JPH0432525B2 - - Google Patents

Info

Publication number
JPH0432525B2
JPH0432525B2 JP62077272A JP7727287A JPH0432525B2 JP H0432525 B2 JPH0432525 B2 JP H0432525B2 JP 62077272 A JP62077272 A JP 62077272A JP 7727287 A JP7727287 A JP 7727287A JP H0432525 B2 JPH0432525 B2 JP H0432525B2
Authority
JP
Japan
Prior art keywords
current
temperature
power supply
coil
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62077272A
Other languages
Japanese (ja)
Other versions
JPS63244602A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62077272A priority Critical patent/JPS63244602A/en
Publication of JPS63244602A publication Critical patent/JPS63244602A/en
Publication of JPH0432525B2 publication Critical patent/JPH0432525B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、核磁気共鳴断層撮像装置の静磁場用
の自己シールド型常電導磁石用電源に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a power supply for a self-shielded normal conducting magnet for a static magnetic field in a nuclear magnetic resonance tomography imaging apparatus.

(従来の技術) 核磁気共鳴断層撮像装置(以下NMR−CTと
いう)は強力な静磁場中に勾配磁場をかけ、静磁
場に垂直な軸に勾配磁場によつて生ずる磁場の強
さに比例したラーモア周波数の高周波回転磁場を
印加すると磁気共鳴を生じ、その周波数に共鳴し
た原子核からのエコー信号を受信して、処理し診
断する装置である。このNMR−CTには上記の
ように強力な静磁場を必要とし、しかもこの静磁
場の安定性は極めて重要で、得られる画像の画質
を決めるといつても過言ではない。
(Prior art) Nuclear magnetic resonance tomography (hereinafter referred to as NMR-CT) applies a gradient magnetic field to a strong static magnetic field, and generates a magnetic field that is proportional to the strength of the magnetic field generated by the gradient magnetic field along an axis perpendicular to the static magnetic field. This device generates magnetic resonance by applying a high-frequency rotating magnetic field at the Larmor frequency, receives echo signals from atomic nuclei that resonate at that frequency, processes them, and diagnoses them. As mentioned above, NMR-CT requires a strong static magnetic field, and the stability of this static magnetic field is extremely important, and it is no exaggeration to say that it determines the quality of the image obtained.

静磁場の主磁場磁石としては常電導磁石,永久
磁石及び超電導磁石があり、重量,維持費,設置
場所等の条件を勘案し、広い均一領域を持つ静磁
場をできるだけ少ない電力で発生させる点で優れ
た常電導磁石が良く用いられている。
The main magnetic field magnets for static magnetic fields include normal conducting magnets, permanent magnets, and superconducting magnets. Considering conditions such as weight, maintenance costs, and installation location, we aim to generate a static magnetic field with a wide uniform area with as little power as possible. Excellent normal conducting magnets are often used.

(発明が解決しようとする問題点) 常電導磁石において、漏洩磁場を減少させるた
め及び強磁性体による磁場エンハンスにより消費
電力を減少させるため等の必要上から磁場発生体
の周りに磁気シールドを設けている。この自己シ
ールド型電磁石において、その磁気シールドの温
度が変化すると、シールド材の磁気抵抗が変化す
るため磁場強度が変動してしまう。
(Problem to be Solved by the Invention) In a normally conducting magnet, a magnetic shield is provided around the magnetic field generator for reasons such as reducing leakage magnetic fields and reducing power consumption by enhancing the magnetic field with ferromagnetic material. ing. In this self-shielded electromagnet, when the temperature of the magnetic shield changes, the magnetic resistance of the shielding material changes, causing the magnetic field strength to fluctuate.

自己シールド型電磁石では鉄シールド材を飽和
磁束密度Bsの状態で使用している。一般に温度
TでのBs(T)は絶対温度T=0における飽和磁
束密度Bs(O)をBs maxとすれば次の関係があ
る。
Self-shielded electromagnets use iron shielding material at saturation magnetic flux density Bs. Generally, Bs (T) at temperature T has the following relationship, assuming that the saturation magnetic flux density Bs (O) at absolute temperature T=0 is Bs max.

Bs(T)=Bs max{1−(T/Tc)}3/2 ここで、Tc…キユーリー温度(〓)室温 T
=298〓(25℃)において1℃の温度変化で飽和
磁束密度Bsは0.09%変わる。通常のNMR−CT
用の磁石寸法ではこのBsの0.09%/℃の変化によ
つて−100ppm/℃のドリフトになる。磁気シー
ルド材の温度は室温の変化又はコイルに流す電流
による発熱のために変化する。その結果として、
既述のようにBsのドリフトを生じ磁場強度が変
化してしまう。この状態を第2図に示す。図はコ
イル電流を一定に保つた場合における磁気シール
ド材の温度変化に対する磁場強度の変化を示す曲
線である。このように磁場強度が変化すると
NMR−CTの出力信号に変動を生じて誤差を生
じてしまう。
Bs(T)=Bs max {1-(T/Tc)}3/2 Here, Tc...Curie temperature (〓) Room temperature T
=298〓(25℃), the saturation magnetic flux density Bs changes by 0.09% with a temperature change of 1℃. Normal NMR-CT
With the magnet dimensions for this purpose, a change in Bs of 0.09%/°C results in a drift of -100 ppm/°C. The temperature of the magnetic shielding material changes due to changes in room temperature or heat generation due to current flowing through the coil. As a result,
As mentioned above, Bs drift occurs and the magnetic field strength changes. This state is shown in FIG. The figure is a curve showing the change in magnetic field strength with respect to the temperature change of the magnetic shielding material when the coil current is kept constant. When the magnetic field strength changes in this way,
Fluctuations occur in the output signal of NMR-CT, resulting in errors.

本発明は上記の点に鑑みてなされたもので、そ
の目的は、温度が変化しても磁場の変化しない常
電導磁石のための電源を実現することにある。
The present invention has been made in view of the above points, and its purpose is to realize a power source for a normally conducting magnet whose magnetic field does not change even if the temperature changes.

(問題点を解決するための手段) 前記の問題点を解決する本発明は、核磁気共鳴
断層撮像装置の静磁場用の自己シールド型常電導
磁石用電源において、コイルに電流を供給する直
流電源と該直流電源回路に直列に挿入された電流
検出手段と電流調整手段とから成るコイル電流供
給手段と、磁気シールドの温度を検出する手段
と、前記検出温度に基づいて補償電圧を出力する
温度補償調整手段と、前記補償電圧と標準電圧電
源の出力電圧を加算する加算手段と、この加算手
段の出力と前記電流検出手段の出力との差に基づ
いて前記電流調整手段を制御する制御手段を具備
することを特徴とするものである。
(Means for Solving the Problems) The present invention, which solves the above-mentioned problems, provides a DC power supply for supplying current to a coil in a power supply for a self-shielded normally conducting magnet for a static magnetic field of a nuclear magnetic resonance tomography apparatus. a coil current supply means comprising a current detection means and a current adjustment means inserted in series in the DC power supply circuit; a means for detecting the temperature of the magnetic shield; and a temperature compensation means for outputting a compensation voltage based on the detected temperature. An adjusting means, an adding means for adding the compensation voltage and the output voltage of the standard voltage power supply, and a control means for controlling the current adjusting means based on the difference between the output of the adding means and the output of the current detecting means. It is characterized by:

(作用) 磁気シールド温度に基づく補償信号を含む標準
電圧と電流検出手段の出力との差電圧により電流
調整手段を流れる電流量を調整し、磁気シールド
の温度変化による磁気抵抗の変化により生じる磁
場ドリフトを補償する。
(Function) The amount of current flowing through the current adjustment means is adjusted by the difference voltage between the standard voltage containing a compensation signal based on the magnetic shield temperature and the output of the current detection means, and magnetic field drift caused by changes in magnetic resistance due to temperature changes in the magnetic shield is controlled. Compensate for.

(実施例) 以下、図面を参照して本発明の実施例を詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の概略構成図であ
る。1はNMR−CTに静磁場を与える常電導磁
石のコイルで、磁気シールド2に周囲を覆われ
て、磁場をエンハンスされている。3はコイル1
に直流電流を流して静磁場を作るための直流電
源、4はコレクタを直流電源3に接続され、エミ
ツタを電流検出抵抗5を介してコイル1に接続さ
れて、コイル1に流れる電流を調節するトランジ
スタで、電流検出抵抗5はコイル1に電流を供給
している電源回路に直列に挿入されている抵抗値
rの温度係数の小さい精密抵抗で、その両端はア
ンプ6の入力端子にそれぞれ接続されている。以
上の直流電源3,トランジスタ4,電流検出抵抗
5とで電流供給手段を構成している。アンプ6は
電流検出抵抗5の両端電圧を増幅する。7は磁気
シールド2の温度を検出する温度センサ、8は温
度センサ7の温度データに基づき磁気シールド2
の温度に比例した補償分の電圧Vthを出力するた
めのゲイン及びオフセツトの調節機能を持つ温度
補償調節器、9は標準電圧Vrを出力する標準電
圧電源で、その出力電圧Vrは前記温度補償調節
器8の出力電圧Vthと共に加算器10に入力され
る。加算器10は2つの入力を加算して電圧
“Vr+Vth”を出力する。11は加算器10の出
力電圧“Vr+Vth”とアンプ6の出力電圧I・
rとを比較してその差電圧に基づく制御信号をト
ランジスタ4のベースに入力し、トランジスタ4
のエミツタ・コレクタ間の内部抵抗を変化させる
制御器である。
FIG. 1 is a schematic diagram of an embodiment of the present invention. 1 is a normally conducting magnet coil that provides a static magnetic field to the NMR-CT, and is surrounded by a magnetic shield 2 to enhance the magnetic field. 3 is coil 1
A DC power source 4 is connected to the DC power source 3 at its collector and connected to the coil 1 via a current detection resistor 5 to adjust the current flowing through the coil 1. The current detection resistor 5, which is a transistor, is a precision resistor with a small temperature coefficient of resistance r, which is inserted in series with the power supply circuit that supplies current to the coil 1, and its both ends are connected to the input terminals of the amplifier 6, respectively. ing. The above DC power supply 3, transistor 4, and current detection resistor 5 constitute a current supply means. An amplifier 6 amplifies the voltage across the current detection resistor 5. 7 is a temperature sensor that detects the temperature of the magnetic shield 2; 8 is a temperature sensor that detects the temperature of the magnetic shield 2 based on the temperature data of the temperature sensor 7;
9 is a standard voltage power supply that outputs a standard voltage Vr, and 9 is a standard voltage power supply that outputs a standard voltage Vr. It is input to the adder 10 together with the output voltage Vth of the device 8. The adder 10 adds the two inputs and outputs a voltage "Vr+Vth". 11 is the output voltage "Vr+Vth" of the adder 10 and the output voltage I of the amplifier 6.
A control signal based on the difference voltage is input to the base of transistor 4, and
This is a controller that changes the internal resistance between the emitter and collector of the

次に上記のように構成された回路の動作を説明
する。運転開始に当つて、直流電源3からコイル
1にトランジスタ4のコレクタ・エミツタ間の内
部抵抗,電流検出抵抗5を経由して電流を供給
し、NMR−CTに所望の静磁場を与える。この
ときのコイル1の電流をIとする。時間の経過に
伴つて変化する磁気シールド2の温度は温度セン
サ7によつて検出され、温度補償調節器8におい
て補償電圧Vthとして加算器10に入力され、標
準電圧電源9の出力電圧Vrと加算される。この
加算出力は制御器11に入力される。制御器11
にはコイル1に流れる電流Iによつて生ずる電流
検出抵抗5の両端電圧I・rがアンプ6を介して
入力されていて、加算器10の出力“Vr+Vth”
との差の電圧“(Vr+Vth)−I・r”に基づく
制御信号を出力する。運転開始時にはコイル1の
電流は次式を満足させるように調節されている。
Next, the operation of the circuit configured as described above will be explained. At the start of operation, a current is supplied from the DC power supply 3 to the coil 1 via the internal resistance between the collector and emitter of the transistor 4 and the current detection resistor 5 to provide a desired static magnetic field to the NMR-CT. Let I be the current in the coil 1 at this time. The temperature of the magnetic shield 2, which changes over time, is detected by the temperature sensor 7, inputted to the adder 10 as a compensation voltage Vth in the temperature compensation controller 8, and added to the output voltage Vr of the standard voltage power supply 9. be done. This addition output is input to the controller 11. Controller 11
The voltage I·r across the current detection resistor 5 generated by the current I flowing through the coil 1 is inputted via the amplifier 6, and the output of the adder 10 is “Vr+Vth”.
A control signal is output based on the voltage difference "(Vr+Vth)-I.r". At the start of operation, the current in the coil 1 is adjusted so as to satisfy the following equation.

(Vr+Vth)−I・r=0 時間の経過と共に磁気シールド2の温度が上昇
すると、温度補償調節器8の出力は“Vth+△
Vth”となり、加算器9は電圧“Vr+Vth+△
Vth”を出力する。この入力電圧により制御器1
0の出力電圧は次式のようになる。
(Vr+Vth)-I・r=0 As the temperature of the magnetic shield 2 increases with the passage of time, the output of the temperature compensation controller 8 becomes “Vth+△
Vth”, and the adder 9 outputs a voltage “Vr+Vth+△
Vth" is output. This input voltage causes the controller 1 to
The output voltage of 0 is given by the following equation.

(Vr+Vth+△Vth)−I・r>0 従つて、トランジスタ4のベース電圧が上昇
し、コレクタ・ベース間抵抗が減つて直流電源3
の負荷が増してコイル1に流れる電流は増加す
る。このためコイル1による磁束が増え、磁場の
強さが増加し、磁気シールド2の温度上昇による
磁気抵抗の増加を補償する。
(Vr+Vth+△Vth)-I・r>0 Therefore, the base voltage of the transistor 4 increases, the collector-base resistance decreases, and the DC power supply 3
As the load increases, the current flowing through the coil 1 increases. Therefore, the magnetic flux generated by the coil 1 increases, the strength of the magnetic field increases, and the increase in magnetic resistance due to the temperature rise of the magnetic shield 2 is compensated for.

磁気シールドの温度が上昇するに従つてコイル
1に流れる電流は増加し、磁気シールドの温度上
昇に伴う磁気抵抗の増加を補償するように磁束を
増加させる。
As the temperature of the magnetic shield rises, the current flowing through the coil 1 increases, increasing the magnetic flux to compensate for the increase in magnetic resistance accompanying the rise in temperature of the magnetic shield.

本実施例による磁気シールドの温度上昇に対す
る補償の状況を第3図に示す。図において、イ図
は磁気シールドの温度上昇によりコイル電流Iの
増加する状況を示す図で、ロ図はイ図のコイル電
流Iの増加によつて第2図に示した磁場強度の低
下が補償されて、一定の磁場強度が得られる状況
を示す曲線である。図によつて明らかなように磁
気シールドの温度上昇に応じてコイル電流が増え
るため、磁場強度は磁気シールドの温度に拘らず
一定になつている。
FIG. 3 shows the state of compensation for the temperature rise of the magnetic shield according to this embodiment. In the figure, figure A shows the situation where the coil current I increases due to the rise in temperature of the magnetic shield, and figure B shows the increase in coil current I shown in figure A, which compensates for the decrease in the magnetic field strength shown in figure 2. This is a curve showing the situation where a constant magnetic field strength is obtained. As is clear from the figure, the coil current increases as the temperature of the magnetic shield increases, so the magnetic field strength remains constant regardless of the temperature of the magnetic shield.

尚、本発明は上記実施例に限定されるものでは
ない。例えば、電流検出抵抗は直流用のカレント
トランスであつても差支えない。
Note that the present invention is not limited to the above embodiments. For example, the current detection resistor may be a DC current transformer.

(発明の効果) 以上詳細に説明しように、本発明によれば、周
囲温度等の変化により磁気シールドの温度が変動
しても、電磁石の磁場の強度の変化しない安定な
常電導磁石によるNMR−CTの静磁場を得るこ
とができ、実用上の効果は大きい。
(Effects of the Invention) As explained in detail above, according to the present invention, even if the temperature of the magnetic shield changes due to changes in the ambient temperature, etc., the NMR- It is possible to obtain the static magnetic field of CT, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成図、第2
図は磁気シールドの温度変化による磁場強度の変
化を示す図、第3図は本実施例による温度補償の
状況説明図である。 1……コイル、2……磁気シールド、3……直
流電源、4……トランジスタ、5……電流検出抵
抗、6……アンプ、7……温度センサ、8……温
度補償調節器、9……標準電圧電源、10……加
算器、11……制御器。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG.
The figure is a diagram showing changes in magnetic field strength due to temperature changes in the magnetic shield, and FIG. 3 is a diagram explaining the situation of temperature compensation according to this embodiment. DESCRIPTION OF SYMBOLS 1... Coil, 2... Magnetic shield, 3... DC power supply, 4... Transistor, 5... Current detection resistor, 6... Amplifier, 7... Temperature sensor, 8... Temperature compensation controller, 9... ...Standard voltage power supply, 10...Adder, 11...Controller.

Claims (1)

【特許請求の範囲】[Claims] 1 核磁気共鳴断層撮像装置の静磁場用の自己シ
ールド型常電導磁石用電源において、コイルに電
流を供給する直流電源と該直流電源回路に直列に
挿入された電流検出手段と電流調整手段とから成
るコイル電流供給手段と、磁気シールドの温度を
検出する手段と、前記検出温度に基づいて補償電
圧を出力する温度補償調整手段と、前記補償電圧
と標準電圧電源の出力電圧を加算する加算手段
と、この加算手段の出力と前記電流検出手段の出
力との差に基づいて前記電流調整手段を制御する
制御手段を具備することを特徴とする常電導磁石
用電源。
1. A power source for a self-shielded normal conductive magnet for static magnetic fields in a nuclear magnetic resonance tomography imaging device, consisting of a DC power supply that supplies current to a coil, and a current detection means and a current adjustment means inserted in series in the DC power supply circuit. a coil current supply means, a means for detecting the temperature of the magnetic shield, a temperature compensation adjustment means for outputting a compensation voltage based on the detected temperature, and an addition means for adding the compensation voltage and the output voltage of the standard voltage power supply. A power supply for a normally conducting magnet, comprising: a control means for controlling the current adjusting means based on the difference between the output of the adding means and the output of the current detecting means.
JP62077272A 1987-03-30 1987-03-30 Power supply for normal conducting magnet Granted JPS63244602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62077272A JPS63244602A (en) 1987-03-30 1987-03-30 Power supply for normal conducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62077272A JPS63244602A (en) 1987-03-30 1987-03-30 Power supply for normal conducting magnet

Publications (2)

Publication Number Publication Date
JPS63244602A JPS63244602A (en) 1988-10-12
JPH0432525B2 true JPH0432525B2 (en) 1992-05-29

Family

ID=13629217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62077272A Granted JPS63244602A (en) 1987-03-30 1987-03-30 Power supply for normal conducting magnet

Country Status (1)

Country Link
JP (1) JPS63244602A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1078274A1 (en) 1999-03-10 2001-02-28 Koninklijke Philips Electronics N.V. Method of and device for the compensation of variations of the main magnetic field during magnetic resonance imaging
JP7022034B2 (en) * 2018-08-29 2022-02-17 ニチコン株式会社 Main coil power supply and NMR system
CN110928359B (en) * 2019-11-01 2021-07-27 山西大学 Device for simultaneously compensating space residual uniform magnetic field and gradient magnetic field

Also Published As

Publication number Publication date
JPS63244602A (en) 1988-10-12

Similar Documents

Publication Publication Date Title
US4631481A (en) N.M.R. shims
US6731113B2 (en) Method of and device for the compensation of variations of the main magnetic field during magnetic resonance imaging
JPH0638943A (en) Magnetic resonance imaging system and method
US6825667B1 (en) Magnetic resonance imaging apparatus and method for maintaining high uniformity of magnetic field in magnetic resonance imaging apparatus
JPH03261112A (en) Field magnet generation device
US4823081A (en) Interference magnetic field compensation method which includes supplying a current to a coil to compensate the field
JP3905039B2 (en) MRI equipment
US6653835B2 (en) Magnetic resonance tomograph with a temperature controller for thermally highly sensitive components
US20040021464A1 (en) Correction of local field inhomogeneity in magnetic resonance imaging apparatus
US20160358702A1 (en) Magnetic Field Control
JPH0432525B2 (en)
JPH0570460B2 (en)
US6777939B2 (en) Coil system with current regulation based on emitted heat
JPH05277087A (en) Method and device to reduce interaction of gradient coil with sim coil at room temperature
US5025217A (en) Method of and device for eddy current compensation in MR apparatus
US5570022A (en) Power supply for MRI magnets
US3673465A (en) Stabilizing magnetic fields
JP4331322B2 (en) MRI equipment
JP3337712B2 (en) Magnetic resonance imaging equipment
JP2926427B2 (en) MRI Eddy Current Correction Method
JPS60259940A (en) Magnetic field generator for nmr imaging apparatus
JPH0245035A (en) Magnetic resonance imaging device
JPH05212010A (en) Magnetic resonance imaging system
Konzbul et al. Design of matrix shim coils system for nuclear magnetic resonance
JPH0670912A (en) Magnetic resonance imaging device