JPH04325605A - Method for controlling apparent density of metal powder produced by liquid atomization - Google Patents

Method for controlling apparent density of metal powder produced by liquid atomization

Info

Publication number
JPH04325605A
JPH04325605A JP12287591A JP12287591A JPH04325605A JP H04325605 A JPH04325605 A JP H04325605A JP 12287591 A JP12287591 A JP 12287591A JP 12287591 A JP12287591 A JP 12287591A JP H04325605 A JPH04325605 A JP H04325605A
Authority
JP
Japan
Prior art keywords
apparent density
flow rate
metal powder
gas
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12287591A
Other languages
Japanese (ja)
Inventor
Minoru Nitta
稔 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12287591A priority Critical patent/JPH04325605A/en
Publication of JPH04325605A publication Critical patent/JPH04325605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To quantitative control the apparent density of a metal powder without changing the grain size and distribution by adjusting the flow rate of the gas passing in the vicinity of the injection port of a jet injection nozzle. CONSTITUTION:A falling flow 2 of molten steel is injected from a tundish 1. A water jet 3 is injected from a water jet injection nozzle 4 of inner diameter 1D, concentrated at the point (f) of intersection and collided to atomizer the falling flow 2 of molten steel. The flow rate of the gas is fluctuated for each atomization in the vicinity of the nozzle 4. The flow rate of the gas is intentionally controlled to control the apparent density of the steel powder. The gas pressure at the injection port of the water jet 3 is measured to obtain the gas flow rate, and the flow rate is controlled by adjusting the flow rate of the gas to be delivered by a blower 6.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液体ジェットで溶融金
属注入流をアトマイズして金属粉末を製造する際の見掛
密度の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling apparent density when producing metal powder by atomizing a molten metal injection stream with a liquid jet.

【0002】0002

【従来の技術】ジェット媒体として液体を用いる液体ア
トマイズ法は、金属粉末の能率的製造方法として工業的
規模で広く採用されている。液体アトマイズ法による金
属粉末は、転炉,平炉,アーク炉,誘導溶解炉,抵抗発
熱炉,及びプラズマ,電子ビーム,レーザーなどを熱源
とする溶解炉などで、精錬溶解した溶融金属を取鍋や桶
を介して、または直接にタンディッシュに注湯し、タン
ディッシュの底部に設けた孔径が1〜100mmφ程度
の溶湯ノズルから鉛直下方向に流下させ、その周囲に配
置した液体噴射ノズルから2000kgf/cm2 程
度までの圧力のもとで、40m3 /min程度までの
流量の液体ジェットを噴きつけて溶融金属の落下流を粉
化し、引き続いて脱液,乾燥,篩分,必要に応じて還元
、軟化焼鈍、解砕及び篩分の諸工程を経て製造される。 見掛密度は、金属粉末の製造及び利用の際の最も重要な
特性の一つである。例えば粉末冶金用金属粉末の金型に
充填する際の見掛密度は、流動性,圧縮性,成形性,焼
結性及び焼結材の機械的,物理的特性などに大きく影響
する。したがって目的とする用途に応じて金属粉末の見
掛密度を選択する必要があり、金属粉末メーカーにとっ
ては、要求に応じて見掛密度を厳密に制御する製造技術
が重要となっている。
2. Description of the Related Art A liquid atomization method using a liquid as a jet medium has been widely adopted on an industrial scale as an efficient method for producing metal powder. Metal powder produced by the liquid atomization method is refined and melted in a ladle or a ladle of molten metal in a converter, open hearth, arc furnace, induction melting furnace, resistance heating furnace, or melting furnace that uses plasma, electron beam, laser, etc. as a heat source. The molten metal is poured into the tundish through a tub or directly, and allowed to flow vertically downward from a molten metal nozzle with a hole diameter of approximately 1 to 100 mmφ provided at the bottom of the tundish, and 2000 kgf/ The falling flow of molten metal is pulverized by spraying a liquid jet at a flow rate of up to 40 m3/min under a pressure of up to about cm2, followed by deliquification, drying, sieving, and reduction and softening as necessary. It is manufactured through various steps of annealing, crushing, and sieving. Apparent density is one of the most important properties in the production and use of metal powders. For example, the apparent density of metal powder for powder metallurgy when it is filled into a mold greatly affects fluidity, compressibility, formability, sinterability, and mechanical and physical properties of the sintered material. Therefore, it is necessary to select the apparent density of metal powder depending on the intended use, and it is important for metal powder manufacturers to have manufacturing technology that strictly controls the apparent density according to requirements.

【0003】一般に、液体アトマイズ法における金属粉
末の見掛密度の制御方法としては、液体ジェットを噴射
する圧力,流量,噴射口から粉化点までの距離、溶融金
属注入流と液体ジェットとの角度、溶融金属の注入流量
及び物性を調整するなどの方法があるが、これらの方法
によっては見掛密度と同時に粒度や粒度分布までも大き
く変動するという問題がある。
Generally, methods for controlling the apparent density of metal powder in the liquid atomization method include controlling the pressure and flow rate at which the liquid jet is injected, the distance from the injection port to the powdering point, and the angle between the molten metal injection flow and the liquid jet. There are methods such as adjusting the injection flow rate and physical properties of molten metal, but these methods have the problem that not only the apparent density but also the particle size and particle size distribution vary greatly.

【0004】一方、特公昭55−1967号公報には、
液体媒体である水の温度を調整して、例えば、水アトマ
イズしたステンレス鋼粉の見掛密度を調整する方法が開
示されている。しかしこの方法ではアトマイズ用の水を
繰返し使用する連続量産設備の場合、大量の水の温度を
正確に制御するためには設備費、ランニングコストがか
かりすぎるという問題がある。
On the other hand, in Japanese Patent Publication No. 1967-1967,
A method is disclosed for adjusting the apparent density of, for example, water atomized stainless steel powder by adjusting the temperature of water, which is a liquid medium. However, in the case of continuous mass production equipment that repeatedly uses water for atomization, this method has a problem in that equipment costs and running costs are too high to accurately control the temperature of a large amount of water.

【0005】また特開昭63−183109号公報には
、液体噴射ノズルの下部に衝突体を設けた混合室で、ア
トマイズ後の金属粒子と噴霧媒液とを混合させて、例え
ば水アトマイズした銅粉の見掛密度を低下させる装置が
開示されている。しかし、この装置では、衝突体を設け
た混合室の「有り」,「無し」といった2条件に限定さ
れるだけでなく衝突体設置の混合室の構造,仕様を定量
化して、自由自在に金属粉末の見掛密度を制御すること
は困難である。
Furthermore, Japanese Patent Application Laid-Open No. 63-183109 discloses that atomized metal particles and a spray medium are mixed in a mixing chamber provided with an impactor at the lower part of a liquid injection nozzle to produce, for example, water-atomized copper particles. An apparatus for reducing the apparent density of powder is disclosed. However, this device is not only limited to the two conditions of "with" and "without" a mixing chamber with an impactor installed, but also quantifies the structure and specifications of the mixing chamber with an impactor installed, and can freely handle metals. It is difficult to control the apparent density of the powder.

【0006】また特開平1−246305号公報には、
対向する左右の平板状に噴射する噴霧媒液を、その断面
がV字型になるように衝突させるV型液体ジェットによ
るアトマイズ方法において、対向する左右の各ジェット
を噴射する噴射口の幅よりも左右のジェットが衝突する
交点でジェットの幅を小さく狭めることによって、例え
ば水アトマイズした高速鋼粉(JIS  SKH57)
の見掛密度を低くする方法が開示されている。しかし、
この方法では、金属粉末の見掛密度を調整するためには
、噴射先端口の幅を狭くしたテーパー状の噴射口を有す
る液体噴射ノズルを多数製作し、その都度交換しなけれ
ばならないという問題がある。
[0006] Also, in Japanese Patent Application Laid-Open No. 1-246305,
In an atomization method using a V-shaped liquid jet, in which spray medium liquid is sprayed into opposing left and right flat plates and collided so that the cross section becomes V-shaped, the width of the spray medium is By narrowing the width of the jet at the intersection where the left and right jets collide, for example, water atomized high-speed steel powder (JIS SKH57) can be produced.
A method for lowering the apparent density of is disclosed. but,
This method has the problem that in order to adjust the apparent density of metal powder, a large number of liquid injection nozzles with tapered injection ports with narrower injection tip openings must be manufactured and replaced each time. be.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前述の問題
を解決し、粒度及び粒度分布を大幅に変えることなく、
金属粉末の見掛密度を簡便にかつ定量的に制御できる方
法を提供するためになされたものである。
Problem to be Solved by the Invention The present invention solves the above-mentioned problems, and without significantly changing the particle size and particle size distribution.
This was done in order to provide a method for easily and quantitatively controlling the apparent density of metal powder.

【0008】[0008]

【課題を解決するための手段】本発明は、金属粉末を製
造する液体アトマイズ法において、液体ジェットが互い
に集中衝突する交点に向かって噴射ノズルを通過する気
体の流量を調整することによって、得られる金属粉末の
見掛密度を制御する液体アトマイズ金属粉末の見掛密度
の制御方法である。
[Means for Solving the Problems] The present invention provides a liquid atomization method for producing metal powder by adjusting the flow rate of gas passing through an injection nozzle toward an intersection point where liquid jets intensively collide with each other. This is a method for controlling the apparent density of liquid atomized metal powder, which controls the apparent density of metal powder.

【0009】[0009]

【作用】粒度が同じ場合、金属粉末の見掛密度は、金属
粉末の形状に依存する。液体アトマイズによる金属粉末
の形状は、溶融金属流が液体ジェットによって粉砕され
、著しく不規則な形状となる。このまま凝固すれば著し
く見掛密度は低くなるが、一般にはすぐに凝固せず、溶
融金属滴から液体媒体への伝熱のために、凝固点に至る
まで抜熱する時間を要する。この時間の間に溶融金属滴
は表面張力により球状化していき、この過程で見掛密度
は上昇する。本発明者は、これらの液体アトマイズ時の
現象を鋭意研究した結果、液体アトマイズ時には溶融金
属滴が高熱のためそのまわりに液体媒体の蒸気被膜が生
じ、この蒸気被膜が溶融金属滴から液体媒体への伝熱を
妨げること、またこの蒸気被膜は噴射ノズルを通過する
気体の流量によって変化し伝熱速度を変化させることを
見い出した。
[Operation] When the particle size is the same, the apparent density of the metal powder depends on the shape of the metal powder. The shape of the metal powder produced by liquid atomization is highly irregular as the molten metal stream is crushed by the liquid jet. If it solidifies as it is, the apparent density will be significantly lower, but it generally does not solidify immediately and requires time to remove heat until it reaches the freezing point in order to transfer heat from the molten metal droplets to the liquid medium. During this time, the molten metal droplets become spherical due to surface tension, and in this process, the apparent density increases. As a result of intensive research into these phenomena during liquid atomization, the inventor of the present invention found that during liquid atomization, the molten metal droplets are highly heated and a vapor film of the liquid medium is formed around them, and this vapor film is transferred from the molten metal droplets to the liquid medium. They also found that this vapor film changes with the flow rate of gas passing through the injection nozzle, changing the rate of heat transfer.

【0010】すなわち、この噴射ノズルを通過する気体
の流量の調整によって、溶融金属滴から液体媒体への伝
熱速度を変化させ、凝固時の金属粉末の形状,ひいては
金属粉末の見掛密度を変化することができるとの知見を
えた。本発明は、以上の知見にもとづくものであり、金
属粉末の見掛密度が噴射ノズルを通過する気体の流量の
調整によって制御されるから、本発明によると金属粉末
の見掛密度が容易に広範囲に、かつ定量的に制御できる
That is, by adjusting the flow rate of the gas passing through this injection nozzle, the rate of heat transfer from the molten metal droplets to the liquid medium can be changed, and the shape of the metal powder during solidification, as well as the apparent density of the metal powder, can be changed. I learned that it is possible to do this. The present invention is based on the above findings, and since the apparent density of the metal powder is controlled by adjusting the flow rate of gas passing through the injection nozzle, the apparent density of the metal powder can be easily varied over a wide range. can be controlled quantitatively and quantitatively.

【0011】[0011]

【実施例】溶融金属,液体媒体としてそれぞれ溶鋼,水
を用いた実施例にもとづいて本発明を説明する。図1に
本発明を実施するための水アトマイズ装置(例)の概念
断面図を示す。タンディッシュ1から溶鋼の落下流2を
注入する。交点fで集中衝突する水ジェット3を内径I
Dの水ジェット噴射ノズル4から噴射し、溶鋼の落下流
2をアトマイズする。そしてこのアトマイズ水流は水ジ
ェット噴射ノズル4の下部の吐出管5を通じて噴霧槽(
図示せず)に流入する。一方、水ジェット噴射ノズル4
とその上方にあるタンディッシュ1との間は通常は密閉
されていないが、溶鋼の酸化を防ぐためにN2 ,Ar
等の不活性ガスでシールされている場合もある。不活性
ガスでシールする場合はブロワー6で溶鋼の落下流2の
周囲に不活性ガスを送り込む。
EXAMPLES The present invention will be explained based on examples in which molten steel and water are used as the molten metal and liquid medium, respectively. FIG. 1 shows a conceptual cross-sectional view of a water atomization device (example) for implementing the present invention. A falling stream 2 of molten steel is injected from a tundish 1. The water jet 3 colliding intensively at the intersection f has an inner diameter I
It is injected from the water jet nozzle 4 of D to atomize the falling flow 2 of molten steel. This atomized water flow passes through the discharge pipe 5 at the bottom of the water jet nozzle 4 to the spray tank (
(not shown). On the other hand, water jet nozzle 4
The space between the tundish 1 and the tundish 1 above it is not normally sealed, but in order to prevent oxidation of the molten steel, N2, Ar
In some cases, it is sealed with an inert gas such as When sealing with an inert gas, a blower 6 blows the inert gas around the falling flow 2 of molten steel.

【0012】さて、高圧の水ジェットで溶鋼をアトマイ
ズする場合、水ジェット噴射ノズルの付近は通常吸い込
み気流が生じているが、溶鋼流の径,アトマイズ条件,
噴射ノズルとタンディッシュの位置関係,シールガスの
状況などによって、アトマイズ毎にこの気体の流量は変
動している。この気体の流量を意識的に制御することに
よって鋼粉の見掛密度を制御するのが本発明の目的であ
る。この気体の流量は水ジェット3の噴射口位置(水ジ
ェット噴射ノズル下面)Nmの気圧を測定して求められ
、その制御はブロワー6で送り込む気体の流量を調節す
ることによって可能である。溶鋼の酸化を防ぐ場合には
、送り込む気体としてN2 ,Ar等の不活性ガスが使
用されるが、単なる流量の調整の場合には大気でもよい
[0012] When molten steel is atomized with a high-pressure water jet, a suction airflow is usually generated near the water jet injection nozzle, but the diameter of the molten steel flow, the atomization conditions,
The flow rate of this gas varies with each atomization, depending on the positional relationship between the injection nozzle and the tundish, the status of the seal gas, and other factors. It is an object of the present invention to control the apparent density of steel powder by intentionally controlling the flow rate of this gas. The flow rate of this gas is determined by measuring the atmospheric pressure Nm at the injection port position of the water jet 3 (lower surface of the water jet nozzle), and can be controlled by adjusting the flow rate of the gas sent by the blower 6. To prevent oxidation of molten steel, an inert gas such as N2 or Ar is used as the gas to be fed, but in the case of simply adjusting the flow rate, air may be used.

【0013】表1に図1に示した装置によってC;0.
10重量%(以下%と略す),Si;0.015%,M
n;0.15%,P;0.015%,S;0.015%
,Ni;0.010%,Cr;0.040%,Mo;0
.010%で残部が不可避不純物からなる溶鋼を噴霧し
た水アトマイズ条件と噴霧によって得られた鋼粉の特性
を示す。この場合はN2 をシールガスとして用いた。
Table 1 shows that C; 0.
10% by weight (hereinafter abbreviated as %), Si; 0.015%, M
n; 0.15%, P; 0.015%, S; 0.015%
, Ni; 0.010%, Cr; 0.040%, Mo; 0
.. The water atomization conditions for spraying molten steel with 0.010% and the remainder consisting of unavoidable impurities and the characteristics of the steel powder obtained by spraying are shown below. In this case, N2 was used as the seal gas.

【0014】[0014]

【表1】[Table 1]

【0015】水アトマイズによって製造された鋼粉を脱
水し、N2 雰囲気中で200℃で乾燥したのち、その
特性を測定した。メジアン径は篩分け法の粒度分布から
求めた。また見掛密度はJISZ2504の測定法で求
めた。実施例のNo.1〜7に示すように水アトマイズ
した鋼粉の粒度を変動させることなく噴射ノズルを通過
するN2 気流量の調整によって見掛密度を3.10〜
3.81g/cm3 まで大幅に調整することができる
。比較例のNo.9は、実施例のNo.3の水アトマイ
ズ条件のうちの水温が高い場合であり、水温が高いため
見掛密度が高くなる。このようにアトマイズ水温が高く
なって鉄粉の見掛密度が高くなる分を実施例のNo.8
に示すようにN2 気流量を減少させることによって、
粒度を変動させることなく実施例No.3と同一の見掛
密度に制御できる。これに対し比較例のNo.10〜1
3に示すように水圧,水量,溶鋼注湯量及び溶鋼温度の
調整によって、水アトマイズ鋼粉の見掛密度を調整する
場合には粒度が変動してしまう。
[0015] Steel powder produced by water atomization was dehydrated and dried at 200°C in an N2 atmosphere, and its properties were then measured. The median diameter was determined from the particle size distribution of the sieving method. Moreover, the apparent density was determined by the measuring method of JIS Z2504. Example No. As shown in Figures 1 to 7, the apparent density of the water-atomized steel powder can be adjusted to 3.10 to 3.10 by adjusting the flow rate of the N2 air that passes through the injection nozzle without changing the particle size of the water-atomized steel powder.
It can be adjusted significantly up to 3.81g/cm3. Comparative example No. 9 is Example No. This is the case where the water temperature is high among the water atomization conditions 3, and the apparent density is high because the water temperature is high. In this way, the increase in the atomized water temperature and the increase in the apparent density of the iron powder was determined by the increase in the atomization water temperature. 8
By decreasing the N2 airflow as shown in
Example No. without changing the particle size. The apparent density can be controlled to be the same as that of 3. In contrast, comparative example No. 10-1
As shown in 3, when the apparent density of water atomized steel powder is adjusted by adjusting the water pressure, water volume, molten steel pouring amount, and molten steel temperature, the particle size will vary.

【0016】[0016]

【発明の効果】本発明の方法によると前述のように、ジ
ェット噴射ノズル噴射口付近を通過する気体の流量を調
節することによって、簡便に、金属粉末の粒度及び粒度
分布を変化させずに見掛密度を制御することができる。
According to the method of the present invention, as described above, by adjusting the flow rate of gas passing near the jet nozzle injection port, the particle size and particle size distribution of metal powder can be easily observed without changing it. The hanging density can be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を実施するための装置の概断面図である
FIG. 1 is a schematic cross-sectional view of an apparatus for carrying out the invention.

【符号の説明】[Explanation of symbols]

1  タンディッシュ 2  溶鋼の落下流 3  水ジェット 4  水ジェット噴射ノズル 5  吐出管 6  ブロワ 7  調整弁 8  気送管 9  金属粉末 10  液面 f  水ジェットの交点 ID  水ジェット噴射ノズルの内径 Nm  水ジェットの噴射口位置 1 Tundish 2 Falling flow of molten steel 3 Water jet 4 Water jet nozzle 5 Discharge pipe 6 Blower 7 Adjustment valve 8 Pneumatic tube 9 Metal powder 10 Liquid level f Intersection of water jets ID Inner diameter of water jet nozzle Nm Water jet nozzle position

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  金属粉末を製造する液体アトマイズ方
法において、液体ジェットが、互いに集中衝突する交点
に向かって、噴射ノズルを通過する気体の流量を調整す
ることによって、得られる金属粉末の見掛密度を制御す
ることを特徴とする液体アトマイズによる金属粉末の見
掛密度の制御方法。
Claim 1: In a liquid atomization method for producing metal powder, the apparent density of the metal powder obtained is adjusted by adjusting the flow rate of gas passing through the injection nozzle toward the intersection point where the liquid jets collide intensively with each other. A method for controlling the apparent density of metal powder by liquid atomization, characterized by controlling the apparent density of metal powder.
JP12287591A 1991-04-26 1991-04-26 Method for controlling apparent density of metal powder produced by liquid atomization Pending JPH04325605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12287591A JPH04325605A (en) 1991-04-26 1991-04-26 Method for controlling apparent density of metal powder produced by liquid atomization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12287591A JPH04325605A (en) 1991-04-26 1991-04-26 Method for controlling apparent density of metal powder produced by liquid atomization

Publications (1)

Publication Number Publication Date
JPH04325605A true JPH04325605A (en) 1992-11-16

Family

ID=14846793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12287591A Pending JPH04325605A (en) 1991-04-26 1991-04-26 Method for controlling apparent density of metal powder produced by liquid atomization

Country Status (1)

Country Link
JP (1) JPH04325605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340102A1 (en) * 1993-11-22 1995-05-24 Mannesmann Ag Double ejector nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340102A1 (en) * 1993-11-22 1995-05-24 Mannesmann Ag Double ejector nozzle

Similar Documents

Publication Publication Date Title
US5707419A (en) Method of production of metal and ceramic powders by plasma atomization
CN106735273A (en) A kind of precinct laser fusion shaping Inconel718 Co-based alloy powders and preparation method thereof
JPH0791571B2 (en) Method for producing titanium particles
JP6006861B1 (en) Metal powder manufacturing apparatus and manufacturing method thereof
US4897111A (en) Method for the manufacture of powders from molten materials
US6481638B1 (en) Method and device for producing fine powder by atomizing molten material with gases
JPH0798965B2 (en) Apparatus and method for atomizing titanium-based materials
US2701775A (en) Method for spraying metal
US6773246B2 (en) Atomizing apparatus and process
KR20040067608A (en) Metal powder and the manufacturing method
US5993509A (en) Atomizing apparatus and process
KR20180046652A (en) Cone-shaped water atomizing variable nozzle for producing metal powder
RU2413595C2 (en) Method of producing spherical granules of refractory and chemically active metals and alloys, device to this end and device to fabricate initial consumable billet to implement said method
JP2022550108A (en) Apparatus for atomizing a molten stream by means of gas
US3533136A (en) Apparatus for producing metal powder
JPH04325605A (en) Method for controlling apparent density of metal powder produced by liquid atomization
GB2117417A (en) Producing high-purity ceramics- free metallic powders
EP4019167A1 (en) Atomisation of metallic melts using liquid co2
JPS63230806A (en) Gas atomizing apparatus for producing metal powder
JPH07102307A (en) Production of flaky powder material
JP2580616B2 (en) Method for producing spherical metal powder
JP2012000592A (en) Gas atomizer of high-temperature molten metal
JPH0441063A (en) Spray forming method
JPH04187707A (en) Manufacture of metal powder and gas atomizing device
JPH06108119A (en) Production of metallic powder