切断する機能のうち少なく
とも一方の機能を有するスイッチまたは電気回路を付加
したことを特徴とするパルス核四極子共鳴装置。
Claim 1: Consisting of a high-frequency pulse generating means, a transmitting coil tuning circuit, a transmitting coil, a receiving coil, a receiving coil tuning circuit, and a means for amplifying and processing a high-frequency signal, the shaft of the transmitting coil In a pulsed nuclear quadrupole resonance device in which the axes of the receiving coil and the receiving coil are parallel to each other, the tuning circuit for the receiving coil is disconnected when a high-frequency pulse is applied, and the tuned circuit for the receiving coil is disconnected when the high-frequency pulse is not applied. 1. A pulsed nuclear quadrupole resonator comprising a switch or an electric circuit having at least one of the functions of disconnecting a transmission coil tuning circuit.
【請求項2】前記電気回路が、コンデンサ、コイルから
なる並列共振回路と、極性が互いに逆の組ダイオードと
で構成されていることを特徴とする請求項1に記載のパ
ルス核四極子共鳴装置。
2. The pulsed nuclear quadrupole resonator according to claim 1, wherein the electric circuit is composed of a parallel resonant circuit including a capacitor and a coil, and a set of diodes having opposite polarities. .
【請求項3】前記送信コイルが複数に分割され、その分
割箇所の間にコンデンサが直列に挿入されていることを
特徴とする請求項1または請求項2に記載のパルス核四
極子共鳴装置。
3. The pulsed nuclear quadrupole resonance device according to claim 1, wherein the transmitting coil is divided into a plurality of parts, and a capacitor is inserted in series between the divided parts.
【請求項4】前記送信コイルまたは前記受信コイルの移
動機構を備え、両者の相対位置を可変にしたことを特徴
とする請求項1から請求項3までのいずれか1項に記載
のパルス核四極子共鳴装置。
4. The pulse core according to claim 1, further comprising a mechanism for moving the transmitting coil or the receiving coil, so that the relative positions of the two can be varied. Polar resonator.
JP03097131A 1991-04-26 1991-04-26 Pulsed nuclear quadrupole resonator Expired - Fee Related JP3100658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03097131A JP3100658B2 (en) 1991-04-26 1991-04-26 Pulsed nuclear quadrupole resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03097131A JP3100658B2 (en) 1991-04-26 1991-04-26 Pulsed nuclear quadrupole resonator

Publications (2)

Publication Number Publication Date
JPH04326051A true JPH04326051A (en) 1992-11-16
JP3100658B2 JP3100658B2 (en) 2000-10-16

Family

ID=14184016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03097131A Expired - Fee Related JP3100658B2 (en) 1991-04-26 1991-04-26 Pulsed nuclear quadrupole resonator

Country Status (1)

Country Link
JP (1) JP3100658B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048951A1 (en) * 2002-11-22 2004-06-10 National Institute For Materials Science Noncontact cargo detector
WO2004049009A1 (en) * 2002-11-22 2004-06-10 National Institute For Materials Science Mine detector with nqr-squid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048951A1 (en) * 2002-11-22 2004-06-10 National Institute For Materials Science Noncontact cargo detector
WO2004049009A1 (en) * 2002-11-22 2004-06-10 National Institute For Materials Science Mine detector with nqr-squid
JP2004177130A (en) * 2002-11-22 2004-06-24 National Institute For Materials Science Land mine detector by nqr-squid
US7394250B2 (en) 2002-11-22 2008-07-01 National Institute Of Materials Science Mine detector with NQR-SQUID

Also Published As

Publication number Publication date
JP3100658B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
US6291994B1 (en) Active Q-damping sub-system using nuclear quadrupole resonance and nuclear magnetic resonance for improved contraband detection
EP1060403B1 (en) Apparatus for and method of nuclear quadrupole resonance testing a sample in the presence of interference
US6054856A (en) Magnetic resonance detection coil that is immune to environmental noise
US5903150A (en) Antenna system for NMR and MRI apparatus
US7511500B2 (en) Detecting quadrupole resonance signals using high temperature superconducting resonators
EP1801607A2 (en) NQR testing method and apparatus
JP2001346777A (en) Decoupling magnetic resonance rf receiving coil
US4801885A (en) Nuclear magnetic resonance apparatus for the identification of spectra or images of an examination subject
US4736161A (en) High frequency antenna for a nuclear magnetic resonance measuring apparatus
US6577128B1 (en) NQR method and apparatus for testing a sample by applying multiple excitation blocks with different delay times
JPH07265278A (en) Rf probe
US4890063A (en) Probe coil system for magnetic resonance apparatus
US6150817A (en) Magnetic resonance apparatus having reduced "dead time"
US6573720B1 (en) Resonant structure for spatial and spectral-spatial imaging of free radical spin probes using radiofrequency time domain electron paramagnetic resonance spectroscopy
US5162739A (en) Balanced multi-tuned high-power broadband coil for nmr
US3434043A (en) Nuclear magnetic resonance probe apparatus having double tuned coil systems for spectrometers employing an internal reference
US4093910A (en) Nuclear magnetic resonance pick-up circuit for control of resonance conditions
JPH04326051A (en) Pulse nucleus four-pole resonance device
GB1588832A (en) Nuclear magnetic resonance spectrometer employing a resonance signal gating circuit
EP0937262B1 (en) Method for reducing "dead time" in a magnetic resonance apparatus
WO1999019740A1 (en) Methods of and apparatus for nqr testing a sample
US11269031B2 (en) Magnetic resonance imaging (MRI) radio frequency (RF) coil tuning, matching, decoupling, and balun circuit
US20060232274A1 (en) Nuclear quadrupole resonance inspection system
EP0579473B1 (en) Tunable RF probe for use in NMR spectroscopy experiments and method of tuning
US20060226838A1 (en) NQR method and apparatus for testing a sample by applying multiple excitation blocks with different delay times

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees