JPH04325708A - Secondary air supplying device for engine - Google Patents

Secondary air supplying device for engine

Info

Publication number
JPH04325708A
JPH04325708A JP9463591A JP9463591A JPH04325708A JP H04325708 A JPH04325708 A JP H04325708A JP 9463591 A JP9463591 A JP 9463591A JP 9463591 A JP9463591 A JP 9463591A JP H04325708 A JPH04325708 A JP H04325708A
Authority
JP
Japan
Prior art keywords
secondary air
catalyst
temperature
air supply
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9463591A
Other languages
Japanese (ja)
Inventor
Takayuki Demura
隆行 出村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9463591A priority Critical patent/JPH04325708A/en
Publication of JPH04325708A publication Critical patent/JPH04325708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To prevent supercooling of catalyzer when engine speed is decreased after warming up, and prevent deterioration of emission. CONSTITUTION:First and second secondary air supplying passages M1a, M1b supply secondary air upstream of catalyzer of an exhaust gas system of an engine M2. The control valves M3a, M3b of the first and second secondary air supplying passages M1a, M1b are switched according to the operation state of the engine. A catalyzer temperature detecting means M4 detects temperature of the catalyzer. A switching control means M5 opens either of the control valves M3a, M3b of the first and second secondary air supplying passages M1a, M1b when the catalyzer temperature is not more than the predetermined value; and open both of the control valves M3a, Mob of the first and second secondary air supplying passages M1a, M1b when the catalyzer temperature is more than the predetermined value.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、触媒に2系統の2次空
気供給路で2次空気を供給する内燃機関の2次空気供給
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary air supply system for an internal combustion engine that supplies secondary air to a catalyst through two secondary air supply passages.

【0002】0002

【従来の技術】三元触媒により排気ガスの浄化を行なう
内燃機関では、暖機運転時等で触媒の浄化効率向上のた
めに、2次空気を排気系に供給するものがある。
2. Description of the Related Art Some internal combustion engines that purify exhaust gas using a three-way catalyst supply secondary air to the exhaust system during warm-up, etc., in order to improve the purification efficiency of the catalyst.

【0003】例えば実開昭61−116119号公報に
記載の2次空気供給装置は、2系統の2次空気供給通路
を有し、機関の暖機時は2系統の通路を用いて大量の2
次空気供給を行ない、暖機後のアイドル時は1系統の通
路で2次空気の供給を行なっている。
For example, the secondary air supply device described in Japanese Utility Model Application Publication No. 61-116119 has two systems of secondary air supply passages, and when warming up the engine, the two passages are used to supply a large amount of
Secondary air is supplied, and when the engine is idling after warming up, secondary air is supplied through one passage.

【0004】0004

【発明が解決しようとする課題】従来の2次空気供給装
置では、暖機後の減速によりアイドル状態となったとき
は触媒の温度とは無関係に一律に1系統の通路で2次空
気の供給を行なっている。このため、1系統の通路によ
る2次空気供給量を触媒の温度が高い状態の2次空気の
必要量に合わせていると、暖気後の減速によりアイドル
状態となったときの触媒温度が低い場合は過供給される
2次空気によって触媒が過冷却され、エミッションが悪
化するという問題があった。
[Problems to be Solved by the Invention] In the conventional secondary air supply device, when an idle state occurs due to deceleration after warming up, secondary air is uniformly supplied through one passage regardless of the catalyst temperature. is being carried out. For this reason, if the amount of secondary air supplied through one passage is adjusted to the amount of secondary air required when the catalyst temperature is high, if the catalyst temperature is low when the idle state is reached due to deceleration after warming up. However, there was a problem in that the over-supplied secondary air overcooled the catalyst, worsening emissions.

【0005】本発明は上記の点に鑑みなされたもので、
暖機後の減速時に触媒が低温であれば2系統の2次空気
供給路のうち1系統だけで2次空気を供給することによ
り、触媒の過冷却を防止し、エミッションの悪化を防止
する内燃機関の2次空気供給装置を提供することを目的
とする。
[0005] The present invention has been made in view of the above points.
If the catalyst is at a low temperature during deceleration after warming up, only one of the two secondary air supply channels will supply secondary air, thereby preventing overcooling of the catalyst and deterioration of emissions. The purpose is to provide a secondary air supply device for an engine.

【0006】[0006]

【課題を解決するための手段】図1は本発明の原理図を
示す。
Means for Solving the Problems FIG. 1 shows a diagram of the principle of the present invention.

【0007】第1及び第2の2次空気供給路M1a,M
1bは内燃機関M2の排気系の触媒より上流側に2次空
気を供給する。第1及び第2の2次空気供給路M1a,
M1b夫々の制御弁M3a,M3bは内燃機関の運転状
態に応じて開閉される。触媒温検出手段M4は、上記触
媒の温度を検出する。
[0007] First and second secondary air supply paths M1a, M
1b supplies secondary air to the upstream side of the catalyst in the exhaust system of the internal combustion engine M2. first and second secondary air supply paths M1a,
Control valves M3a and M3b of M1b are opened and closed depending on the operating state of the internal combustion engine. Catalyst temperature detection means M4 detects the temperature of the catalyst.

【0008】切換制御手段M5は、内燃機関の暖機後の
減速時に該触媒の温度を所定値と比較して、触媒の温度
が該所定値以下のとき上記第1及び第2の2次空気供給
路の制御弁のいずれか一方を開弁し、触媒の温度が所定
値を越えたとき上記第1及び第2の2次空気供給路の制
御弁の双方を開弁する。
The switching control means M5 compares the temperature of the catalyst with a predetermined value during deceleration after warming up the internal combustion engine, and when the temperature of the catalyst is equal to or lower than the predetermined value, the switching control means M5 switches the first and second secondary air. One of the control valves of the supply passage is opened, and when the temperature of the catalyst exceeds a predetermined value, both of the control valves of the first and second secondary air supply passages are opened.

【0009】[0009]

【作用】本発明においては、暖機後の減速時で触媒の温
度が所定値以下の低温時には切換制御手段M5によって
一方の2次空気供給路の制御弁が開弁され、少量の2次
空気供給が行なわれるため、触媒の過冷却が防止される
[Operation] In the present invention, when the temperature of the catalyst is lower than a predetermined value during deceleration after warming up, the control valve of one of the secondary air supply paths is opened by the switching control means M5, and a small amount of secondary air is Since the supply is carried out, overcooling of the catalyst is prevented.

【0010】0010

【実施例】図2は本発明装置の構成図を示す。本実施例
は4気筒の内燃機関を例にとって説明する。図2中、エ
アクリーナよりの2次空気が供給される空気導入管10
は2分岐され、一方はエアサクションバルブ11a、エ
アスイッチングバルブ(ASV)12a、空気供給管1
3aを介して機関本体15の第1,第4気筒の排気系に
接続され、他方はエアサクションバルブ11b、ASV
12b、空気供給管13bを介して機関本体15の第2
,第3気筒の排出系に接続されている。ASV12a,
12b夫々にはインテークマニホールドの負圧を供給さ
れている電気式負圧切換弁(VSV)16a,16bが
併設され、電子制御回路30よりの駆動信号によってV
SV16a,16bが開弁するとASV12a,12b
に負圧が供給されて開弁し、これによってエアサクショ
ンバルブ11a,11bが開弁して空気供給管10より
の2次空気が空気供給管13a,13bを通して機関本
体15の排気系に供給される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows a block diagram of the apparatus of the present invention. This embodiment will be explained using a four-cylinder internal combustion engine as an example. In FIG. 2, an air introduction pipe 10 is supplied with secondary air from an air cleaner.
is branched into two, one having an air suction valve 11a, an air switching valve (ASV) 12a, and an air supply pipe 1.
3a to the exhaust system of the first and fourth cylinders of the engine body 15, and the other is connected to the air suction valve 11b and the ASV
12b, the second air supply pipe of the engine body 15 via the air supply pipe 13b.
, connected to the exhaust system of the third cylinder. ASV12a,
12b are provided with electric negative pressure switching valves (VSV) 16a and 16b, which are supplied with the negative pressure of the intake manifold, and are controlled by a drive signal from the electronic control circuit 30.
When SV16a, 16b opens, ASV12a, 12b
The air suction valves 11a and 11b open and the secondary air from the air supply pipe 10 is supplied to the exhaust system of the engine body 15 through the air supply pipes 13a and 13b. Ru.

【0011】また機関本体15の冷却水温(THW)を
検出する水温サンセ、吸入空気量Qを検出するエアフロ
ーメータ、スロットル開度を検出するスロットルセンサ
、所定クランク回数角度位置を検出する回転角センサ及
び車速を検出する車速センサ夫々の検出信号がECU3
0に供給されている。
[0011] Also, a water temperature sensor detects the cooling water temperature (THW) of the engine body 15, an air flow meter detects the intake air amount Q, a throttle sensor detects the throttle opening, a rotation angle sensor detects the angular position of the predetermined number of cranks, and The detection signal of each vehicle speed sensor that detects the vehicle speed is sent to the ECU3.
0.

【0012】電子制御回路(ECU)30は図3に示す
構成で、中央処理装置(CPU)40と、処理プログラ
ムを格納したリードオンリメモリ(ROM)41と、作
業領域として使用されるランダムアクセスメモリ(RA
M)42と、通電停止後もデータを保持するバンクアッ
プRAM43と、マルチプレクサ機能を持つA/D変換
器44と、バッファ機能を持つI/Oインターフェース
45とよりなり、これらの間はバスライン47で相互に
接続されている。
The electronic control circuit (ECU) 30 has a configuration shown in FIG. 3, and includes a central processing unit (CPU) 40, a read-only memory (ROM) 41 that stores processing programs, and a random access memory used as a work area. (R.A.
M) 42, a bank-up RAM 43 that retains data even after power is stopped, an A/D converter 44 with a multiplexer function, and an I/O interface 45 with a buffer function, and a bus line 47 is connected between them. are interconnected.

【0013】A/D変換器44はエアフローメータ31
よりの空気流量信号と、水温センサ32よりの水温信号
と、車速センサ33よりの車速信号とを供給されて、デ
ィジタル化を行ない、これらのディジタル信号はCPU
40により読み取られる。またI/Oインターフェース
45にはスロットルセンサ35、回転角センサ36夫々
よりの信号が入来し、各信号はCPU40により読み取
られる。
The A/D converter 44 is an air flow meter 31
The air flow rate signal from the water temperature sensor 32, the water temperature signal from the water temperature sensor 32, and the vehicle speed signal from the vehicle speed sensor 33 are supplied and digitized, and these digital signals are sent to the CPU.
40. Further, signals from the throttle sensor 35 and rotation angle sensor 36 are input to the I/O interface 45, and each signal is read by the CPU 40.

【0014】CPU40は各センサ検出データに基づい
てVSV駆動信号を生成してI/Oインターフェース4
5を通してVSV16a,16b夫々に供給する。
[0014] The CPU 40 generates a VSV drive signal based on the detection data of each sensor and outputs the VSV drive signal to the I/O interface 4.
5 to each of the VSVs 16a and 16b.

【0015】次に本発明装置の一実施例の制御プログラ
ムについて説明する。
Next, a control program for an embodiment of the apparatus of the present invention will be explained.

【0016】図4は2次空気供給処理のフローチャート
を示す。この処理は例えば34msec毎に実行される
。図4中、ステップ50では冷却水温THWが極低温の
所定値A(Aは例えば−25℃)未満かどうかが判別さ
れ、水温THWが所定値A以上であれば、ステップ51
で水温THWが高温の所定値B(Bは例えば40℃)を
越えるかどうかが判別される。
FIG. 4 shows a flowchart of the secondary air supply process. This process is executed, for example, every 34 msec. In FIG. 4, in step 50, it is determined whether the cooling water temperature THW is less than a predetermined cryogenic value A (A is, for example, -25°C), and if the water temperature THW is equal to or higher than the predetermined value A, step 51
It is determined whether the water temperature THW exceeds a predetermined high temperature value B (B is, for example, 40° C.).

【0017】水温THWが所定値AからBまでの範囲に
ある内燃機関の暖機時には、ステップ50でOTP増量
値FOTPが0か否かを判別し、これが0でOTP増量
が行なわれていなければステップ53で機関回転数NE
が所定値C(Cは例えば5000rpm)未満かどうか
を判別する。回転数が所定値C未満で高回転時でなけれ
ばステップ54で吸入空気量Qが所定値D(Dは例えば
200m2 )未満かどうかを判別し、吸入空気量が所
定値D未満で多くなければ、暖機中で燃焼噴射量の増量
が行なわれていて大量の2次空気が必要とされるため、
ステップ55に進み触媒活性化のためにASV12a,
12bを開弁して2次空気を供給するようVSV16a
,16bを共に開弁するVSV駆動信号を出力する。
When the internal combustion engine is warmed up when the water temperature THW is in the range from predetermined value A to B, it is determined in step 50 whether or not the OTP increase value FOTP is 0, and if it is 0 and OTP increase has not been performed. In step 53, the engine speed NE
is less than a predetermined value C (C is, for example, 5000 rpm). If the rotational speed is less than a predetermined value C and the rotation is high, it is determined in step 54 whether the intake air amount Q is less than a predetermined value D (D is 200 m2, for example), and if the intake air amount is less than the predetermined value D and is large, then , the amount of combustion injection is being increased during warm-up, and a large amount of secondary air is required.
Proceed to step 55 to activate the ASV12a,
VSV16a to open valve 12b and supply secondary air.
, 16b are output.

【0018】ステップ50で水温THWが所定値A未満
の極低温時、又はステップ52でOTP増量時、又はス
テップ53で回転数NEが所定値C以上の高回転時、又
はステップ54で吸入空気量Qが所定値D以上の場合夫
々はステップ56に進み、ASV12a,12bを閉弁
して2次空気の供給を停止するようVSV16a,16
bを共に閉弁するVSV駆動信号を出力する。
When the water temperature THW is extremely low in step 50 and is less than the predetermined value A, or when the OTP is increased in step 52, or when the rotational speed NE is high than the predetermined value C in step 53, or when the intake air amount is increased in step 54. If Q is greater than or equal to the predetermined value D, the process proceeds to step 56, where the VSVs 16a and 16 close the ASVs 12a and 12b to stop the supply of secondary air.
Outputs a VSV drive signal that closes both valves b.

【0019】ステップ51で水温THWが所定値Bを越
えた暖気後ではステップ60に進み、ここでスロットル
センサ35出力のアイドルスイッチがオンか否かを判別
し、アイドル時にはステップ61で車速が0かどうかを
判別する。アイドルスイッチがオフで2次空気供給が不
要の場合、又は車速が0で空燃比フィードバック制御判
別の学習制御のために2次空気供給を停止する場合には
ステップ62に進み、ASV12a,12bを閉弁する
ようVSV16a,16bを共に閉弁する。この後、ス
テップ63でアイドルオン時のASONフラグを0にリ
セットする。
After warming up so that the water temperature THW exceeds a predetermined value B in step 51, the process proceeds to step 60, where it is determined whether or not the idle switch output from the throttle sensor 35 is on. determine whether If the idle switch is off and the secondary air supply is not required, or if the vehicle speed is 0 and the secondary air supply is to be stopped for learning control of air-fuel ratio feedback control discrimination, the process proceeds to step 62 and the ASVs 12a and 12b are closed. Both VSVs 16a and 16b are closed so that the valves are closed. Thereafter, in step 63, the ASON flag at idle-on is reset to 0.

【0020】ステップ61で車速が0でない場合つまり
暖機後の減速時にはステップ64で触媒温カウンタFが
所定値E(Eは例えば500℃)を越えるかどうかを判
別する。触媒温カウンタFが所定値Eを越え三元触媒の
温度が充分に高い場合には大量の2次空気を供給しても
触媒の温度低下が問題とならないためステップ55に進
み、ASV12a,12bを開弁するようVSV16a
,16bを開弁するVSV駆動信号を出力する。
When the vehicle speed is not 0 in step 61, that is, when the vehicle is decelerating after warming up, it is determined in step 64 whether the catalyst temperature counter F exceeds a predetermined value E (E is 500° C., for example). If the catalyst temperature counter F exceeds the predetermined value E and the temperature of the three-way catalyst is sufficiently high, a drop in catalyst temperature will not be a problem even if a large amount of secondary air is supplied. VSV16a to open the valve
, 16b is output.

【0021】触媒温カウンタFが所定値E以下で三元触
媒の温度が低い場合にはエミッション低減及び触媒排気
臭の低減のためにステップ65でASV切換制御ルーチ
ンを実行してASV12a,12bのいずれか一方を開
弁して少量の2次空気を供給した後、ステップ66でア
イドルオン時のASONフラグを1にセットする。
If the catalyst temperature counter F is less than the predetermined value E and the temperature of the three-way catalyst is low, an ASV switching control routine is executed in step 65 to reduce emissions and catalyst exhaust odor, and switch between ASVs 12a and 12b. After opening one of the valves to supply a small amount of secondary air, the ASON flag at idle-on is set to 1 in step 66.

【0022】図5はステップ65で実行するASU切換
制御ルーチンのフローチャートを示す。ステップ70で
はアイドルオン時のASONフラグが1かどうかを判別
し、このASONフラグが1であればそのまま処理を終
了する。ASONフラグが0の場合つまり暖機後減速時
の初回のASV切換制御ルーチン実行時はステップ71
でASV12aの使用フラグが1かどうかを判別する。 この使用フラグが1のときはステップ72でASV12
aを開弁するようVSV16aを開弁するVSV駆動信
号を出力し、ステップ73でASV12aの使用フラグ
を0にセットする。またASV12aの使用フラグが0
のときはステップ74でASV12bを開弁するようV
SV16bを開弁するVSV駆動信号を出力し、ステッ
プ75でASV12aの使用フラグを1にセットする。
FIG. 5 shows a flowchart of the ASU switching control routine executed in step 65. In step 70, it is determined whether the ASON flag at idle-on is 1, and if this ASON flag is 1, the process is immediately terminated. If the ASON flag is 0, that is, when executing the ASV switching control routine for the first time during deceleration after warming up, step 71 is executed.
It is determined whether the use flag of the ASV 12a is 1 or not. When this usage flag is 1, in step 72 the ASV12
A VSV drive signal is output to open the VSV 16a so as to open the valve a, and the use flag of the ASV 12a is set to 0 in step 73. Also, the use flag of ASV12a is 0.
In this case, in step 74, V is set to open the ASV 12b.
A VSV drive signal is output to open the SV 16b, and the use flag of the ASV 12a is set to 1 in step 75.

【0023】図6は触媒温度推定ルーチンのフローチャ
ートを示す。このルーチンは1〜2秒毎に実行される。 図6中、ステップ80ではイグニッションオンの始動中
かどうかを判別し、始動中であればステップ81で触媒
温カウンタFに予め決められた初期値をセットする。
FIG. 6 shows a flowchart of the catalyst temperature estimation routine. This routine is executed every 1-2 seconds. In FIG. 6, in step 80, it is determined whether or not the ignition is turned on and the engine is starting. If the engine is starting, the catalyst temperature counter F is set to a predetermined initial value in step 81.

【0024】始動後であればステップ82でエアフロー
メータ31の出力信号による吸入空気量Qを読込み、ス
テップ83で図7に示すマップから補正値を求めて取込
む。図7のマップでは吸入空気量Q0 〜Q6 夫々に
対応して補正値−2〜5が設定されている。この後、ス
テップ84で触媒温カウンタFに取り込んだ補正値を加
算して新たな触媒温カウンタFの値とする。
If the engine has been started, the intake air amount Q based on the output signal of the air flow meter 31 is read in step 82, and a correction value is obtained from the map shown in FIG. 7 in step 83. In the map of FIG. 7, correction values -2 to 5 are set corresponding to the intake air amounts Q0 to Q6, respectively. Thereafter, the correction value taken into the catalyst temperature counter F in step 84 is added to obtain a new value of the catalyst temperature counter F.

【0025】このように、暖機後の減速時に触媒の温度
が所定値E以下の低温時には一方の2次空気供給路のA
SV12a又は12bが開弁され、少量の2次空気供給
が行なわれるため、触媒の過冷却が防止され、この状態
におけるエミッションの悪化を防止することができる。
In this way, when the temperature of the catalyst is lower than the predetermined value E during deceleration after warming up, the A of one of the secondary air supply paths is
Since the SV 12a or 12b is opened and a small amount of secondary air is supplied, overcooling of the catalyst is prevented, and deterioration of emissions in this state can be prevented.

【0026】[0026]

【発明の効果】上述の如く、本発明の内燃機関の2次空
気供給装置によれば、触媒が低温のとき触媒の過冷却を
防止し、エミッションの悪化を防止することがてき、実
用上きわめて有用である。
As described above, according to the secondary air supply device for an internal combustion engine of the present invention, it is possible to prevent overcooling of the catalyst when the catalyst is at a low temperature, and to prevent deterioration of emissions, which is extremely useful in practice. Useful.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の原理図である。FIG. 1 is a diagram showing the principle of the present invention.

【図2】本発明装置の構成図である。FIG. 2 is a configuration diagram of the device of the present invention.

【図3】電子制御回路のブロック図である。FIG. 3 is a block diagram of an electronic control circuit.

【図4】2次空気供給処理のフローチャートである。FIG. 4 is a flowchart of secondary air supply processing.

【図5】ASV切換制御ルーチンのフローチャートであ
る。
FIG. 5 is a flowchart of an ASV switching control routine.

【図6】触媒温推定ルーチンのフローチャートである。FIG. 6 is a flowchart of a catalyst temperature estimation routine.

【図7】補正値マップを示す図である。FIG. 7 is a diagram showing a correction value map.

【符号の説明】[Explanation of symbols]

10  空気導入管 11a,11b  エアサクションバルブ12a,12
b  ASV 13a,13b  空気供給管 15  機関本体 30  ECU M1a,M1b  2次空気供給路 M2  内燃機関 M3a,M3b  制御弁 M4  触媒温検出手段 M5  切換制御手段
10 Air introduction pipes 11a, 11b Air suction valves 12a, 12
b ASV 13a, 13b Air supply pipe 15 Engine body 30 ECU M1a, M1b Secondary air supply path M2 Internal combustion engine M3a, M3b Control valve M4 Catalyst temperature detection means M5 Switching control means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  内燃機関の排気系の触媒より上流側に
2次空気を供給する第1及び第2の2次空気供給路を有
し、内燃機関の運転状態に応じて該第1及び第2の2次
空気供給路夫々の制御弁を開閉する内燃機関の2次空気
供給装置において、上記触媒の温度を検出する触媒温検
出手段と、内燃機関の暖機後の減速時に該触媒の温度を
所定値と比較して、触媒の温度が該所定値以下のとき上
記第1及び第2の2次空気供給路の制御弁のいずれか一
方を開弁し、触媒の温度が所定値を越えたとき上記第1
及び第2の2次空気供給路の制御弁の双方を開弁する切
換制御手段とを有することを特徴とする内燃機関の2次
空気供給装置。
Claim 1: The exhaust system of an internal combustion engine has first and second secondary air supply passages for supplying secondary air upstream from a catalyst, and the first and second secondary air supply passages are configured to supply secondary air to an upstream side of a catalyst in an exhaust system of an internal combustion engine. A secondary air supply device for an internal combustion engine that opens and closes a control valve for each of the second secondary air supply passages includes a catalyst temperature detection means for detecting the temperature of the catalyst, and a temperature detection means for detecting the temperature of the catalyst during deceleration after warming up the internal combustion engine. is compared with a predetermined value, and when the catalyst temperature is below the predetermined value, either one of the control valves of the first and second secondary air supply passages is opened, and the catalyst temperature exceeds the predetermined value. When the above 1st
and switching control means for opening both of the control valves of the second secondary air supply path.
JP9463591A 1991-04-25 1991-04-25 Secondary air supplying device for engine Pending JPH04325708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9463591A JPH04325708A (en) 1991-04-25 1991-04-25 Secondary air supplying device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9463591A JPH04325708A (en) 1991-04-25 1991-04-25 Secondary air supplying device for engine

Publications (1)

Publication Number Publication Date
JPH04325708A true JPH04325708A (en) 1992-11-16

Family

ID=14115731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9463591A Pending JPH04325708A (en) 1991-04-25 1991-04-25 Secondary air supplying device for engine

Country Status (1)

Country Link
JP (1) JPH04325708A (en)

Similar Documents

Publication Publication Date Title
US5365733A (en) Exhaust gas purification system for an internal combustion engine
US10337422B2 (en) Control apparatus for internal combustion engine, and abnormality diagnosis system for control apparatus for internal combustion engine
JPS58101234A (en) Fuel injection control device of multi-cylinder engine
JPH04325708A (en) Secondary air supplying device for engine
JPH0544454A (en) Exhaust of internal combustion engine
JPS63198715A (en) Cooling device for exhaust manifold
JP2010116895A (en) Control device of internal combustion engine
JPS62178740A (en) Exhaust gas purifying device for multicylinder engine
JP2504046B2 (en) Secondary air control device for internal combustion engine
JP2803084B2 (en) Idle speed control method
JPH0633749A (en) Secondary air control device for internal combustion engine
JPH0318011B2 (en)
JP2615561B2 (en) Fuel injection amount control device for internal combustion engine
JPH0460115A (en) Intercooler bypass valve control device of internal combustion engine provided with supercharger having intercooler
JPH06613Y2 (en) Internal combustion engine idle state determination device
JPH0636266Y2 (en) Exhaust gas purification device for internal combustion engine
JPS5996452A (en) Partial lean control method for air-fuel ratio of internal-combustion engine
JPH09228874A (en) Air-fuel ratio control device for multi-cylinder internal combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JP3096151B2 (en) Engine exhaust purification device
JPS593134A (en) Control of idle revolution number of internal- combustion engine
JPS61190146A (en) Fuel injection controller of internal-combustion engine
JPS6022043A (en) Fuel supply controlling method for engine
JPH0447129B2 (en)
JPH0364643A (en) Idle air-fuel ratio learning and reflecting method