JPH04325427A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH04325427A
JPH04325427A JP12209491A JP12209491A JPH04325427A JP H04325427 A JPH04325427 A JP H04325427A JP 12209491 A JP12209491 A JP 12209491A JP 12209491 A JP12209491 A JP 12209491A JP H04325427 A JPH04325427 A JP H04325427A
Authority
JP
Japan
Prior art keywords
rod
preform
base material
furnace
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12209491A
Other languages
Japanese (ja)
Inventor
Koichiro Watanabe
渡辺 幸一郎
Koichi Takahashi
高橋 浩 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP12209491A priority Critical patent/JPH04325427A/en
Publication of JPH04325427A publication Critical patent/JPH04325427A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down

Abstract

PURPOSE:To produce the optical fiber preform at the time of drawing a first preform rod into a second preform rod having a smaller diameter than the former by controlling the power supplied to a drawing furnace so that the rod is drawn always with a fixed tension irrespective of the variations in the outer diameter of the first rod and thermal conduction of the furnace itself. CONSTITUTION:A first preform rod 1 is passed through a drawing furnace 3 and drawn into a second preform rod 2 having a smaller diameter than the former to produce the optical fiber preform. In this process, the outer diameter of the first rod 1 is measured over its entire length, and the power to be supplied to the furnace 3 is controlled in accordance with the outer diameter of the first rod 1 or in accordance with the tension changed by the penetrating position of the first rod 1 passed through the furnace 3. Consequently, the tension applied on the first rod 1 is fixed, and the optical fiber is produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、第1の母材ロッドを、
これより小径の第2の母材ロッドに延伸する際、第1の
母材ロッドの外径変動や、炉自体の熱伝動などによる変
動などにかかわらず、常に一定の延伸張力で延伸するよ
うに、延伸炉の投入電力を制御するようにした光ファイ
バ母材の製造方法に関するものである。
[Industrial Application Field] The present invention provides a first base material rod,
When drawing a second base material rod with a smaller diameter, the stretching tension is always constant, regardless of changes in the outer diameter of the first base material rod or fluctuations due to heat transfer in the furnace itself. This invention relates to a method for manufacturing an optical fiber preform in which the power input to a drawing furnace is controlled.

【0002】0002

【従来の技術】従来から、第1の母材ロッド(例えばガ
ラスロッド)を、これより小径の第2の母材ロッドに延
伸するには、延伸炉(電気炉など)中に導き、この炉に
よる加熱によって母材を軟化させ、この状態で、引っ張
り延伸している。
BACKGROUND OF THE INVENTION Conventionally, in order to draw a first base material rod (for example, a glass rod) into a second base material rod having a smaller diameter, it has been introduced into a drawing furnace (such as an electric furnace). The base material is softened by heating, and in this state it is stretched.

【0003】そして、この際の延伸炉への電力の投入は
、一般に、第1の母材ロッドの全長にわたって、すなわ
ち延伸の開始から終了まで、一定の値で行っている。
[0003] At this time, power is generally applied to the drawing furnace at a constant value over the entire length of the first base material rod, that is, from the start to the end of drawing.

【0004】0004

【発明が解決しようとする課題】ところが、本発明者等
の研究によると、上記方法では、実際の母材特性や炉自
体の特性を考慮すると、一定の延伸張力で延伸できない
という問題が見出された。つまり、実際の母材にあって
は、その長手方向の全長にわたって、常に外径が均一で
あるわけではなく、微妙なバラツキがあって、一定の延
伸張力で延伸できず、外径変化に対応した電力制御が必
要であることを見出した。
[Problem to be Solved by the Invention] However, according to research conducted by the present inventors, it has been found that the above method has a problem in that it is not possible to stretch with a constant stretching tension when considering the actual properties of the base material and the properties of the furnace itself. It was done. In other words, the actual base material does not always have a uniform outer diameter over its entire longitudinal length, and there are subtle variations, making it impossible to stretch with a constant stretching tension and adapt to changes in the outer diameter. It was discovered that a controlled power control is necessary.

【0005】また、仮に、第1の母材ロッドの外径がそ
の全長にわたって均一であっても、炉自体の特性(熱電
導などの特性など)により、延伸開始直後から次第に延
伸張力が低下するという傾向が見られ、常時一定の電力
を投入する方法では、やはり一定の延伸張力で延伸でき
ないことを見出した。
Furthermore, even if the outer diameter of the first base material rod is uniform over its entire length, the stretching tension gradually decreases immediately after the stretching starts due to the characteristics of the furnace itself (such as properties such as thermal conductivity). This tendency was observed, and it was found that the method of constantly inputting a constant electric power does not allow stretching at a constant stretching tension.

【0006】本発明は、このような従来の実情に鑑みて
なされたものである。
The present invention has been made in view of such conventional circumstances.

【課題を解決するための手段】かゝる本発明の特徴とす
る点は、第1の母材ロッドを、延伸炉に通し、これより
小径の第2の母材ロッドに延伸して光ファイバ母材を製
造する方法において、前記第1の母材ロッドの全長にわ
たって外径を測定し、前記延伸炉に通された当該第1の
母材ロッドの外径に応じて、または前記延伸炉に通され
た前記第1の母材ロッドの進入位置により変わる延伸張
力に応じて、当該延伸炉の投入電力を制御して、当該第
1の母材ロッドの延伸張力を一定に保つ光ファイバ母材
の製造方法にある。
[Means for Solving the Problems] The present invention is characterized in that a first base material rod is passed through a drawing furnace and stretched to a second base material rod having a smaller diameter to form an optical fiber. In the method for manufacturing a base material, the outer diameter of the first base material rod is measured over the entire length, and the outer diameter of the first base material rod is measured depending on the outer diameter of the first base material rod passed through the drawing furnace, or An optical fiber preform that maintains a constant drawing tension of the first preform rod by controlling input power to the drawing furnace in accordance with the drawing tension that changes depending on the entry position of the first preform rod passed through. It is in the manufacturing method.

【0007】[0007]

【作用】このように第1の母材ロッドの外径や、炉内で
の進入位置に応じて、投入電力を制御すれば、進入位置
すなわち延伸開始から時間に応じて、投入電力を少なく
していき、また、外径に対しては、大きい外径のときに
は投入電力を多くし、小さい外径のときには投入電力を
少なくすれば、単位ロッド部材に対する供給熱量が均一
化され、ロッドの均一な軟化が行われ、一定の延伸張力
による光ファイバ母材の製造が実現される。
[Function] By controlling the input power in accordance with the outer diameter of the first base material rod and the entry position in the furnace, the input power can be reduced depending on the entry position, that is, the time from the start of stretching. In addition, with respect to the outer diameter, if the input power is increased when the outer diameter is large and the input power is decreased when the outer diameter is small, the amount of heat supplied to each unit rod member will be equalized, and the rod will be uniformly heated. Softening is performed and the production of an optical fiber preform with a constant drawing tension is realized.

【0008】[0008]

【実施例】図1は、本発明に係る光ファイバ母材の製造
方法の一実施例を示したものである。
Embodiment FIG. 1 shows an embodiment of the method for manufacturing an optical fiber preform according to the present invention.

【0009】図において、1は第1の母材ロッド、2は
この第1の母材ロッド1を延伸炉3に通して、当該第1
の母材ロッド1より小径に延伸した第2の母材ロッドで
あり、この第2の母材ロッドから目的とする光ファイバ
母材が得られる。
In the figure, 1 is a first base material rod, and 2 is a first base material rod that is passed through a drawing furnace 3 and
This is a second preform rod extending to a smaller diameter than the preform rod 1, and the desired optical fiber preform is obtained from this second preform rod.

【0010】上記延伸炉3は、電気炉で、内部の円筒状
のマッフル4とこのマッフル4を通して上記第1の母材
ロッド1を加熱する電熱ヒータなどの発熱体5からなる
The drawing furnace 3 is an electric furnace, and includes an internal cylindrical muffle 4 and a heating element 5 such as an electric heater that heats the first base material rod 1 through the muffle 4.

【0011】この延伸炉3において、上記第1の母材ロ
ッド1は、当初の外径Dから所定の速度V1 で送り出
され、当該延伸炉3中での加熱により、軟化しつつ延伸
され、目標外径(直径)d0 の第2の母材ロッド2と
して、所定の速度V2 で引き取られる。
In this drawing furnace 3, the first base material rod 1 is sent out at a predetermined speed V1 from its initial outer diameter D, and is stretched while being softened by heating in the drawing furnace 3. The second base material rod 2 having an outer diameter (diameter) d0 is taken off at a predetermined speed V2.

【0012】このとき、理想的には、第1の母材ロッド
1は、常に一定の延伸張力で延伸されることが、得られ
る光ファイバの伝送特性上、必要とされるわけであるが
、例えば第1の母材ロッド1の全長にわたって外径にバ
ラツキがあると、延伸炉3すなわち発熱体5への定電力
投入では、一定の延伸張力が得られない。
[0012] At this time, ideally, the first base material rod 1 must be always stretched with a constant stretching tension in view of the transmission characteristics of the obtained optical fiber. For example, if there is variation in the outer diameter over the entire length of the first base material rod 1, a constant drawing tension cannot be obtained by applying constant power to the drawing furnace 3, that is, the heating element 5.

【0013】そこで、本発明では、予め、あるいは延伸
炉3への挿入時に、レーザー方式などの外径測定装置(
図示省略)により、第1の母材ロッド1の全長にわたる
外径測定を行い、その外径データと、その位置データ(
例えばロッド先端からの位置データ)をコンピュータな
どの記憶部に記憶させる。
Therefore, in the present invention, an outer diameter measuring device such as a laser method (
(not shown) is used to measure the outer diameter over the entire length of the first base material rod 1, and the outer diameter data and position data (
For example, position data from the tip of the rod) is stored in a storage unit such as a computer.

【0014】一方、延伸炉3中に送り出された第1の母
材ロッド1の進入位置(例えばロッド先端の炉中への進
入距離、あるいは延伸開始からの経過時間など)は、ロ
ッド送出し装置(図示省略)の駆動機構などに取付けた
パルスジェネレータや、ロッド先端の通過を検知する接
触センサや光センサなどにより、測定できるようにして
おく。
On the other hand, the entry position of the first base material rod 1 sent into the drawing furnace 3 (for example, the entry distance of the rod tip into the furnace, or the elapsed time from the start of drawing) is determined by the rod delivery device. Measurements can be made using a pulse generator attached to a drive mechanism (not shown), a contact sensor, an optical sensor, etc. that detects the passage of the rod tip.

【0015】さらに、延伸炉3自体の特性(例えば炉内
ロッドの熱電導による延伸張力の変動)も、予め測定し
ておく。この特性の変化は、本発明者等の実験した延伸
炉の場合、図2の如くであった(図中、6は延伸張力パ
ターン)。つまり、炉の延伸張力は、第1の母材ロッド
1の進入位置(延伸開始後の経過時間と同じ)に大きく
なる従って、徐々に小さくなる傾向にあることが判る。
Furthermore, the characteristics of the drawing furnace 3 itself (for example, variations in drawing tension due to thermal conduction of the rods in the furnace) are also measured in advance. This change in characteristics was as shown in FIG. 2 in the case of the drawing furnace tested by the present inventors (in the figure, 6 is the drawing tension pattern). In other words, it can be seen that the stretching tension of the furnace tends to gradually decrease as it increases toward the entry position of the first base material rod 1 (same as the elapsed time after the start of stretching).

【0016】したがって、図3に示したように延伸炉3
の投入電力は、第1の母材ロッド1の進入位置に対応さ
せて、概ね図中の電力制御パターン7により行うものと
する。
Therefore, as shown in FIG.
It is assumed that the input power is applied approximately according to the power control pattern 7 shown in the figure, corresponding to the entry position of the first base material rod 1.

【0017】しかし、実際の延伸炉3の運転にあたって
は、上述の如く第1の母材ロッド1の全長には、その外
径に多少のバラツキが存在するため、上記第1の母材ロ
ッド1の外径データとその位置データを、上記炉内への
進入位置データと比較し、この第1の母材ロッド1の外
径に対応させて、つまり、外径の太い部分が最適加熱部
に達したときには、上記電力制御パターン7を基本(ベ
ース)として、多少大きな電力を投入し、外径が細くな
ったときには、やはり電力制御パターン7を基本としつ
つも、その細くなった分に応じて、投入電力を少なくす
るように、投入電力を制御する。
However, in actual operation of the drawing furnace 3, since there is some variation in the outer diameter of the first base material rod 1 in the overall length as described above, the first base material rod 1 The outer diameter data and its position data are compared with the above-mentioned entrance position data into the furnace, and the part with the larger outer diameter is determined to correspond to the outer diameter of the first base material rod 1, that is, the part with the larger outer diameter is the optimum heating part. When the power control pattern 7 is reached, a somewhat larger amount of power is input using the power control pattern 7 as the base, and when the outer diameter becomes thinner, the power control pattern 7 is used as the basis, but the power control pattern 7 is applied as a base. , the input power is controlled so as to reduce the input power.

【0018】これにより、第1の母材ロッド1の延伸張
力は、その外径や炉の特性などに影響されずに、ほぼ一
定に保たれ、理想的な延伸が得られる。この均一な延伸
張力により、得られた光ファイバには、歪みがなく、極
めて良好な伝送特性が得られる。
[0018] As a result, the stretching tension of the first base material rod 1 is kept almost constant without being affected by its outer diameter or the characteristics of the furnace, and ideal stretching can be obtained. Due to this uniform stretching tension, the obtained optical fiber is free from distortion and has extremely good transmission characteristics.

【0019】因に、母材ロッド外径変化による投入電力
の制御値を数式的に求めれば、次の如くである。先ず、
第1の母材ロッド1の外径Dと延伸張力Fとの間には、
次の関係が成り立つものとして、延伸張力Fが一定とな
るよう延伸炉3に投入する電力を制御する。   (D/d)2 ・η  F           
                         
      (1)ただし、同式中、d:第2の母材ロ
ッド2の外径、η:ある温度における母材ロッド(石英
ガラスロッド)の粘度である。
Incidentally, if the control value of the input power due to the change in the outer diameter of the base material rod is calculated mathematically, it is as follows. First of all,
Between the outer diameter D of the first base material rod 1 and the stretching tension F,
Assuming that the following relationship holds true, the electric power input to the drawing furnace 3 is controlled so that the drawing tension F is constant. (D/d)2 ・η F

(1) However, in the same formula, d: outer diameter of the second base material rod 2, η: viscosity of the base material rod (silica glass rod) at a certain temperature.

【0020】したがって、延伸張力Fが一定となるため
には、次式なる関係が成立していればよい。   η=A(d/D)2              
                         
      (2)ただし、同式中、A:定数である。
[0020] Therefore, in order for the stretching tension F to be constant, it is sufficient that the following relationship holds true. η=A(d/D)2

(2) However, in the same formula, A: constant.

【0021】一方、ロッド(ガラス)の粘度と、温度の
間には、次の関係が成立する。   η=Bexp(E/RT)           
                         
  (3)ただし、同式中、B:定数、E:物質に固有
な量、R:ガス定数、T:絶対温度である。
On the other hand, the following relationship holds between the viscosity of the rod (glass) and the temperature. η=Bexp(E/RT)

(3) However, in the same formula, B: constant, E: quantity specific to the substance, R: gas constant, and T: absolute temperature.

【0022】また、延伸炉3の温度と、投入電力Pとの
間には、次の関係が成立する。   T=CP1/4                
                         
          (4)ただし、同式中、C:定数
である。
Furthermore, the following relationship holds between the temperature of the drawing furnace 3 and the input power P. T=CP1/4

(4) However, in the same formula, C: constant.

【0023】したがって、上記式(2)〜(4)から次
式が導かれる。   (d/D)2 =C1 exp(C2 P−1/4
)                        
(5)ただし、同式中、C1 、C2 :定数である。
Therefore, the following equation is derived from the above equations (2) to (4). (d/D)2 = C1 exp (C2 P-1/4
)
(5) However, in the same formula, C1 and C2 are constants.

【0024】つまり、母材ロッド外径変化に対しては、
この式(5)により求められる電力Pにより、制御する
一方、炉自体の特性に対しては、上述した図3の電力制
御を加味すればよい。
In other words, for changes in the outer diameter of the base material rod,
While the control is performed using the power P determined by this equation (5), the characteristics of the furnace itself may be taken into consideration by the power control shown in FIG. 3 described above.

【0025】[0025]

【発明の効果】このように本発明に係る光ファイバの製
造方法によれば、次のような優れた効果が得られる。
As described above, according to the optical fiber manufacturing method according to the present invention, the following excellent effects can be obtained.

【0026】(1)先ず、第1の母材ロッドの全長にわ
たって外径を測定し、延伸炉に通されたこの第1の母材
ロッドの外径に応じて、当該延伸炉の投入電力を制御す
れば、外径のバラツキにかかわりなく、当該第1の母材
ロッドの延伸張力を一定に保つことができる。
(1) First, the outer diameter of the first base material rod is measured over the entire length, and the power input to the drawing furnace is adjusted according to the outer diameter of the first base material rod passed through the drawing furnace. If controlled, the stretching tension of the first base material rod can be kept constant regardless of variations in the outer diameter.

【0027】(2)また、延伸炉に通された第1の母材
ロッドの進入位置により変わる延伸張力に応じて、当該
延伸炉の投入電力を制御すれば、炉の特性にかかわりな
く、当該第1の母材ロッドの延伸張力を一定に保つこと
ができる。
(2) Furthermore, if the input power of the drawing furnace is controlled in accordance with the drawing tension that changes depending on the entry position of the first base material rod passed through the drawing furnace, the drawing furnace can be used regardless of the characteristics of the furnace. The stretching tension of the first base material rod can be kept constant.

【0028】(3)さらに、上記両者をくみあわせれば
、第1の母材ロッドの外径のバラツキ、および炉の特性
にかかわりなく、当該第1の母材ロッドの延伸張力をほ
ぼ理想的な形で一定に保つことができる。
(3) Furthermore, by combining the above two factors, regardless of the variation in the outer diameter of the first base material rod and the characteristics of the furnace, the drawing tension of the first base material rod can be made almost ideal. It can be kept constant in shape.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る光ファイバの製造方法の一実施例
を示した概略説明図である。
FIG. 1 is a schematic explanatory diagram showing an embodiment of an optical fiber manufacturing method according to the present invention.

【図2】延伸炉における延伸張力と母材ロッドの進入位
置との関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the drawing tension and the entry position of the base material rod in the drawing furnace.

【図3】延伸炉における投入電力と母材ロッドの進入位
置との関係を示したグラフである。
FIG. 3 is a graph showing the relationship between input power and the entry position of the base material rod in the drawing furnace.

【符号の説明】[Explanation of symbols]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  第1の母材ロッドを、延伸炉に通し、
これより小径の第2の母材ロッドに延伸して光ファイバ
母材を製造する方法において、前記第1の母材ロッドの
全長にわたって外径を測定し、前記延伸炉に通された当
該第1の母材ロッドの外径に応じて、当該延伸炉の投入
電力を制御して、当該第1の母材ロッドの延伸張力を一
定に保つことを特徴とする光ファイバ母材の製造方法。
Claim 1: Passing a first base material rod through a drawing furnace;
In a method of manufacturing an optical fiber preform by stretching a second preform rod having a smaller diameter, the outer diameter of the first preform rod is measured over the entire length of the first preform rod, and the first preform rod is passed through the drawing furnace. A method for manufacturing an optical fiber preform, comprising controlling the input power of the drawing furnace according to the outer diameter of the first preform rod to keep the drawing tension of the first preform rod constant.
【請求項2】  第1の母材ロッドを、延伸炉に通し、
これより小径の第2の母材ロッドに延伸して光ファイバ
母材を製造する方法において、前記延伸炉に通された前
記第1の母材ロッドの進入位置により変わる延伸張力に
応じて、当該延伸炉の投入電力を制御して、当該第1の
母材ロッドの延伸張力を一定に保つことを特徴とする光
ファイバ母材の製造方法。
2. Passing the first base material rod through a drawing furnace;
In a method of manufacturing an optical fiber preform by stretching a second preform rod having a smaller diameter, the first preform rod is passed through the drawing furnace and the first preform rod is passed through the drawing furnace, and the drawing tension varies depending on the entry position of the first preform rod. A method for manufacturing an optical fiber preform, which comprises controlling input power to a drawing furnace to maintain a constant drawing tension of the first preform rod.
【請求項3】  第1の母材ロッドを、延伸炉に通し、
これより小径の第2の母材ロッドに延伸して光ファイバ
母材を製造する方法において、前記延伸炉に通された前
記第1の母材ロッドの進入位置により変わる延伸張力に
応ずると共に、前記第1の母材ロッドの全長にわたって
外径を測定し、前記延伸炉に通された当該第1の母材ロ
ッドの外径に応じて、当該延伸炉の投入電力を制御して
、当該第1の母材ロッドの延伸張力を一定に保つことを
特徴とする光ファイバ母材の製造方法。
3. Passing the first base material rod through a drawing furnace;
In a method for producing an optical fiber preform by stretching a second preform rod having a smaller diameter, the first preform rod may be adapted to a drawing tension that varies depending on the entry position of the first preform rod passed through the drawing furnace; The outer diameter of the first base material rod is measured over the entire length, and the power input to the drawing furnace is controlled according to the outer diameter of the first base material rod passed through the drawing furnace. A method for manufacturing an optical fiber preform, characterized by keeping the stretching tension of the preform rod constant.
JP12209491A 1991-04-24 1991-04-24 Production of optical fiber preform Pending JPH04325427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12209491A JPH04325427A (en) 1991-04-24 1991-04-24 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12209491A JPH04325427A (en) 1991-04-24 1991-04-24 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH04325427A true JPH04325427A (en) 1992-11-13

Family

ID=14827507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12209491A Pending JPH04325427A (en) 1991-04-24 1991-04-24 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH04325427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134922A (en) * 1997-06-19 2000-10-24 Shin-Etsu Chemical Co., Ltd. Method for drawing a glass ingot
US6354113B2 (en) 1999-01-20 2002-03-12 Alcatel Fiber optic draw furnace featuring a fiber optic preform heating and fiber drawing programmable logic controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134922A (en) * 1997-06-19 2000-10-24 Shin-Etsu Chemical Co., Ltd. Method for drawing a glass ingot
US6354113B2 (en) 1999-01-20 2002-03-12 Alcatel Fiber optic draw furnace featuring a fiber optic preform heating and fiber drawing programmable logic controller

Similar Documents

Publication Publication Date Title
JPH072539A (en) Method of stretching glass article from glass feed material and method and device for making cane for optical fiber
JPH09132424A (en) Method for drawing optical fiber
JPH04325427A (en) Production of optical fiber preform
WO2005056487A1 (en) Method of stretching optical fiber base material and stretching device
US3445096A (en) Thermoplastic parison heating
JP2000211939A (en) Fiber optic drawn furnace featuring fiber optic preform heating and fiber drawing programmable logic controller
JPH04325428A (en) Production of optical fiber preform
JP3824671B2 (en) Glass rod drawing method
JP3071420B1 (en) Method and apparatus for stretching glass base material
JP2001010839A (en) Apparatus and method for drawing glass preform
JP3864463B2 (en) Stretching method
JPS63151640A (en) Apparatus for drawing glass rod
JPH0253376B2 (en)
CN111936443A (en) Method and apparatus for manufacturing optical fiber
JPH0535094B2 (en)
JPWO2004000740A1 (en) Method for drawing glass base material and drawing apparatus used therefor
JP4258610B2 (en) Drawing method of glass base material
JPH06227838A (en) Production of optical fiber
JPH04331734A (en) Method for drawing base material of optical fiber
JP3112893B2 (en) Glass base material stretching method
JP4325165B2 (en) Drawing method of glass base material
JP2938647B2 (en) Glass rod stretching control method
JP4120783B2 (en) Method for drawing glass base material and drawing apparatus used therefor
JPS63190738A (en) Device for drawing fluoride optical fiber
JPH0461819B2 (en)