JPH04325143A - Method and device for collecting and measuring blood component - Google Patents

Method and device for collecting and measuring blood component

Info

Publication number
JPH04325143A
JPH04325143A JP3121838A JP12183891A JPH04325143A JP H04325143 A JPH04325143 A JP H04325143A JP 3121838 A JP3121838 A JP 3121838A JP 12183891 A JP12183891 A JP 12183891A JP H04325143 A JPH04325143 A JP H04325143A
Authority
JP
Japan
Prior art keywords
blood
permeate
components
permeable membrane
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3121838A
Other languages
Japanese (ja)
Inventor
Atsushi Saito
敦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3121838A priority Critical patent/JPH04325143A/en
Publication of JPH04325143A publication Critical patent/JPH04325143A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate operations without degrading sensitivity and responsiveness by automatically and continuously drawing and measuring the components of blood. CONSTITUTION:The blood is taken out of a vein 5 through a tube 3 for the blood by a peristaric pump 6A. A permeated liquid is sent from a reservoir 7 to a reactor 1 by another peristaric pump 6B. The blood and the permeated liquid come into contact via a permeable membrane 2 in this reactor 1 and the blood components diffuse into the permeated liquid. The blood components contained in the permeated liquid can be measured if, for example, a biosensor and optical analysis apparatus are disposed on a tube 4 for the permeated liquid. The blood discharged from the reactor 1 returns to the vein 5 to prevent the decrease of the blood in the body. Since the blood is passed through the permeable membrane 2, the protein is removed in the liquid to be measured and the measurement with good reproducibility is possible.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は臨床用生化学測定に際し
、血液成分を採取、測定する方法および装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for collecting and measuring blood components in clinical biochemical measurements.

【0002】0002

【従来の技術】血液成分の測定は臨床医学的に重要であ
り、グルコ―ス、尿素、ナトリウムイオン、カリウムイ
オンなど多項目が測定されている。現在その測定は、採
血を行い、臨床検査装置や生化学分析装置によって行わ
れている。これに対し、自動的かつ連続的に血液成分を
モニタする必要性があり、各種の試みがなされた。まず
血液をカテ―テルを用いて連続的に体外に取り出し、分
析装置により血液成分(グルコ―ス)の測定を行う方法
がある。またバイオセンサを皮下に埋め込み、連続的に
血液成分(グルコ―ス)を測定する報告もなされている
。(七里元亮,山崎義光:「ブドウ糖センサ―−人工膵
臓への応用−」代謝 Vol.23 No.8 p.9
9−106 )。さらに透析膜を金属製管の壁面に装着
し、皮下に埋め込み、管内に透析液を送液することによ
り体液成分を採取する試みも提案されている(ピ―タ―
ティ―  キッシンジャ―:「マイクロダイアリシス 
 サンプリング  プロ―ブ」プロシ―ディング  オ
ブ  ザ  バイオセンサ―ズ ’90,シンガポ―ル
,( Proc. of the Biosensor
s ’90 ), p.192−p.195)。
BACKGROUND OF THE INVENTION Measuring blood components is important in clinical medicine, and many items such as glucose, urea, sodium ions, and potassium ions are measured. Currently, the measurement is performed by collecting blood and using a clinical testing device or a biochemical analyzer. In response, there is a need to automatically and continuously monitor blood components, and various attempts have been made. First, there is a method in which blood is continuously removed from the body using a catheter and blood components (glucose) are measured using an analyzer. There have also been reports of implanting a biosensor subcutaneously to continuously measure blood components (glucose). (Motosuke Shichiri, Yoshimitsu Yamazaki: "Glucose sensor - Application to artificial pancreas -" Metabolism Vol. 23 No. 8 p. 9
9-106). Furthermore, an attempt has been proposed to collect body fluid components by attaching a dialysis membrane to the wall of a metal tube, embedding it subcutaneously, and pumping dialysate into the tube (Peter
T. Kissinger: “Microdialysis”
"Sampling Probe" Proceedings of the Biosensors '90, Singapore, (Proc. of the Biosensor
s'90), p. 192-p. 195).

【0003】0003

【発明が解決しようとする課題】しかしながら、血液を
カテ―テルで体外に取り出し、血液成分を測定する場合
、血液中に含まれるタンパク質など高分子成分が測定部
に付着するため、感度低下や応答性低下あるいは耐久性
の低下等が発生し、測定部の洗浄や交換を煩雑に行わな
ければならない欠点がある。また取り出された血液はそ
のまま廃棄されるので、体内の血液量が減少するという
欠点もある。バイオセンサを皮下に埋め込み、血液成分
を測定する場合は、やはりタンパク質等の吸着が起こる
ほか、溶存酸素濃度やpH緩衝能といったセンサの周囲
の環境が一定でないため応答が不安定であるといった欠
点があり、実用の域に達していない。透析膜付き金属管
を皮下に埋め込む方法は、金属管が大きく、埋め込みに
手術を要することと、透析膜がタンパク質の吸着等で劣
化しても頻繁に交換することが出来ないことが難点であ
る。
[Problems to be Solved by the Invention] However, when blood is taken out of the body with a catheter and blood components are measured, macromolecular components such as proteins contained in the blood adhere to the measuring section, resulting in decreased sensitivity and response. However, there are drawbacks such as a decrease in performance or durability, and the need for complicated cleaning and replacement of the measuring section. Another disadvantage is that the blood volume in the body decreases because the blood that is removed is discarded as is. When a biosensor is implanted subcutaneously to measure blood components, there are drawbacks such as adsorption of proteins and other substances, as well as unstable responses due to fluctuations in the environment surrounding the sensor, such as dissolved oxygen concentration and pH buffering capacity. However, it has not reached the level of practical use. The disadvantages of subcutaneously implanting a metal tube with a dialysis membrane are that the metal tube is large and requires surgery for implantation, and that it cannot be replaced frequently even if the dialysis membrane deteriorates due to protein adsorption, etc. .

【0004】図5(A),(B),(C)は従来の構成
図を示している。図(A)では血液をカテ―テル15を
通して体外に出し、分析装置で血液成分を測定している
。この方法では採取された血液は廃棄されるため体内の
血液の減少が問題となる。また、血液中には多くのタン
パク質が含まれるため、血液そのものを分析するとタン
パク質の測定部への吸着による測定の妨害が問題となる
。図(B)はバイオセンサ20を皮下に埋め込み、測定
する方法を示している。この方法においては、やはりセ
ンサ部にタンパク質の吸着がおこり応答に悪影響を及ぼ
すほか、溶存酸素濃度やpH緩衝能といったセンサの周
囲の環境が一定でないため応答が不安定であるといった
問題点がある。図(C)は透析膜22付き金属管23を
皮下に埋め込む方法を示した図である。この方法の場合
、金属管23が大きく、埋め込みに手術を要することと
、透析膜22がタンパク質の吸着等で劣化しても頻繁に
交換することが出来ないことが問題である。本発明は、
このような課題に鑑みて創案されたもので、血液成分を
自動的かつ連続的に測定する際に、感度低下や応答性の
低下を招かず、作業も容易に行える血液成分の採取・測
定方法およびその装置を提供することを目的としている
FIGS. 5A, 5B, and 5C show conventional configuration diagrams. In Figure (A), blood is taken out of the body through a catheter 15, and blood components are measured with an analyzer. In this method, the collected blood is discarded, so a reduction in blood in the body becomes a problem. Furthermore, since blood contains many proteins, when blood itself is analyzed, interference with measurement due to adsorption of proteins to the measuring section becomes a problem. Figure (B) shows a method of implanting the biosensor 20 subcutaneously and performing measurements. In this method, protein adsorption occurs on the sensor portion, which adversely affects the response, and there are also problems in that the environment surrounding the sensor, such as dissolved oxygen concentration and pH buffering capacity, is not constant, resulting in unstable response. Figure (C) is a diagram showing a method of subcutaneously embedding the metal tube 23 with the dialysis membrane 22. In the case of this method, the problems are that the metal tube 23 is large and requires surgery for implantation, and that even if the dialysis membrane 22 deteriorates due to adsorption of proteins, it cannot be replaced frequently. The present invention
This method was developed in view of these issues, and is a method for automatically and continuously measuring blood components that does not cause a decrease in sensitivity or responsiveness and can be easily performed. The purpose is to provide such equipment.

【0005】[0005]

【課題を解決するための手段】本発明は、体外に取り出
された血液を透過膜を介して透過液と接触させることに
より、所望の血液成分を前記透過液中に採取することを
特徴とする血液成分採取方法、および血管内に挿入され
て血液を採取する管と、採取された血液成分の拡散媒体
である透過液と、採取血液から所望の血液成分のみを該
透過液中に拡散させる透過膜とを備えてなることを特徴
とする血液成分採取装置である。また、上記方法により
得られる血液成分をバイオセンサあるいは光学的分析装
置によって測定する血液成分測定方法および装置を提供
するものである。
[Means for Solving the Problems] The present invention is characterized in that desired blood components are collected into the permeate by bringing blood taken out of the body into contact with the permeate through a permeable membrane. A blood component collection method, a tube inserted into a blood vessel to collect blood, a permeate that is a diffusion medium for the collected blood components, and a permeation method that diffuses only desired blood components from the collected blood into the permeate. This is a blood component sampling device characterized by comprising a membrane. The present invention also provides a blood component measuring method and device for measuring blood components obtained by the above method using a biosensor or an optical analyzer.

【0006】[0006]

【作用】血液を体外に取り出し、透析膜を介して一定組
成の透析液との間で拡散を行わせ、浄化された血液を静
脈に返す方法である血液透析は血液浄化法の一つとして
広く行われている(桜井靖久,酒井清孝:「最新の人工
臓器と今後の展望」アイピ―シ―)。これは腎臓機能を
失った人のための人工腎臓の役割を果たし、尿素、窒素
、クレアチニン、ナトリウムイオン、カリウムイオン、
塩素イオンなどを血液中から除去することを目的として
いる。従って透析後の透析液中には前記のような血液成
分が血液中の濃度に比例して含まれているが、血液透析
を血液成分の採取法として注目した例はない。血液から
透析液に拡散する血液成分は透析膜の分画分子量により
決定される。このため透析後の透析液には低分子量成分
は含まれているが、タンパク質のような高分子量の成分
は含まれていないという特徴を有する。
[Operation] Hemodialysis is a method in which blood is taken out of the body, diffused between it and a dialysate of a certain composition through a dialysis membrane, and the purified blood is returned to the veins.Hemodialysis is widely used as a blood purification method. (Yasuhisa Sakurai, Kiyotaka Sakai: "The latest artificial organs and future prospects" IPC). It acts as an artificial kidney for people who have lost kidney function and contains urea, nitrogen, creatinine, sodium ions, potassium ions,
Its purpose is to remove chlorine ions and other substances from the blood. Therefore, the dialysate after dialysis contains the above-mentioned blood components in proportion to the concentration in the blood, but there is no example that has focused on hemodialysis as a method for collecting blood components. Blood components that diffuse from the blood into the dialysate are determined by the molecular weight cutoff of the dialysis membrane. Therefore, the dialysate after dialysis contains low molecular weight components but does not contain high molecular weight components such as proteins.

【0007】本発明の方法によれば、血管内に挿入され
た管によって体外に取り出された血液に、透過膜を介し
て透過液を接触させることにより、透過膜の分画分子量
以上の物質(タンパク質)を取り除くことができ、所望
する血液成分を透過液に採取することが可能である。ま
た透過膜と接した後の血液は静脈に戻すことが可能であ
り、体内の血液の減少を防ぐことが出来る。さらに透過
液中の血液成分をバイオセンサで測定する際、溶存酸素
濃度やpH緩衝能といった条件を一定にすることが可能
であり再現性のよい応答を得ることができる。透過膜が
体外に位置するため血管に注射針を刺すだけで血液を取
り出すことが可能であり、また透過膜の交換等も簡単に
行うことが出来る。
According to the method of the present invention, by bringing a permeate into contact with blood taken out of the body through a tube inserted into a blood vessel through a permeable membrane, a substance ( proteins) can be removed, and desired blood components can be collected in the permeate. Furthermore, the blood that has come into contact with the permeable membrane can be returned to the vein, thereby preventing a decrease in blood in the body. Furthermore, when measuring blood components in the permeate with a biosensor, it is possible to keep conditions such as dissolved oxygen concentration and pH buffering capacity constant, and a response with good reproducibility can be obtained. Since the permeable membrane is located outside the body, blood can be taken out by simply inserting an injection needle into a blood vessel, and the permeable membrane can be easily replaced.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例につい
て詳細に説明する。図1は本発明の血液成分採取装置の
構成図を示し、図2は本発明の血液成分採取装置の平面
図を示していて、いずれも請求項1および2に対応する
。同図における採取方法は、注射針12を静脈5に刺し
、管3を通して血液を体外に取り出す。必要に応じてペ
リスタリックポンプ6Aを用い、血液の流量を毎分10
0ミリリットル程度に調節する。また透過液はリザ−バ
7からペリスタリックポンプ6Bで送液される。この流
量は採取する成分に応じて決定されるが、例えば毎分5
0ミリリットル程度である。血液と透過液はリアクタ1
内で透過膜2を介して接触し、血液成分が透過液中に拡
散する。リアクタ1を通った血液は注射針12を経て静
脈5に戻る。採取用の注射針は返還用の注射針より血流
の上流に設置される必要がある。透過液はドレイン8に
送られる。透過液は例えば炭酸緩衝液にイオンを加えて
イオン強度を0.15に調整したものを用いる。血液成
分中のイオン濃度を測定する場合は、透過液はそのイオ
ン種を含まないようにする。透過膜2はセルロ−ス膜を
はじめとしてポリアクリロニトリルやポリメチルメタク
リレ―トなどの合成高分子膜も用いられる。透過膜のポ
アの大きさにより分子量分画が決定される。即ち、ポア
サイズより大きい血液中の高分子物質は膜を透過するこ
とができないが、ポアサイズより小さい低分子物質は透
過し、透過液中に採取することが可能である。具体的に
は、血液中の成分としてナトリウム、カリウム、カルシ
ウム、マグネシウム、塩素等のイオンと、グルコ―ス、
尿素、尿酸、アンモニア、クレアチニン、リン酸、イン
シュリン、ビリルビン等を本発明による装置で自動的に
連続的に採取することが可能である。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of a blood component collection device of the present invention, and FIG. 2 shows a plan view of the blood component collection device of the present invention, both of which correspond to claims 1 and 2. The sampling method shown in the figure is to insert an injection needle 12 into a vein 5 and take blood out of the body through a tube 3. If necessary, use a peristaltic pump 6A to increase the blood flow rate to 10 per minute.
Adjust to about 0ml. Further, the permeate is sent from the reservoir 7 by a peristaltic pump 6B. This flow rate is determined depending on the components to be sampled, but for example,
It is about 0ml. Blood and permeate are in reactor 1
The blood components come into contact with each other through the permeable membrane 2 within the permeate, and the blood components diffuse into the permeate. Blood that has passed through the reactor 1 returns to the vein 5 via the injection needle 12. The collection needle must be placed upstream of the bloodstream than the return needle. The permeate is sent to drain 8. The permeate used is, for example, a carbonate buffer solution in which ions are added to adjust the ionic strength to 0.15. When measuring ion concentrations in blood components, the permeate should be free of the ionic species. The permeable membrane 2 may be a cellulose membrane or a synthetic polymer membrane such as polyacrylonitrile or polymethyl methacrylate. The molecular weight fraction is determined by the pore size of the permeable membrane. That is, high-molecular substances in blood that are larger than the pore size cannot pass through the membrane, but low-molecular substances that are smaller than the pore size can pass through and be collected in the permeated liquid. Specifically, blood components include ions such as sodium, potassium, calcium, magnesium, and chlorine, as well as glucose,
Urea, uric acid, ammonia, creatinine, phosphoric acid, insulin, bilirubin, etc. can be automatically and continuously collected with the device according to the invention.

【0009】図3は本発明の血液成分測定装置の一例を
示す構成図であり、図4は本発明の血液成分測定装置の
一例の平面図で、いずれも請求項3および4に対応する
。同図において、血液成分採取装置に関しては図1およ
び図2と同じであるが、図3では測定装置としてバイオ
センサ10が一体化されている。リアクタ1内で血液と
透過膜を介して接した透過液はセル13に送られ、セル
13内に設置されたバイオセンサ10で成分を連続的に
測定される。バイオセンサ10は、例えばイオン感受性
電界効果型トランジスタ(ISFET)のイオン感応部
上に酵素膜が形成されたものである。ここで、使用され
た酵素がグルコ―ス酸化酵素であればグルコ―ス濃度を
、ウレア―ゼであれば尿素濃度を測定することが可能で
ある。ISFETのような電位を測定するポテンショメ
トリックな測定の場合、測定溶液のpHおよびpH緩衝
能は一定であることが必要である。透過液としてpH緩
衝液を使用するため安定な測定を実現できる。またバイ
オセンサとして金電極上に酵素膜を形成したものを用い
て、アンペロメトリックな測定を行うこともできる。 このタイプのバイオセンサの場合、補酵素や電子伝達物
質をメディエ―タとして必要とすることがあるが、透過
液中に予めこれらの物質を加えておくことも可能である
。そのほか酵素電極やガラス電極もバイオセンサ用電極
として本測定装置に使用することができる。
FIG. 3 is a block diagram showing an example of the blood component measuring device of the present invention, and FIG. 4 is a plan view of an example of the blood component measuring device of the present invention, both of which correspond to claims 3 and 4. In the figure, the blood component sampling device is the same as in FIGS. 1 and 2, but in FIG. 3, a biosensor 10 is integrated as a measuring device. The permeated liquid that came into contact with blood through the permeable membrane in the reactor 1 is sent to the cell 13, and its components are continuously measured by the biosensor 10 installed in the cell 13. The biosensor 10 is, for example, an ion-sensitive field effect transistor (ISFET) in which an enzyme membrane is formed on an ion-sensitive part. Here, if the enzyme used is glucose oxidase, it is possible to measure the glucose concentration, and if the enzyme used is urease, it is possible to measure the urea concentration. In the case of potentiometric measurements that measure potential, such as with ISFET, it is necessary that the pH and pH buffering capacity of the measurement solution be constant. Stable measurements can be achieved because a pH buffer is used as the permeate. Furthermore, amperometric measurements can also be performed using a biosensor in which an enzyme film is formed on a gold electrode. In the case of this type of biosensor, a coenzyme or an electron transfer substance may be required as a mediator, but it is also possible to add these substances to the permeate in advance. In addition, enzyme electrodes and glass electrodes can also be used in this measuring device as biosensor electrodes.

【0010】図3および図4において、バイオセンサの
代わりに光学的分析装置を用いると、本発明の請求項5
および6で述べた測定方法とその具体的な測定装置にな
る。光学的分析装置としては、例えば分光光度計で特定
波長の吸光度を測定することにより連続的に血液成分濃
度を測定することが可能となる。また蛍光物質を予め透
過液に加えておき、蛍光光度計で測定することにより連
続的に血液成分を測定することも可能である。
In FIGS. 3 and 4, if an optical analysis device is used instead of the biosensor, claim 5 of the present invention is achieved.
and the measuring method and specific measuring device described in 6. As an optical analyzer, for example, it is possible to continuously measure blood component concentration by measuring absorbance at a specific wavelength using a spectrophotometer. It is also possible to continuously measure blood components by adding a fluorescent substance to the permeate in advance and measuring with a fluorometer.

【0011】本発明においては、従来方法である図5(
A)に示した場合と比べて、図1または図2に示す如く
、体外に取り出された血液が透過液と接した後に再び静
脈に戻されるため血液の減少はなく、また、透過膜を用
いることにより、透過液には血液中の低分子成分のみ採
取され、タンパク質のような高分子成分は含まれず、測
定の際にタンパク質による影響はうけない。また図5(
B)に示した場合に比べ、図3または図4に示す如く透
過膜によってタンパク質の影響を防ぐことができ、透過
液中の溶存酸素の濃度やpH緩衝機能等の条件を一定に
し易く、センサの応答は安定し、再現性がよい。更に図
5(C)に示した場合に比べ、図3または図4に示す如
く透過膜が体外に配置されているため、血管には注射針
を刺すだけでよく、透過膜の交換等も簡単に行うことが
できる。
In the present invention, the conventional method shown in FIG.
Compared to the case shown in A), as shown in Fig. 1 or Fig. 2, the blood taken out of the body comes into contact with the permeate and is then returned to the vein, so there is no decrease in blood, and a permeable membrane is used. As a result, only low-molecular components in the blood are collected in the permeate, and high-molecular components such as proteins are not included, so that the measurement is not affected by proteins. Also, Figure 5 (
Compared to the case shown in B), the influence of proteins can be prevented by the permeable membrane as shown in Fig. 3 or 4, and conditions such as the concentration of dissolved oxygen in the permeate and the pH buffering function can be kept constant, and the sensor The response is stable and reproducible. Furthermore, compared to the case shown in Fig. 5(C), since the permeable membrane is placed outside the body as shown in Fig. 3 or 4, it is only necessary to insert an injection needle into the blood vessel, and the permeable membrane can be replaced easily. can be done.

【0012】0012

【発明の効果】従来、血液成分を自動的に連続的に測定
することは、血液中のタンパク質の吸着による影響、p
Hや溶存酸素濃度などの条件が一定ではないことによる
影響、皮下に埋め込むため交換が不可能なこと、体内の
血液が不足してしまうなどの問題があり実用的ではなか
ったが、本発明では、血管内に挿入された管より体外に
取り出された血液に透過膜を介して透過液を接触せしむ
ることにより、透過膜の分画分子量以上の物質(タンパ
ク質)を取り除くことができ、所望する血液成分を透過
液に採取することが可能である。また透過膜と接した後
の血液は静脈に戻すことが可能であり、体内の血液の減
少を防ぐことが出来る。さらに透過液中の血液成分をバ
イオセンサで測定する際、溶存酸素濃度やpH緩衝能と
いった条件を一定にすることが可能であり、再現性のよ
い応答を得ることができる。透過膜が体外に位置するた
め血管に注射針を刺すだけで血液を取り出すことが可能
であり、また透過膜の交換等も簡単に行うことが出来る
。このため本発明によれば血液成分の自動的、連続的な
測定が可能である。以上、説明したとおり、本発明によ
れば、血液成分を自動的かつ連続的に測定する際に感度
低下や応答性の低下を招かず、作業も容易に行える血液
成分の採取・測定方法およびその装置を提供することが
できる。
Effects of the Invention Conventionally, automatic and continuous measurement of blood components has been difficult due to the effects of adsorption of proteins in the blood.
However, this invention was not practical due to problems such as the effects of inconsistent conditions such as H and dissolved oxygen concentration, the impossibility of replacement because it is implanted subcutaneously, and the lack of blood in the body. By bringing the permeate into contact with blood taken out of the body from a tube inserted into a blood vessel through a permeable membrane, it is possible to remove substances (proteins) with molecular weights greater than the molecular weight cutoff of the permeable membrane. It is possible to collect blood components in the permeate. Furthermore, the blood that has come into contact with the permeable membrane can be returned to the vein, thereby preventing a decrease in blood in the body. Furthermore, when measuring blood components in the permeate with a biosensor, conditions such as dissolved oxygen concentration and pH buffering capacity can be kept constant, and responses with good reproducibility can be obtained. Since the permeable membrane is located outside the body, blood can be taken out by simply inserting an injection needle into a blood vessel, and the permeable membrane can be easily replaced. Therefore, according to the present invention, automatic and continuous measurement of blood components is possible. As explained above, according to the present invention, there is provided a method for collecting and measuring blood components that can be easily performed without causing a decrease in sensitivity or responsiveness when measuring blood components automatically and continuously. equipment can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の一実施例の平面図である。FIG. 2 is a plan view of an embodiment of the present invention.

【図3】本発明の別の一実施例の構成図である。FIG. 3 is a configuration diagram of another embodiment of the present invention.

【図4】本発明の別の一実施例の平面図である。FIG. 4 is a plan view of another embodiment of the invention.

【図5】従来例の説明図である。FIG. 5 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1  リアクタ                  
      2  透過膜3  血液用管      
                  4  透過液用
管5  静脈                   
         6A,6B  ペリスタリックポン
プ 7  リザ―バ                  
      8  ドレイン9  電源部      
                    10  バ
イオセンサ 11,18  プロセッサ             
 12  注射針13  セル           
               14  腕15  カ
テ―テル                    1
6  ポンプ部17  測定部           
             19  廃液タンク 20  センサ部                 
     21  透析液タンク
1 reactor
2 Permeable membrane 3 Blood tube
4 Permeate tube 5 Vein
6A, 6B Peristaltic pump 7 Reservoir
8 Drain 9 Power supply section
10 Biosensor 11, 18 Processor
12 Syringe needle 13 Cell
14 Arm 15 Catheter 1
6 Pump part 17 Measuring part
19 Waste liquid tank 20 Sensor part
21 Dialysate tank

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  体外に取り出された血液を透過膜を介
して透過液と接触させることにより、所望の血液成分を
前記透過液中に採取することを特徴とする血液成分採取
方法。
1. A method for collecting blood components, which comprises bringing blood taken out of the body into contact with the permeate through a permeable membrane, thereby collecting desired blood components into the permeate.
【請求項2】  血管内に挿入されて血液を採取する管
と、採取された血液成分の拡散媒体である透過液と、採
取血液から所望の血液成分のみを該透過液中に拡散させ
る透過膜とを備えてなることを特徴とする血液成分採取
装置。
2. A tube inserted into a blood vessel to collect blood, a permeate that is a diffusion medium for the collected blood components, and a permeable membrane that diffuses only desired blood components from the collected blood into the permeate. A blood component sampling device comprising:
【請求項3】  請求項1に記載の血液成分採取方法に
より採取された血液成分をバイオセンサにより測定する
ことを特徴とする血液成分測定方法。
3. A blood component measuring method, comprising measuring the blood components collected by the blood component collecting method according to claim 1 with a biosensor.
【請求項4】  血管内に挿入されて血液を採取する管
と、採取された血液成分の拡散媒体である透過液と、採
取血液から所望の血液成分のみを該透過液中に拡散させ
る透過膜と、前記透過液中の血液成分を測定するバイオ
センサとを備えてなることを特徴とする血液成分測定装
置。
4. A tube inserted into a blood vessel to collect blood, a permeate that is a diffusion medium for the collected blood components, and a permeable membrane that diffuses only desired blood components from the collected blood into the permeate. A blood component measuring device comprising: and a biosensor that measures blood components in the permeate.
【請求項5】  請求項1に記載の血液成分採取方法に
より採取された血液成分を光学分析装置により測定する
ことを特徴とする血液成分測定方法。
5. A blood component measuring method, comprising measuring the blood components collected by the blood component collecting method according to claim 1 using an optical analyzer.
【請求項6】  血管内に挿入されて血液を採取する管
と、採取された血液成分の拡散媒体である透過液と、採
取血液から所望の血液成分のみを該透過液中に拡散させ
る透過膜と、前記透過液中の血液成分を測定する光学分
析装置とを備えてなることを特徴とする血液成分の測定
装置。
6. A tube inserted into a blood vessel to collect blood, a permeate that is a diffusion medium for collected blood components, and a permeable membrane that diffuses only desired blood components from the collected blood into the permeate. and an optical analyzer for measuring blood components in the permeated liquid.
JP3121838A 1991-04-25 1991-04-25 Method and device for collecting and measuring blood component Pending JPH04325143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121838A JPH04325143A (en) 1991-04-25 1991-04-25 Method and device for collecting and measuring blood component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121838A JPH04325143A (en) 1991-04-25 1991-04-25 Method and device for collecting and measuring blood component

Publications (1)

Publication Number Publication Date
JPH04325143A true JPH04325143A (en) 1992-11-13

Family

ID=14821187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121838A Pending JPH04325143A (en) 1991-04-25 1991-04-25 Method and device for collecting and measuring blood component

Country Status (1)

Country Link
JP (1) JPH04325143A (en)

Similar Documents

Publication Publication Date Title
JP3220154B2 (en) Calibration solution for analysis of biological fluid and method of using the same
US4832034A (en) Method and apparatus for withdrawing, collecting and biosensing chemical constituents from complex fluids
US8142642B2 (en) Small volume in vitro analyte sensor
Alcock et al. Continuous analyte monitoring to aid clinical practice
US4172770A (en) Flow-through electrochemical system analytical method
EP0958499B1 (en) Method for calibrating sensors used in diagnostic testing
US5271815A (en) Method for measuring glucose
Wientjes Development of a glucose sensor for diabetic patients
Collison et al. Chemical sensors for bedside monitoring of critically ill patients
Meyerhoff In vivo blood-gas and electrolyte sensors: Progress and challenges
DE60020076D1 (en) SMALL VOLUME IN VITRO ANALYTES SENSOR
US20090134043A1 (en) Non-biofouling, universal redox electrode and measurement system
Fogt Continuous ex vivo and in vivo monitoring with chemical sensors
EP0805350A1 (en) An apparatus and method for the determination of substances in solution, suspension or emulsion by differential pH measurement
Rhemrev-Boom et al. A lightweight measuring device for the continuous in vivo monitoring of glucose by means of ultraslow microdialysis in combination with a miniaturised flow-through biosensor
Dempsey et al. In vitro optimisation of a microdialysis system with potential for on-line monitoring of lactate and glucose in biological samples
JPH04325143A (en) Method and device for collecting and measuring blood component
Fogt et al. Use of electrochemical sensors for on-line monitoring of ionized calcium, potassium, and glucose in whole blood of living dogs.
WO1999039629A1 (en) Chemical sensors having microflow systems
Orellana et al. On-line monitoring of urea in effluent liquid during haemodialysis
Vadgama et al. Electrochemical transducers for in vivo monitoring
Vadgama Enzyme electrodes for continuous in-vivo monitoring
JPS63159748A (en) Enzyme-electrode type sensor for measuring analyzing substance, manufacture of said sensor and method of measuring analyzing substance in sample
JPH0694669A (en) Method and apparatus for measuring very small amount of component
Torbicz et al. Urea biosensors and their application in hemodialysis—perspective of EnFET application