JPH04325668A - Formation of self-fluxing alloy sprayed deposit - Google Patents

Formation of self-fluxing alloy sprayed deposit

Info

Publication number
JPH04325668A
JPH04325668A JP3121777A JP12177791A JPH04325668A JP H04325668 A JPH04325668 A JP H04325668A JP 3121777 A JP3121777 A JP 3121777A JP 12177791 A JP12177791 A JP 12177791A JP H04325668 A JPH04325668 A JP H04325668A
Authority
JP
Japan
Prior art keywords
self
fluxing alloy
thermal spray
thermal
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3121777A
Other languages
Japanese (ja)
Other versions
JPH07113144B2 (en
Inventor
Kazumi Tani
和美 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP3121777A priority Critical patent/JPH07113144B2/en
Publication of JPH04325668A publication Critical patent/JPH04325668A/en
Publication of JPH07113144B2 publication Critical patent/JPH07113144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To offer a method for forming a self-fluxing allay sprayed deposit in which its wear resistance and corrosion resistance lie in a high area for practical use without executing reheating treatment after thermal spraying which has been indispensable heretofore. CONSTITUTION:At the time of thermal-spraying self-fluxing alloy powder, the pressure of oxygen and fuel gas are produced each under 0.29 to 0.98MPa and the combustion flame of combustible gas is used as a heat source, by which the flow velocity of the flame is increased and high kinetic energy is given to flying particles, and the above particles are densely laminated to obtain a deposit having excellent film quality.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、主に産業用機器の耐摩
耗性や耐食性を向上させるために施す表面皮膜、中でも
自溶合金溶射皮膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a surface coating mainly for improving the wear resistance and corrosion resistance of industrial equipment, particularly a self-fluxing alloy thermal spray coating.

【0002】0002

【従来の技術】Ni基あるいはCo基合金は、耐食性や
耐摩耗性、耐熱性などに富むことから、これらの特性を
活かし、種々の工業分野で広く用いられている。例えば
、Ni基合金の場合、γプライム相を析出させた耐熱性
および耐高温酸化性合金として、タービンブレード材な
どに賞用されている。一方Co合金についても、例えば
、W,Crなどを含有するステライトは、耐摩耗性や高
温硬さに優れた合金としてよく知られているものである
。これらの合金は、鍛錬することが不可能で主として鋳
造加工法によって、バルク材として製造される。
BACKGROUND OF THE INVENTION Ni-based or Co-based alloys are rich in corrosion resistance, wear resistance, heat resistance, etc., and are widely used in various industrial fields by taking advantage of these properties. For example, in the case of Ni-based alloys, they are used for turbine blade materials and the like as heat-resistant and high-temperature oxidation-resistant alloys in which the γ prime phase is precipitated. On the other hand, regarding Co alloys, for example, stellite containing W, Cr, etc. is well known as an alloy having excellent wear resistance and high temperature hardness. These alloys cannot be wrought and are produced primarily as bulk materials by casting processes.

【0003】また、上記のバルク材とは別に、Ni基あ
るいはCo基合金の材料特性を溶射皮膜として応用する
技術も実用化されており、それらの技術のひとつに自溶
合金皮膜と呼ばれる溶射皮膜を被覆加工する方法がある
。この自溶合金皮膜は主として次の2工程で形成するの
が通例である。すなわち、 (1) はじめに、サーモスプレーガンと呼ばれる溶射
ガンを用いて、被覆目的基材に対し、粒度範囲 125
〜45μmの自溶合金粉末を1〜3mmの厚さに被覆形
成する。溶射熱源は酸素−アセチレン、または酸素−水
素燃焼炎であって、その動作ガス圧力は、酸素0.07
8 〜0.25MPa 、アセチレン0.058 〜0
.12MPa 、水素0.14〜0.25MPa であ
る。 (2) 次いで、ガスバーナによる酸素−アセチレンな
どの酸素−炭化水素燃焼炎熱エネルギー、高周波加熱炉
あるいは電気炉による電熱エネルギーを用いて、形成皮
膜を基材とともにその自溶合金組成の固相線温度を超え
る温度(普通1010〜1080℃で、フュージング温
度とよばれる)近傍まで加熱する、いわゆる再溶融処理
(フュージング処理)を施す。この再溶融処理によって
、皮膜は半溶融状態となり、皮膜の緻密化および硬化、
そして基材に対する溶着を図っている。通常はガスバー
ナーによる加熱手段がよく用いられる。
[0003] In addition to the above-mentioned bulk materials, technologies that apply the material properties of Ni-based or Co-based alloys to thermal spray coatings have also been put into practical use, and one of these technologies is a thermal spray coating called a self-fluxing alloy coating. There is a method of coating. This self-fluxing alloy film is usually formed mainly through the following two steps. That is, (1) First, using a thermal spray gun called a thermospray gun, a particle size range of 125 is applied to the substrate to be coated.
A self-fluxing alloy powder of ~45 μm is coated to a thickness of 1 to 3 mm. The thermal spraying heat source is an oxygen-acetylene or oxygen-hydrogen combustion flame, and the operating gas pressure is 0.07
8 ~ 0.25 MPa, acetylene 0.058 ~ 0
.. 12 MPa, hydrogen 0.14-0.25 MPa. (2) Next, using oxygen-hydrocarbon combustion flame energy such as oxygen-acetylene using a gas burner or electric heating energy from a high-frequency heating furnace or an electric furnace, the solidus temperature of the self-fluxing alloy composition of the formed film and the base material is lowered. A so-called remelting process (fusing process) is performed in which the material is heated to a temperature close to exceeding the temperature (usually 1010 to 1080°C, called the fusing temperature). This remelting process brings the film into a semi-molten state, densifies and hardens the film, and
Then, welding to the base material is attempted. Usually, a heating means using a gas burner is often used.

【0004】これらの自溶合金溶射皮膜を工業規模で製
造するに当たって、重要な操業技術の1つに、溶射形成
した皮膜の再溶融処理がある。この処理は、被処理体の
加熱に使用する熱エネルギー供給機器の設計・製作、あ
るいは加熱温度計測・制御などにも相応の技術が必要で
あることはもちろんであるが、さらには技術者の技量も
重要な要素であり、作業者によって差が生じて品質が不
安定になるという問題点があった。
[0004] In producing these self-fluxing alloy thermal spray coatings on an industrial scale, one of the important operational techniques is remelting of the thermally sprayed coatings. This process not only requires appropriate technology for designing and manufacturing the thermal energy supply equipment used to heat the object to be processed, but also for measuring and controlling the heating temperature. This is also an important factor, and there is a problem that quality may be unstable due to differences between workers.

【0005】[0005]

【発明が解決しようとする課題】このように、再溶融処
理は、そもそもガス炎によって噴射形成させた粗な粒子
積層体を熱処理することによって軟化溶融させ、緻密な
皮膜に変成する工法として開発されたもので、いわば溶
接加工法と技術思想を共通にするものであると言える。 しかし、その施工法は著しく違っており、例えば溶接加
工法が、溶融−凝固の連続現象がビードを重ねていくと
いう局部的な部位で進行していくのに対し、自溶合金の
再溶融処理は、軟化溶融対象である皮膜がすでに被加熱
面に形成・存在しており、これを被加熱面に対し複数の
ガスバーナにて逐次加熱していく工法が一般に採用され
ている。
[Problems to be Solved by the Invention] As described above, remelting treatment was originally developed as a method for softening and melting a coarse particle laminate formed by injection using a gas flame by heat treatment, and transforming it into a dense film. Therefore, it can be said that the welding processing method and the technical philosophy are common. However, the construction methods are markedly different.For example, in the welding process, the continuous phenomenon of melting and solidification progresses in a localized area where beads overlap, whereas the remelting process for self-fluxing alloys Generally, a coating to be softened and melted is already formed and present on the surface to be heated, and a method is generally adopted in which the coating is sequentially heated on the surface to be heated using a plurality of gas burners.

【0006】しかし、被加工体が例えばロール形状のと
きその加熱面積は数m2 に及ぶこともあり、このよう
な大面積を、例えば1010〜1080℃のような温度
範囲に一様に加熱・保持することは、技術的に困難であ
る。さらに、再溶融処理には皮膜に対する総入熱量の規
制がある。すなわち、皮膜がその溶融温度を超えて加熱
されると、当然のことながら溶融流出し、被覆皮膜とし
ては破壊に至ってしまうのである。このように自溶合金
溶射皮膜の再溶融処理の技術については、加熱温度とそ
の保持時間の管理がきわめて重要であって、皮膜表面が
ガラス状の光沢を呈するようになって終点とするという
判断が作業員の官能検査によって行われており、高度の
技能を要する加工法である。昨今、これらの熟練技能者
が不足する情勢にあり、生産技術上再溶融処理そのもの
が問題視されている。
[0006] However, when the workpiece is in the form of a roll, for example, the heating area can extend to several square meters, and it is difficult to uniformly heat and maintain such a large area at a temperature range of, for example, 1010 to 1080°C. It is technically difficult to do so. Furthermore, there are restrictions on the total amount of heat input to the film in the remelting process. That is, if the coating is heated above its melting temperature, it will naturally melt and flow out, resulting in destruction of the coating. As described above, in the technology of remelting a self-fluxing alloy thermal spray coating, control of the heating temperature and its holding time is extremely important, and the decision is made to reach the end point when the coating surface exhibits a glass-like luster. This is a processing method that requires a high level of skill, and is carried out through sensory testing by workers. Recently, there is a shortage of these skilled workers, and the remelting process itself is being viewed as a problem in terms of production technology.

【0007】また、溶射皮膜を加熱溶融するには、長時
間を要する上、熱歪による母材の変形, 母材冶金組織
の劣化, 製品の寸法・形状によって加熱処理が不可能
なものがある。
[0007] Furthermore, it takes a long time to heat and melt the sprayed coating, and heat treatment may not be possible due to deformation of the base material due to thermal strain, deterioration of the base metal metallurgical structure, and the size and shape of the product. .

【0008】そこでこの発明は、再溶融処理を必要とせ
ず溶射被覆のままで実用に供し得る自溶合金皮膜を有利
に製造する方法について提案することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to propose a method for advantageously producing a self-fluxing alloy coating that does not require remelting and can be put to practical use as it is by thermal spray coating.

【0009】[0009]

【課題を解決するための手段】この発明は、自溶合金粉
末を溶射して自溶合金溶射皮膜を形成するに当たり、酸
素および燃料ガスの圧力をそれぞれ 0.29MPa〜
 0.98MPaの範囲内に制御することによって生成
させた可燃ガス燃焼炎を熱源として用いることを特徴と
する自溶合金溶射皮膜の形成方法である。
[Means for Solving the Problems] In the present invention, when spraying a self-fluxing alloy powder to form a self-fluxing alloy thermal spray coating, the pressures of oxygen and fuel gas are set to 0.29 MPa or more, respectively.
This is a method for forming a self-fluxing alloy thermal spray coating, characterized in that a combustible gas combustion flame generated by controlling the pressure within a range of 0.98 MPa is used as a heat source.

【0010】上記燃料ガスとしては、アセチレン、エチ
レン、プロピレン、プロパンおよびブタンのいずれか1
種またはこれらのうちの2つ以上からなる混合ガス、ま
たは水素を用いることが好ましい。さらに上記の自溶合
金粉末は、SiおよびBを含有しおよび/または5〜5
3μmの粒度を有するものを用いることが好ましい。
[0010] As the fuel gas, any one of acetylene, ethylene, propylene, propane and butane is used.
It is preferable to use a species or a mixed gas consisting of two or more of these, or hydrogen. Further, the above self-fluxing alloy powder contains Si and B and/or 5 to 5
Preferably, those having a particle size of 3 μm are used.

【0011】[0011]

【作用】気孔組織の少ない緻密な溶射皮膜を形成するに
あたっての主要な条件は、まず溶射粒子が溶射熱源中を
飛行しているときに、それ自体が軟化・溶融するのに十
分な熱エネルギーが得られること、さらには、飛行溶射
粒子が十分な大きさの運動エネルギーを得ることによっ
て、これが目的基材に衝突したときに大きな衝突エネル
ギーとなり、その結果として個々の粒子間に間隙を生じ
ることがなく、粒子が偏平化した状態にて積層が生じる
ようにすること、である。
[Effect] The main condition for forming a dense thermal spray coating with few pores is that when the thermal spray particles are flying through the thermal spray heat source, sufficient thermal energy is generated to soften and melt them. Furthermore, the flying thermal spray particles acquire sufficient kinetic energy so that when they collide with the target substrate, they will have a large impact energy, resulting in the creation of gaps between individual particles. Instead, the particles should be stacked in a flattened state.

【0012】なお、従来の自溶合金皮膜は、溶射形成し
たままの皮膜断面を光学顕微鏡で観察すると、個々の粒
子がほとんど偏平化しておらず、したがって粒子間には
積層時に生成した間隙、すなわち気孔が多数存在し、そ
れ故に粒子間の結合力が小さくなることがわかった。さ
らに、硬質のほう化物などの分散析出が認められず、皮
膜断面の微小硬さもHv0.3:300 程度と低い。 このため、既述したような再溶融処理を施して皮膜組織
の緻密化と硬さ付与などを図っていたのである。
[0012] In addition, in conventional self-fluxing alloy coatings, when the cross section of the coating as sprayed is observed under an optical microscope, the individual particles are hardly flattened. It was found that there are many pores, and therefore the bonding force between particles is small. Furthermore, no dispersed precipitation of hard borides or the like is observed, and the microhardness of the cross section of the film is as low as Hv0.3:300. For this reason, remelting treatment as described above was performed to make the film structure denser and harder.

【0013】しかも、本発明が対象としているような自
溶合金は、本質的に金属材料であり、その粉末を溶射法
という極めて短い反応で実用皮膜とするためには、それ
らを効率よく溶融・軟化させ、個々の粒子を強固に結合
させることが一層不可欠となる。そのためには、個々の
溶射粒子に付与するエネルギー密度を大きくしなければ
ならない。この点、従来の溶射皮膜の場合、溶融不十分
, 軟化不十分、多孔質組織の生成が見られるが、これ
らは多くの場合、皮膜積層形成段階において、粉末粒子
に与えられるエネルギー量が絶対的に不足していること
に起因するものである。そこで、従来技術では、再溶融
処理を行って皮膜を健全なものとしていたのである。
Moreover, self-fluxing alloys such as those targeted by the present invention are essentially metallic materials, and in order to make the powder into a practical coating in an extremely short reaction time using thermal spraying, it is necessary to efficiently melt and melt the powder. It becomes even more essential to soften the particles and firmly bond the individual particles together. To achieve this, it is necessary to increase the energy density imparted to each sprayed particle. In this regard, in the case of conventional thermal spray coatings, insufficient melting, insufficient softening, and the formation of porous structures are observed, but these are often caused by the fact that the absolute amount of energy given to the powder particles during the coating layer formation stage is This is due to the lack of. Therefore, in the prior art, a remelting process was performed to make the film sound.

【0014】そこで、本発明者らは、溶射による自溶合
金皮膜の積層形成に当たり、健全な皮膜形成に必要とさ
れる十分なエネルギーを効率よく粉末粒子に投入する手
法について種々の検討を加えたところ、熱源の火炎流速
を大きくすることが有効であることを突き止めた。すな
わち、溶射粒子の溶融や軟化を十分に行わせ、緻密な積
層および強固な粒子間結合を導くためには十分なエネル
ギーが必要となる。このエネルギーは、基本的には熱エ
ネルギーであるが、可燃性ガスを純酸素で燃焼させる方
式ではその火炎温度に理論的な上限があり、およそ32
00℃である。しかも、火炎から溶射粉末への熱移動の
効率は低く、溶射ガン内で発生した熱エネルギーの一部
が溶射飛行中の粒子の加熱に使用されるにすぎず、他の
熱エネルギーは大気中その他に放散し、有効利用するこ
とができない。
[0014] Therefore, the present inventors conducted various studies on methods for efficiently injecting sufficient energy required for forming a healthy film into powder particles when forming a self-fluxing alloy film by thermal spraying. However, we discovered that increasing the flame velocity of the heat source is effective. That is, sufficient energy is required to sufficiently melt and soften the sprayed particles to form dense stacking and strong interparticle bonds. This energy is basically thermal energy, but in the method of burning flammable gas with pure oxygen, there is a theoretical upper limit to the flame temperature, approximately 32
It is 00℃. Moreover, the efficiency of heat transfer from the flame to the spray powder is low, with only a portion of the thermal energy generated within the spray gun being used to heat the particles during the spray flight; It dissipates and cannot be used effectively.

【0015】一方、周知のように、熱エネルギーと運動
エネルギーは相互に変換可能であるところから、溶射粒
子の加熱に使われることなく大気中に散逸する熱エネル
ギーの一部を運動エネルギーとして飛行粒子に与えるこ
とが極めて重要となる。なぜなら、一旦飛行粒子に与え
られた運動エネルギーは、それが被覆基材に衝突する際
、衝突エネルギーとして粒子自体の偏平化、間隙の非常
に少ない緻密な積層構造の形成に多大に寄与すると共に
、一部は熱エネルギーに変換され粒子自体を加熱する機
能をもつことが期待できるためである。
On the other hand, as is well known, thermal energy and kinetic energy are mutually convertible, so a part of the thermal energy that is dissipated into the atmosphere without being used to heat the sprayed particles is used as kinetic energy to generate flying particles. It is extremely important to give This is because, once the kinetic energy is imparted to the flying particles, when they collide with the coated substrate, the impact energy contributes greatly to the flattening of the particles themselves and the formation of a dense layered structure with very few gaps. This is because some of it is expected to have the function of converting into thermal energy and heating the particles themselves.

【0016】本発明で使用する溶射ガンは、一般に、高
速ガス炎溶射ガンと呼ばれるものが有利に適合し、従来
のこの種ガンとは特に動作ガス圧力条件を異ならせて用
いることが肝要である。すなわち、酸素−燃料ガス燃焼
炎を熱源とし、その燃料ガスには、アセチレン、エチレ
ン、プロピレンおよびプロパンのいずれか1種、あるい
は2種以上の混合物、または水素を使用する。なお、空
気を酸素の供給源の一部として用いることは可能である
。そして、燃焼炎を生成する酸素および燃料ガスの圧力
は、それぞれ 0.29MPa〜0.98MPa と大
きいことが特徴で、その結果、高速の燃焼ガス流が得ら
れる。すなわち、これら酸素および燃料ガスの圧力が0
.29MPa 未満であると、火炎流速が20〜30m
/sec.程度にしか達せず、溶射粉末粒子を十分に加
速することができない。そのため、粒子の基材に対する
衝突エネルギーが小さく、生成皮膜は多大な気孔を有し
、粒子間結合力の小さいものとなる。一方、0.98M
Pa 以上であると、ガス供給装置の設備化に、耐圧機
構, 安全上の点から多大の費用を要し、経済的に不利
である。また、皮膜特性も有意な向上が認められない。
The thermal spray gun used in the present invention is generally advantageously referred to as a high-velocity gas flame spray gun, and it is important that the operating gas pressure conditions are particularly different from those of conventional guns of this type. . That is, an oxygen-fuel gas combustion flame is used as a heat source, and the fuel gas is any one of acetylene, ethylene, propylene, and propane, or a mixture of two or more thereof, or hydrogen. Note that it is possible to use air as part of the oxygen supply source. The pressures of oxygen and fuel gas that generate the combustion flame are characterized by being as high as 0.29 MPa to 0.98 MPa, respectively, and as a result, a high-speed combustion gas flow is obtained. In other words, the pressure of these oxygen and fuel gases is 0.
.. If it is less than 29 MPa, the flame velocity will be 20 to 30 m.
/sec. The thermal spray powder particles cannot be sufficiently accelerated. Therefore, the collision energy of the particles with the base material is small, the resulting film has a large number of pores, and the bonding force between the particles is small. On the other hand, 0.98M
If it is more than Pa, it will be economically disadvantageous because it will require a great deal of cost to install the gas supply equipment in terms of pressure resistance and safety. Further, no significant improvement in film properties was observed.

【0017】上記ガス条件で生成した燃焼炎の速度を、
レーザードップラー流速計によって測定した実測値はお
よそ1500m/sec.に達し、溶射飛行粒子に大き
な運動エネルギーをあたえ得ることがわかる。また、火
炎温度はおよそ2800℃になるため、ガン本体は水冷
構造とする。
The velocity of the combustion flame generated under the above gas conditions is
The actual value measured by a laser Doppler current meter is approximately 1500 m/sec. It can be seen that it is possible to impart a large amount of kinetic energy to the sprayed particles. Also, since the flame temperature is approximately 2800°C, the gun body is designed to be water-cooled.

【0018】このように、本発明の最大の特徴は、溶射
火炎速度が速く溶射粒子の飛行速度のもつエネルギーが
大きいことがあげられる。そこで、本発明方法について
の溶射飛行運動のエネルギーを試算した。なお、本発明
での溶射飛行速度を既述のレーザードップラー流速計に
よって測定したところ、およそ500m/secという
値を得た。これは従来の粉末用溶射ガンのそれのおよそ
10倍以上に達するものである。また、溶射すべき自溶
合金粉末の平均粒径は従来粉末の約1/3 のものを用
いるので、平均質量はおよそ1/27となる。
As described above, the greatest feature of the present invention is that the spray flame speed is high and the energy of the flight speed of the spray particles is large. Therefore, the energy of the thermal spray flight motion for the method of the present invention was estimated. In addition, when the thermal spray flight speed in the present invention was measured using the laser Doppler current meter described above, a value of approximately 500 m/sec was obtained. This is approximately 10 times higher than that of conventional powder spray guns. Furthermore, since the average particle size of the self-fluxing alloy powder to be thermally sprayed is approximately 1/3 that of conventional powder, the average mass is approximately 1/27.

【0019】さて、飛行粒子のもつ運動エネルギーEは
、 E= (1/2)mv2     ただし、m:粒子の質量、  v:粒子の速度
で与えられるので、この式を用いて本発明にかかる自溶
合金粉末の溶射飛行運動エネルギーの大きさを算出した
。すなわち、速度(v) が約10倍であり、粒子の質
量(m)が約1/27であるから、上記式からEの値は
、およそ4倍以上になることがわかる。このように大き
な運動エネルギー、すなわち基材に対する衝突エネルギ
ーをもった自溶合金粉末材料を積層形成させて皮膜化す
ることにより、緻密で有効な微小硬さを有した、実用的
な自溶合金溶射皮膜が得られるのである。
Now, the kinetic energy E of a flying particle is given by E=(1/2)mv2, where m: mass of the particle and v: velocity of the particle. The magnitude of the thermal spray flight kinetic energy of the molten alloy powder was calculated. That is, since the velocity (v) is approximately 10 times as large and the particle mass (m) is approximately 1/27, it can be seen from the above equation that the value of E is approximately 4 times or more. By layering self-fluxing alloy powder materials with large kinetic energy, that is, collision energy against the base material, and forming a film, practical self-fluxing alloy thermal spraying with dense and effective microhardness is achieved. A film is obtained.

【0020】本発明方法において、使用する自溶合金粉
末材料の粒度範囲は、その溶射中での受熱効率を改善す
るために53μm以下の微粉とすることが好ましく、従
来のこの種粉末材料に比較し、単位粒子の平均質量はお
よそ1/27となる。一方、粒径が5μm未満であると
、粉末の自己凝集が著しくなり、溶射ガンへの気体輸送
がきわめて困難となる。さらに、自溶合金粉末は、ニッ
ケル、コバルト、またはタングステンカーバイドを基本
成分とし、この基本成分に加え、Si: 1.3〜4.
8 %およびB:1.5 〜3.0 %を含有すること
が好ましい。すなわち、SiおよびBは、合金系の共晶
反応により系の融点を低下させる働きがあるとともに、
ニッケル,クロム, コバルトなどの成分のぬれ性を高
める。さらに、Bはクロムボライドなどを生成し、合金
系の硬度を上昇させる機能をもつ。
In the method of the present invention, the particle size range of the self-fluxing alloy powder material used is preferably a fine powder of 53 μm or less in order to improve the heat receiving efficiency during thermal spraying, and compared to conventional powder materials of this type. However, the average mass of the unit particles is approximately 1/27. On the other hand, if the particle size is less than 5 μm, self-agglomeration of the powder becomes significant and gas transport to the thermal spray gun becomes extremely difficult. Furthermore, the self-fluxing alloy powder has nickel, cobalt, or tungsten carbide as a basic component, and in addition to this basic component, Si: 1.3 to 4.
8% and B: 1.5 to 3.0%. That is, Si and B have the function of lowering the melting point of the alloy system through a eutectic reaction, and
Improves the wettability of components such as nickel, chromium, and cobalt. Furthermore, B generates chromium boride and the like, and has the function of increasing the hardness of the alloy system.

【0021】[0021]

【実施例】実施例1 粒径が5〜45μmの範囲になるSi:5.0 at%
( 以下単に%と示す) , B:4.0%, Cr:
17.0%, C:0.9 %, Fe:3.5 %お
よびMo:1.0 %を含み、残部実質的にNiからな
るニッケル基自溶合金粉末(A)、Si:3.0 %,
 B:2.2 %, Cr:18.5%, Ni:13
.0%, C:0.9 %およびFe:2.8 %を含
み、残部実質的にCoからなるコバルト基自溶合金粉末
(B)、Si:2.2 %, B:1.5 %, Ni
:36.6%, Cr:7.4 %およびC:0.35
%を含み、残部実質的にWC−12Coからなるタング
ステンカーバイド基自溶合金粉末(C)を原料として、
幅50mm、長さ50mmおよび厚さ5mmのSS40
0 鋼材からなる基材の表面に、供給圧( ゲージ圧)
 が酸素:0.55MPa およびプロピレンガス:0
.42MPa で生成させた燃焼炎を用いた高速ガス炎
溶射法にて、皮膜A,BおよびCをそれぞれ厚さ 0.
8〜0.9 mmで形成し、その後に再溶融処理は施さ
なかった。なお、基材の溶射被覆面は予めホワイトアル
ミナ質人造研削剤で粗面化した。
[Example] Example 1 Si: 5.0 at% with particle size in the range of 5 to 45 μm
(hereinafter simply indicated as %), B: 4.0%, Cr:
Nickel-based self-fluxing alloy powder (A) containing 17.0%, C: 0.9%, Fe: 3.5% and Mo: 1.0%, with the remainder essentially consisting of Ni, Si: 3.0 %,
B: 2.2%, Cr: 18.5%, Ni: 13
.. Cobalt-based self-fluxing alloy powder (B) containing 0%, C: 0.9% and Fe: 2.8%, with the remainder substantially consisting of Co, Si: 2.2%, B: 1.5%, Ni
:36.6%, Cr:7.4% and C:0.35
% and the remainder substantially consists of WC-12Co as a raw material,
SS40 with width 50mm, length 50mm and thickness 5mm
0 Supply pressure (gauge pressure) on the surface of the base material made of steel material
is oxygen: 0.55MPa and propylene gas: 0
.. Coatings A, B, and C were each coated to a thickness of 0.00 mm by high-velocity gas flame spraying using a combustion flame generated at 42 MPa.
It was formed to have a thickness of 8 to 0.9 mm, and no remelting treatment was performed thereafter. Note that the thermal spray coating surface of the base material was roughened in advance with a white alumina artificial abrasive.

【0022】また、比較として、上記した自溶合金粉末
(A),(B)および(C)を原料として、供給圧が酸
素:0.17 MPaおよびアセチレンガス:0.09
8MPaで生成させた燃焼炎を用いた高速ガス炎溶射法
にて、同様の厚さで形成し、その後、従来技術による再
溶融処理を施してそれぞれ皮膜D,EおよびFを得た。
For comparison, using the above self-fluxing alloy powders (A), (B) and (C) as raw materials, the supply pressure was 0.17 MPa for oxygen and 0.09 MPa for acetylene gas.
Coatings D, E, and F were formed to the same thickness using a high-velocity gas flame spraying method using a combustion flame generated at 8 MPa, and then subjected to a remelting treatment using a conventional technique to obtain coatings D, E, and F, respectively.

【0023】かくして得られた皮膜は基材とともに切断
して樹脂に埋め込み、顕微鏡観察用試料を作製し、JI
S Z2251 に準拠して溶射皮膜の断面硬さを測定
した結果について図1に示す。
The film thus obtained was cut together with the base material and embedded in resin to prepare a sample for microscopic observation.
Figure 1 shows the results of measuring the cross-sectional hardness of the thermal spray coating in accordance with SZ2251.

【0024】図1の結果から明らかなように、この発明
に従う自溶合金皮膜A,BおよびCは、溶射形成後に再
溶融処理を行っていないものであるが、従来技術に従う
皮膜D,EおよびFの硬さ値と同等以上の水準になって
いることが判る。自溶合金溶射皮膜が耐摩耗性を要求さ
れる被覆材として実用されることが非常に多い状況から
して、この発明に従う皮膜がこのような高硬度を示すこ
とは極めて有効である。
As is clear from the results in FIG. 1, self-fluxing alloy coatings A, B and C according to the present invention were not subjected to remelting treatment after thermal spraying, whereas coatings D, E and C according to the prior art were not subjected to remelting treatment after spraying. It can be seen that the hardness value is at a level equal to or higher than that of F. Considering the fact that self-fluxing alloy thermal spray coatings are often put to practical use as coating materials that require wear resistance, it is extremely effective that the coating according to the present invention exhibits such high hardness.

【0025】次に、JIS H8666−(1980 
年) に規定されるように、直径25mmおよび長さ4
0mmのSS41鋼丸棒の一端面に、上記したニッケル
基自溶合金粉末(A)を用いて上記と同様に皮膜を形成
し、同じ寸法の相手材を接着剤により接着後、ジグを用
いて引張試験機に装着、皮膜に対して垂直荷重を加えて
引張り、皮膜が剥離破断するときの荷重を測定して付着
力を算出した結果について、図2に示す。
Next, JIS H8666-(1980
25 mm in diameter and 4 in length as specified in
A film was formed on one end surface of a 0 mm SS41 steel round bar using the above-mentioned nickel-based self-fluxing alloy powder (A) in the same manner as above, and after bonding a mating material of the same size with an adhesive, using a jig. The adhesion force was calculated by attaching the film to a tensile tester, applying a vertical load to the film and pulling it, and measuring the load at which the film peeled and broke. The results are shown in FIG.

【0026】同図に示すように、従来技術に従って得ら
れた自溶合金皮膜Gは、溶射形成のままでは基材に対す
る付着力は小さく、15〜25MPa であり、さらに
この皮膜を再溶融処理した皮膜Hでは、接着剤位置で破
断して、皮膜は基材に対し健全に密着したままであり、
このときの皮膜の付着力の値は接着剤の破断応力(68
〜73MPa)以上であった。一方、この発明に従う皮
膜Iは、同様に接着剤位置で破断が見られ、皮膜は基材
に対して63〜73MPa 以上の値で健全に密着して
いることが確認された。現在のところ、実用溶射皮膜の
付着力評価方法は上述のJIS H8666の規定によ
っているものがほとんどで、この評価で接着剤の破断応
力以上の付着強度をもつことが確認できた皮膜はすでに
多種のものが支障なく実用に供されている。したがって
、この発明に従う自溶合金皮膜は基材に対する付着力の
点でも十分実用域に達していることが判る。
As shown in the figure, the self-fluxing alloy coating G obtained according to the conventional technique had a small adhesion force to the base material as it was thermally sprayed, 15 to 25 MPa; In film H, the film breaks at the adhesive position, and the film remains firmly adhered to the base material.
The adhesion value of the film at this time is the breaking stress of the adhesive (68
~73 MPa) or more. On the other hand, in the film I according to the present invention, breakage was similarly observed at the adhesive position, and it was confirmed that the film adhered soundly to the base material at a value of 63 to 73 MPa or more. At present, most of the adhesion evaluation methods for practical thermal spray coatings are based on the above-mentioned JIS H8666 regulations, and there are already many types of coatings that have been confirmed to have an adhesion strength higher than the breaking stress of the adhesive through this evaluation. The product is put into practical use without any problems. Therefore, it can be seen that the self-fluxing alloy film according to the present invention has sufficiently reached the practical range in terms of adhesion to the substrate.

【0026】さらに、皮膜の耐摩耗性について、JIS
 K7218−(1986 年) の規定にもとづく摩
耗試験方法のうちのC法( 理研−大越式摩耗試験) 
を実施して評価した。 すなわち、上記した従来技術の溶射・再溶融処理による
ニッケル基自溶合金皮膜Dと、同成分ニッケル基自溶合
金を酸素0.75MPa 、プロピレンガス0.55M
Pa で動作する高速ガス炎溶射機で形成させた皮膜J
とを被覆した基材に関し、相手材 SUJ2鋼材に対す
るすべり摩耗特性を比較した結果について、図3に示す
。同図に示すように、高速ガス炎溶射による皮膜Jは、
低すべり速度側では溶射・再溶融した従来の皮膜Dに対
し、やや大きな摩耗量を示しているが、すべり速度が大
きくなるにつれて、皮膜Dに対しほぼ同等の摩耗量とな
って耐摩耗性においても遜色ないことが判明した。
Furthermore, regarding the abrasion resistance of the coating, JIS
Method C (RIKEN-Okoshi type wear test) of the wear test methods based on the provisions of K7218-(1986)
was conducted and evaluated. That is, the nickel-based self-fluxing alloy coating D obtained by the thermal spraying/remelting treatment of the above-mentioned conventional technology and the nickel-based self-fluxing alloy of the same composition were heated in an atmosphere of 0.75 MPa of oxygen and 0.55 M of propylene gas.
Film J formed with a high-speed gas flame spray machine operating at Pa
Fig. 3 shows the results of comparing the sliding wear characteristics of the base material coated with SUJ2 steel as a counterpart material. As shown in the figure, the coating J produced by high-velocity gas flame spraying is
On the low sliding speed side, the amount of wear is slightly larger than that of conventional Coating D, which was thermally sprayed and remelted, but as the sliding speed increases, the amount of wear becomes almost the same as that of Coating D, and the wear resistance decreases. It turned out that there was no difference.

【0027】実施例2 実施例1に用いたものと同種の3つの自溶合金粉末を原
料として、幅50mm, 長さ50mmおよび厚さ5m
mのSS 400鋼材からなる基材の表面に、供給圧 
(ゲージ圧)が酸素:0.89MPa および水素:0
.89MPa で生成させた燃焼炎を用い高速ガス炎溶
射法にて皮膜(K,L,M)形成させた。これらの皮膜
は、その後に再溶融処理は施さなかった。上記皮膜K,
L,Mに対し、断面ビッカース硬さ、基材に対する付着
力および摩耗試験を実施したところ、実施例1の皮膜A
,B,Cと同様の性能が得られた。
Example 2 Three self-fluxing alloy powders of the same type as those used in Example 1 were used as raw materials, and the width was 50 mm, the length was 50 mm, and the thickness was 5 m.
The supply pressure is applied to the surface of the base material made of SS 400 steel
(gauge pressure) is oxygen: 0.89MPa and hydrogen: 0
.. The films (K, L, M) were formed by high-velocity gas flame spraying using a combustion flame generated at 89 MPa. These coatings were not subsequently remelted. The above film K,
When cross-sectional Vickers hardness, adhesion to the base material, and abrasion tests were conducted on L and M, it was found that coating A of Example 1
, B, and C were obtained.

【0028】実施例3 実施例1に用いたものと同種の3つの自溶合金粉末を原
料として、幅50mm, 長さ50mmおよび厚さ5m
mのSS 400鋼材からなる基材の表面に、供給圧 
(ゲージ圧)が酸素:0.39MPa およびアセチレ
ン/ プロピレン混合ガス:0.34MPa で生成さ
せた燃焼炎を用い、高速ガス炎溶射法にて皮膜(N,O
,P)を形成させた。これらの皮膜N,O,Pは、その
後に溶融処理は施さなかった。上記皮膜N,O,Pに対
し、断面ビッカース硬さ、基材に対する付着力及び摩耗
試験を実施したところ、実施例1の皮膜A,B,Cと同
様の性能が得られた。
Example 3 Three self-fluxing alloy powders of the same type as those used in Example 1 were used as raw materials, and the width was 50 mm, the length was 50 mm, and the thickness was 5 m.
The supply pressure is applied to the surface of the base material made of SS 400 steel
A coating (N, O,
, P) was formed. These coatings N, O, and P were not subjected to any subsequent melting treatment. When cross-sectional Vickers hardness, adhesion to a substrate, and abrasion tests were conducted on the above coatings N, O, and P, the same performance as coatings A, B, and C of Example 1 was obtained.

【0029】[0029]

【発明の効果】以上説明したようにこの発明は、高エネ
ルギーを有する溶射火炎を用いて自溶合金粉末を皮膜形
成させることができる、微小硬さ、基材に対する密着力
および耐摩耗性に優れた自溶合金溶射皮膜を提供できる
。しかも、形成皮膜は、再溶融処理を必要としないため
、これにともなう母材の熱歪発生, 母材冶金組織の劣
化防止, 形状寸法の制約が解消されるなど、生産技術
上の課題が解消され、品質の安定性, 高生産性および
エネルギー消費の低減に効果がある。
Effects of the Invention As explained above, the present invention is capable of forming a film of self-fluxing alloy powder using a high-energy thermal spray flame, and has excellent microhardness, adhesion to a base material, and wear resistance. It is possible to provide a self-fluxing alloy thermal spray coating. Moreover, since the formed film does not require remelting, production technology issues such as thermal distortion of the base metal, prevention of deterioration of the base metal metallurgical structure, and constraints on shape and dimensions are eliminated. This is effective in improving quality stability, high productivity, and reducing energy consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】溶射ガンおよびその熱源条件と、得られる自溶
合金溶射皮膜の微小硬さとの関係を示すグラフである。
FIG. 1 is a graph showing the relationship between a thermal spray gun and its heat source conditions and the microhardness of the resulting self-fluxing alloy thermal spray coating.

【図2】溶射ガンおよびその熱源条件と、得られる自溶
合金溶射皮膜の鋼基材に対する付着力との関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between a thermal spray gun and its heat source conditions and the adhesion of the resulting self-fluxing alloy thermal spray coating to a steel base material.

【図3】溶射ガンおよびその熱源条件と、得られる自溶
合金溶射皮膜の耐すべり摩耗性との関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between a thermal spray gun and its heat source conditions and the sliding wear resistance of the resulting self-fluxing alloy thermal spray coating.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  自溶合金粉末を可燃ガス燃焼炎下に溶
射して自溶合金溶射皮膜を形成するに当たり、酸素およ
び燃料ガスの圧力をそれぞれ 0.29MPa〜 0.
98MPa の範囲内に制御して得られる可燃ガス燃焼
炎を熱源とする溶射を行うことによって、再溶融処理を
省略して溶射皮膜を形成させることを特徴とする自溶合
金溶射皮膜の形成方法。
Claim 1: In forming a self-fluxing alloy thermal spray coating by thermally spraying a self-fluxing alloy powder under a combustible gas combustion flame, the pressures of oxygen and fuel gas are controlled to be 0.29 MPa to 0.2 MPa, respectively.
A method for forming a thermal spray coating on a self-fluxing alloy, characterized in that the thermal spray coating is formed by omitting remelting treatment by performing thermal spraying using a combustible gas combustion flame obtained by controlling the pressure within the range of 98 MPa as a heat source.
【請求項2】  自溶合金粉末は、SiおよびBを含有
し、かつその粒度が5〜53μmの範囲のものである請
求項1に記載の形成方法。
2. The forming method according to claim 1, wherein the self-fluxing alloy powder contains Si and B and has a particle size in the range of 5 to 53 μm.
【請求項3】  使用する燃料ガスが、アセチレン, 
エチレン, プロピレン,プロパン, ブタンのいずれ
か1種またはこれらのうちの2つ以上からなる混合ガス
、または水素であることを特徴とする請求項1に記載の
形成方法。
[Claim 3] The fuel gas used is acetylene,
2. The forming method according to claim 1, wherein the gas is one of ethylene, propylene, propane, butane, a mixed gas consisting of two or more of these, or hydrogen.
JP3121777A 1991-04-25 1991-04-25 Method for forming self-fluxing alloy sprayed coating Expired - Lifetime JPH07113144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121777A JPH07113144B2 (en) 1991-04-25 1991-04-25 Method for forming self-fluxing alloy sprayed coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121777A JPH07113144B2 (en) 1991-04-25 1991-04-25 Method for forming self-fluxing alloy sprayed coating

Publications (2)

Publication Number Publication Date
JPH04325668A true JPH04325668A (en) 1992-11-16
JPH07113144B2 JPH07113144B2 (en) 1995-12-06

Family

ID=14819631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121777A Expired - Lifetime JPH07113144B2 (en) 1991-04-25 1991-04-25 Method for forming self-fluxing alloy sprayed coating

Country Status (1)

Country Link
JP (1) JPH07113144B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213555A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Electrode for discharge surface treatment and discharge surface treatment method
US10815560B2 (en) 2017-04-13 2020-10-27 Toyota Jidosha Kabushiki Kaisha Spraying powder and method for depositing sprayed coating using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195962A (en) * 1985-02-26 1986-08-30 Teikoku Piston Ring Co Ltd Abrasive wear-resisting member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195962A (en) * 1985-02-26 1986-08-30 Teikoku Piston Ring Co Ltd Abrasive wear-resisting member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213555A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Electrode for discharge surface treatment and discharge surface treatment method
JP4608220B2 (en) * 2004-01-29 2011-01-12 三菱電機株式会社 Discharge surface treatment electrode and discharge surface treatment method
US10815560B2 (en) 2017-04-13 2020-10-27 Toyota Jidosha Kabushiki Kaisha Spraying powder and method for depositing sprayed coating using the same

Also Published As

Publication number Publication date
JPH07113144B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
Gärtner et al. The cold spray process and its potential for industrial applications
US7479299B2 (en) Methods of forming high strength coatings
US7892652B2 (en) Low stress metallic based coating
US7141110B2 (en) Erosion resistant coatings and methods thereof
CA2957009A1 (en) Wear resistant and corrosion resistant cobalt-based alloy powders and applications thereof
CN104039483A (en) Coating compositions
JPH0543782B2 (en)
Fauchais et al. Thermal and cold spray: Recent developments
JPH0447018B2 (en)
JP5500676B2 (en) Heat-resistant alloy film forming method and composite powder used therefor
JP2013139634A (en) Applying bond coat using cold spraying process and articles thereof
JP5017675B2 (en) Film manufacturing method
US20090223756A1 (en) Method for producing friction surfaces or friction layers of a carbon-ceramic brake disk as well as a carbon-ceramic brake disk provided with such friction surfaces or friction layers
US5312653A (en) Niobium carbide alloy coating process for improving the erosion resistance of a metal surface
US6007922A (en) Chromium boride coatings
CN111004991A (en) Preparation method of high-wear-resistance and high-corrosion-resistance protective layer of hot work die steel
JPH04325668A (en) Formation of self-fluxing alloy sprayed deposit
Satya et al. Bond Strength, Hardness, and Microstructure Analysis of Stellite Coating Applied on 410 Steel Surface Using Flame Spray, Plasma Spray, and High-Velocity Oxyfuel Spray Process
KR100591982B1 (en) Method for reforming metal surface
GB2206358A (en) Corrosion-resistant aluminium-bearing iron base alloy coating
Tobota et al. Microstructure and selected properties of Ni-Cr-Re coatings deposited by means of HVOF thermal spraying
Majumdar et al. Development of Functionally Graded Coating by Thermal Spray Deposition
Tobota et al. Microstructure and selected properties of Ni-Cr-Re coatings deposited by means of plasma thermal spraying
CN107460431A (en) A kind of method for improving 6061 aluminum alloy surface plasma spraying Ni60A anchoring strength of coating
EP1077271A1 (en) Chromium boride coatings

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980804

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 16