JPH04325946A - Magneto-optical recording system - Google Patents

Magneto-optical recording system

Info

Publication number
JPH04325946A
JPH04325946A JP9569191A JP9569191A JPH04325946A JP H04325946 A JPH04325946 A JP H04325946A JP 9569191 A JP9569191 A JP 9569191A JP 9569191 A JP9569191 A JP 9569191A JP H04325946 A JPH04325946 A JP H04325946A
Authority
JP
Japan
Prior art keywords
magnetic domain
inverted magnetic
length
magneto
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9569191A
Other languages
Japanese (ja)
Inventor
Shoji Hoshina
彰治 保科
Satoshi Shimokawato
下川渡 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9569191A priority Critical patent/JPH04325946A/en
Publication of JPH04325946A publication Critical patent/JPH04325946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the increase of inverted magnetic domain width which follows the increase of an inverted magnetic domain length and to suppress crosstalk by changing laser radiating pulse width corresponding to the length of the inverted magnetic domain recorded by a magneto-optical disk having no guide groove. CONSTITUTION:In this magneto-optical recording system, laser radiating pulse power is changed corresponding to the length of the inverted magnetic domain to be recorded. When the inverted magnetic domain length is short, the effect of stored heat hardly appears and when the inverted magnetic domain length is long, reversely, the effect easily appears. Since this effect considerably appears at the magneto-optical disk having no guide groove, when the inverted magnetic domain length is long, the effect is canceled and the laser power to be put into the magneto-optical disk is increased so as to decrease a heating amount per unit length of the inverted magnetic domain length and to decrease the inverted magnetic domain width. Since the laser power of the shortest inverted magnetic domain by utilizing this fact and the laser power is decreased with the increase of the inverted magnetic domain length, the inverted magnetic domain width is controlled, and the inverted magnetic domain width can be prevented from being increased with the increase of the inverted magnetic domain length.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光磁気記録方式に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording system.

【0002】0002

【従来の技術】熱磁気記録を行なう光磁気ディスク及び
そのドライブは既に実用化に至っている。その記録時の
反転磁区形成は一定な外部磁界中で行なうものにおいて
は、レーザー照射による磁性膜の温度上昇にともなう磁
性特性の局所的変化を利用するのが一般的であり、例え
ばキュリー温度付近での保磁力の減少を利用したキュリ
ー点記録がある。
2. Description of the Related Art Magneto-optical disks and drives thereof that perform thermomagnetic recording have already been put into practical use. When forming reversed magnetic domains during recording in a constant external magnetic field, it is common to utilize local changes in magnetic properties that occur as the temperature of the magnetic film increases due to laser irradiation. There is a Curie point record that utilizes the decrease in coercive force.

【0003】よってこの方式では反転磁区の形状は磁性
膜の温度分布及び保磁力分布により決定され、よって反
転磁区形状はレーザーパルス形状に大きく依存する。一
般に記録時のレーザーパルスはレーザー及びその駆動回
路の許す十分に速い応答速度で変調されている矩形状の
パルスであり、反転磁区長を変えるにはパルス幅を変化
させ、パルス全体の振幅を変えることなく行っている。
Therefore, in this method, the shape of the reversed magnetic domain is determined by the temperature distribution and coercive force distribution of the magnetic film, and therefore the shape of the reversed magnetic domain largely depends on the laser pulse shape. Generally, the laser pulse during recording is a rectangular pulse that is modulated at a sufficiently fast response speed allowed by the laser and its drive circuit, and to change the length of the reversed magnetic domain, the pulse width is changed and the amplitude of the entire pulse is changed. I'm doing it without any trouble.

【0004】0004

【発明が解決しようとする課題】しかし、前述の従来技
術では反転磁区幅が増大し易いトラックに案内溝のない
光磁気ディスクでは反転磁区幅の変動に伴う再生信号品
質の劣化という問題点を有する。
[Problems to be Solved by the Invention] However, with the above-mentioned prior art, a magneto-optical disk without a guide groove in a track where the reversed magnetic domain width tends to increase has the problem of deterioration of reproduced signal quality due to fluctuations in the reversed magnetic domain width. .

【0005】回転している光磁気ディスク基板に熱磁気
記録する時、光磁気ディスクは磁区反転が起こるまでに
十分な温度上昇をさせるために、適度に熱拡散を抑えた
膜構造で成膜されている。そのためレーザー照射により
熱蓄積が起こる。具体的には反転磁区がレーザー照射位
置より照射終了位置側にシフトしたり、反転磁区形状が
照射開始位置から終了位置に向い幅広になっている流滴
形の反転磁区が形成される。このことから、反転磁区長
を増大させるためにパルス全体の振幅を変えることなく
パルス幅を長くすると、反転磁区長の増大に伴う反転磁
区幅の増大が起こる。
[0005] When performing thermomagnetic recording on a rotating magneto-optical disk substrate, the magneto-optical disk is formed with a film structure that appropriately suppresses thermal diffusion in order to raise the temperature sufficiently until magnetic domain reversal occurs. ing. Therefore, laser irradiation causes heat accumulation. Specifically, the reversed magnetic domain is shifted from the laser irradiation position to the irradiation end position, or a droplet-shaped reversed magnetic domain is formed in which the reversed magnetic domain shape becomes wider from the irradiation start position to the end position. From this, when the pulse width is lengthened without changing the amplitude of the entire pulse in order to increase the length of the reversed magnetic domain, the width of the reversed magnetic domain increases as the length of the reversed magnetic domain increases.

【0006】トラッキングのための案内溝があり反転磁
区を平坦部に形成させる光磁気ディスクの溝の部分では
、入射角が小さくなるため反射光量が大きくなること、
溝の部分は平坦な部分に比べ表面が粗くなっているため
乱反射が起こり易いことなどから光磁気ディスクのレー
ザーパワーの吸収効率が落ち温度上昇が妨げられること
があり、よって反転磁区幅案内溝のないものと比べ広が
りにくい。また再生時には、レーザースポット径はトラ
ック幅よりも大きいことから溝の部分の反転磁区のカー
回転角の変化も観測するが、案内溝の部分は上記の反射
光量が平坦な部分に比較し小さいことから、溝部分の反
転磁区カー回転角は平坦な部分に比べ小さく観測される
[0006] In the groove portion of a magneto-optical disk that has a guide groove for tracking and forms an inverted magnetic domain in a flat portion, the incident angle is small, so the amount of reflected light is large.
Since the surface of the groove part is rougher than that of the flat part, diffused reflection is more likely to occur, which may reduce the absorption efficiency of the laser power of the magneto-optical disk and prevent temperature rise. It is difficult to spread compared to those without it. Also, during playback, since the laser spot diameter is larger than the track width, changes in the Kerr rotation angle of the reversed magnetic domain in the groove part are also observed, but the amount of reflected light in the guide groove part is smaller than that in the flat part. Therefore, the Kerr rotation angle of the reversed magnetic domain in the groove part is observed to be smaller than that in the flat part.

【0007】一方、トラッキングを案内溝以外の方法に
よりデータ記録部に案内溝が無い光磁気ディスクは、上
記の要因により反転磁区幅は大きくなりやすく、また再
生時にトラック境界の反転磁区のカー回転角による情報
を取り出し易い。さらに反転磁区幅がトラック幅にほぼ
等しくなるほどに増大したとき、隣接トラックの反転磁
区と相互に干渉し合い反転磁区形状が乱れる。
On the other hand, in a magneto-optical disk in which tracking is performed by a method other than a guide groove and the data recording area does not have a guide groove, the width of the reversed magnetic domain tends to increase due to the above factors, and the Kerr rotation angle of the reversed magnetic domain at the track boundary during reproduction tends to increase. Easy to retrieve information. Further, when the width of the reversed magnetic domain increases to be almost equal to the track width, the reversed magnetic domain interferes with the reversed magnetic domain of the adjacent track, and the shape of the reversed magnetic domain is disturbed.

【0008】この結果、再生時に隣接トラックの記録情
報と相互に干渉しあうクロストークが起こり易くなり再
生信号品質の劣化を生じる。
[0008] As a result, during reproduction, crosstalk that interferes with information recorded on adjacent tracks is likely to occur, resulting in deterioration of reproduced signal quality.

【0009】そこで本発明はこのような問題点を解決す
るもので、その目的とするところは案内溝のない光磁気
ディスクで反転磁区幅を反転磁区長と独立に制御できる
光磁気記録方式を提供することにある。
The present invention is intended to solve these problems, and its purpose is to provide a magneto-optical recording system in which the reversal domain width can be controlled independently of the reversal domain length in a magneto-optical disk without a guide groove. It's about doing.

【0010】0010

【課題を解決するための手段】上記の光磁気記録方式は
記録する反転磁区の長さに応じ照射パルスパワーを変え
る光磁気記録方式により実現される。
[Means for Solving the Problems] The above-mentioned magneto-optical recording method is realized by a magneto-optical recording method in which the irradiation pulse power is changed depending on the length of the reversed magnetic domain to be recorded.

【0011】反転磁区長の短いものは上記課題で前述し
た熱の蓄積の効果が現れにくく、反転磁気の長いものは
逆に現れ易く、これは案内溝のない光磁気ディスクで大
きく現われることから、反転磁区長の長いものはその効
果を相殺させ、光磁気ディスクに投入するレーザーパワ
ーを減少させることにより、反転磁区長の単位長さあた
りの加熱量を減少させ、よっては反転磁区幅を減少させ
ることができる。
[0011] The effect of heat accumulation mentioned above in the above problem is difficult to appear when the reversal magnetic domain length is short, and the effect of heat accumulation is more likely to occur when the reversal magnetic domain is long. If the length of the reversed magnetic domain is long, this effect is canceled out, and by reducing the laser power input to the magneto-optical disk, the amount of heating per unit length of the reversed magnetic domain length is reduced, thereby reducing the width of the reversed magnetic domain. be able to.

【0012】これを利用し、最短反転磁区のレーザーパ
ワーを最大にし、そして反転磁区長の増大にともないレ
ーザーパワーを減少させることにより、反転磁区幅を制
御し、反転磁区長の増大にともなう反転磁区幅の増大を
防ぐことができる。
By utilizing this, the laser power of the shortest reversed magnetic domain is maximized, and the laser power is decreased as the length of the reversed magnetic domain increases, thereby controlling the width of the reversed magnetic domain. This can prevent the width from increasing.

【0013】図1に本発明の光磁気記録方式におけるレ
ーザー光の時間に対するレーザーパワーとそれに応じて
形成される反転磁区形状の模式図を示した。図2には本
発明の記録光の時間に対するレーザーパワーとそれに応
じて形成される反転磁区形状の模式図を実線で、従来の
記録光例の時間に対する記録パワーとそれに応じて形成
される反転磁区形状の模式図を点線で示した。
FIG. 1 shows a schematic diagram of the laser power versus time of the laser beam and the shape of the inverted magnetic domains formed accordingly in the magneto-optical recording system of the present invention. FIG. 2 shows a schematic diagram of the laser power with respect to time of the recording light of the present invention and the shape of the reversed magnetic domain formed accordingly, as a solid line, and the recording power with respect to time of the conventional recording light example and the reversed magnetic domain formed accordingly. A schematic diagram of the shape is shown with a dotted line.

【0014】[0014]

【実施例】【Example】

(実施例1)反転磁区形状を偏光顕微鏡を用いて観察し
た。基板はガラス平板ディスクを用いた。その外径は直
径86mm、厚さ1.2mmである。成膜はスパッタ法
により、誘電体のSiNを厚さ60mm、反射膜のAl
を厚さ60nm、SiNを75nm積層した。成膜終了
後に消去方向に磁場を加え磁区方向を揃えた。反転磁区
形成時の諸条件は、回転速度2400r.p.m.、レ
ーザー波長830nm、記録した位置は半径30mmで
その線速は7.54m/s、外部磁場は消去方向に30
0Oeである。
(Example 1) The shape of reversed magnetic domains was observed using a polarizing microscope. A glass flat disk was used as the substrate. Its outer diameter is 86 mm in diameter and 1.2 mm in thickness. Films were formed by sputtering, with a dielectric layer of SiN and a reflective layer of Al.
was laminated to a thickness of 60 nm and SiN was laminated to a thickness of 75 nm. After film formation was completed, a magnetic field was applied in the erase direction to align the magnetic domain directions. The conditions for forming reversed magnetic domains are a rotational speed of 2400 r. p. m. , the laser wavelength is 830 nm, the recorded position has a radius of 30 mm, the linear velocity is 7.54 m/s, and the external magnetic field is 30 m/s in the erasing direction.
It is 0Oe.

【0015】まず比較のために、従来の方法による一定
記録パワーによる記録を行なった。記録パルスのパワー
及び周波数はそれぞれ9mWと2MHzで反転磁区長の
制御はパルス幅を変化させることにより行い、この時の
反転磁区長に対する反転磁区幅の関係を3図の線1に示
した。 次に本発明による記録パルスにより記録パルスは、パワ
ーを除き上の従来例と同じである。記録パワーは反転磁
区長に伴い次式に従う変化をさせた。
First, for comparison, recording was performed using a conventional method with constant recording power. The power and frequency of the recording pulse were 9 mW and 2 MHz, respectively, and the length of the reversed magnetic domain was controlled by changing the pulse width, and the relationship between the length of the reversed magnetic domain and the width of the reversed magnetic domain at this time is shown by line 1 in Figure 3. Next, the recording pulse according to the present invention is the same as the above conventional example except for the power. The recording power was changed according to the following equation according to the length of the reversed magnetic domain.

【0016】[0016]

【数1】Pw=a×パルス幅(μs)+bPw:記録パ
ワー(mW)      a,b:定数a<0,b>0
表1の定数で記録を行い、その結果を従来の方法のもの
と併せて3図に示した。
[Equation 1] Pw=a×pulse width (μs)+bPw: Recording power (mW) a, b: Constant a<0, b>0
Recording was performed using the constants shown in Table 1, and the results are shown in Figure 3 together with those of the conventional method.

【0017】[0017]

【表1】[Table 1]

【0018】従来の方法では、反転磁区幅は反転磁区長
が大きくなるに従い、一旦急激に増大した後も緩やかに
増大し続けている。線2で示された結果もその程度は小
さくなっているが同じく増大している。線3で示した結
果は本発明の効果が良好に現れ反転磁区幅の増大は飽和
し一定に保たれる。一方線4では、反転磁区幅は一旦増
大した後、減少する。このことからこの例では−16<
a<−2が適している。
[0018] In the conventional method, as the length of the reversed magnetic domain increases, the width of the reversed magnetic domain continues to increase gradually even after once increasing rapidly. The result shown by line 2 also increases, although to a lesser extent. The result shown by line 3 shows that the effect of the present invention is well exhibited, and the increase in the reversed magnetic domain width is saturated and kept constant. On the other hand, in line 4, the reversal domain width increases once and then decreases. Therefore, in this example -16<
a<-2 is suitable.

【0019】(実施例2)次にDBF基板を用いてクロ
ストークの評価を行なった。DBF基板は前述のトラッ
クウォブリング方式のディスクであり、サーボ領域でデ
ータ領域は分離されている。その直径は90mm厚さ1
.2mmトラック幅1.5μmである。成膜及び記録の
条件は記録を全トラックに行なうこと以外は実施例1に
同じである。
(Example 2) Next, crosstalk was evaluated using a DBF substrate. The DBF board is the aforementioned track wobbling type disk, and the data area is separated by the servo area. Its diameter is 90mm and thickness 1
.. The track width is 2 mm and the track width is 1.5 μm. The conditions for film formation and recording are the same as in Example 1 except that recording is performed on all tracks.

【0020】測定は消去、記録、再生を繰り返して同一
ディスクで行い、4/11変調コードの”0”または”
5”を1トラックずつ交互に記録した後、”0”を書き
込んだトラックを再生パワー1mWで読み出し、バイト
エラーレイト(B.E.R)を調べた。従来技術の記録
パルスは図3に示したものを用い、本発明の記録パルス
は実施例1で良好結果を示した数2
[0020] Measurements were made on the same disk by repeating erasing, recording, and reproducing, and the 4/11 modulation code was ``0'' or ``.
5" were alternately recorded one track at a time, and then the tracks in which "0" had been written were read out with a playback power of 1 mW, and the byte error rate (B.E.R.) was examined. The recording pulse of the conventional technology is shown in Figure 3. The recording pulse of the present invention is the number 2 which showed good results in Example 1.

【0021】[0021]

【数2】Pw=−10×パルス幅(μs)+9.5に従
わせ、それを図4に示した。
[Equation 2] Pw=-10×pulse width (μs)+9.5, which is shown in FIG.

【0022】その結果、従来のものはB.E.R=2.
3×10−4であり、本発明のものはB.E.R=6.
7×10−5(いずれも5回の平均)とクロストークの
減少にともなう信号特性の向上が見られた。
As a result, the conventional one is B. E. R=2.
3 x 10-4, and the one of the present invention is B. E. R=6.
7×10 −5 (all averages of 5 times), and an improvement in signal characteristics was observed due to a reduction in crosstalk.

【0023】[0023]

【発明の効果】以上に述べたように本発明の光磁気記録
方式によれば案内溝のない光磁気ディスクで一定磁界中
で記録を行なうものにおいて、反転磁区長の増大に伴う
反転磁区幅の増大の抑制を行い、クロストークを抑える
ことが達成された。
As described above, according to the magneto-optical recording method of the present invention, in a magneto-optical disk without a guide groove in which recording is performed in a constant magnetic field, the width of the reversible domain increases as the length of the reversible domain increases. It was achieved to suppress the increase and suppress the crosstalk.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の記録パワーの時間変化と、それに応じ
た反転磁区形状の模式図。
FIG. 1 is a schematic diagram of temporal changes in recording power according to the present invention and the shape of inverted magnetic domains corresponding thereto.

【図2】実施例1における本発明の実施例(線2)と従
来例(線1)の反転磁区長にたいする反転磁区幅の変化
を示す図。
FIG. 2 is a diagram showing changes in the reversal domain width with respect to the reversal domain length in the embodiment of the present invention (line 2) and the conventional example (line 1) in Example 1;

【図3】実施例2の従来の方法による記録パワーの時間
変化を示す図。
FIG. 3 is a diagram showing changes in recording power over time according to the conventional method of Example 2;

【図4】実施例2の本発明による記録パワーの時間変化
を示す図。
FIG. 4 is a diagram showing a temporal change in recording power according to the present invention in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  案内溝のない光磁気ディスクで一定磁
界中で記録を行なうものにおいて記録する反転磁区の長
さに応じレーザー照射パルスパワーを変えることを特徴
とする光磁気記録方式。
1. A magneto-optical recording method in which recording is performed in a constant magnetic field on a magneto-optical disk without a guide groove, and the laser irradiation pulse power is changed according to the length of the reversed magnetic domain to be recorded.
JP9569191A 1991-04-25 1991-04-25 Magneto-optical recording system Pending JPH04325946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9569191A JPH04325946A (en) 1991-04-25 1991-04-25 Magneto-optical recording system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9569191A JPH04325946A (en) 1991-04-25 1991-04-25 Magneto-optical recording system

Publications (1)

Publication Number Publication Date
JPH04325946A true JPH04325946A (en) 1992-11-16

Family

ID=14144522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9569191A Pending JPH04325946A (en) 1991-04-25 1991-04-25 Magneto-optical recording system

Country Status (1)

Country Link
JP (1) JPH04325946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422865A (en) * 1992-12-10 1995-06-06 Sharp Kabushiki Kaisha Light modulation method for magneto-optical recording device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422865A (en) * 1992-12-10 1995-06-06 Sharp Kabushiki Kaisha Light modulation method for magneto-optical recording device

Similar Documents

Publication Publication Date Title
JPH11134732A (en) Information recording/reproducing method
JPS60155495A (en) Information-recording medium
JPH01199344A (en) Magneto-optical recording and reproducing system
JPH04325946A (en) Magneto-optical recording system
JPS5830656B2 (en) magneto-optical recording medium
US5625388A (en) Overwritable optical recording medium and recording method of the same
JP2844996B2 (en) Recording method on optical disc
JP2617010B2 (en) Magneto-optical recording medium and recording method thereof
JPH0263261B2 (en)
JP3398766B2 (en) Magneto-optical recording method
JP2733127B2 (en) Magneto-optical recording device
JPS6332753A (en) Information recording method
JPH04219642A (en) Magneto-optical recording medium and method thereof
JPH04146543A (en) Magneto-optical recording method
JP3458233B2 (en) Magneto-optical recording method
JP2809818B2 (en) recoding media
JPH09204700A (en) Magnetooptic recording medium
JP3071246B2 (en) Magneto-optical recording method
JP2869404B2 (en) Magneto-optical recording device
JP2636694B2 (en) Recording / reproducing method and recording / reproducing apparatus for magneto-optical recording medium
JPH0731835B2 (en) Information recording device by laser beam
JPH06111328A (en) High-density optical recording method and optical recording medium used for the same
JPH064925A (en) Method for erasing information in magneto-optical recording
JPH04307446A (en) Magneto-optical recording medium
Sukeda et al. High Speed Magnetic Field Modulation in Pit-Edge Magneto-Optic Recording II