JPH043250B2 - - Google Patents
Info
- Publication number
- JPH043250B2 JPH043250B2 JP61064317A JP6431786A JPH043250B2 JP H043250 B2 JPH043250 B2 JP H043250B2 JP 61064317 A JP61064317 A JP 61064317A JP 6431786 A JP6431786 A JP 6431786A JP H043250 B2 JPH043250 B2 JP H043250B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- impact
- particles
- solid particles
- fine solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 21
- 239000011261 inert gas Substances 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 17
- 239000012798 spherical particle Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 60
- 230000004087 circulation Effects 0.000 description 19
- 239000002994 raw material Substances 0.000 description 14
- 230000035939 shock Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 6
- 238000005563 spheronization Methods 0.000 description 6
- 230000003116 impacting effect Effects 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Glanulating (AREA)
Description
a 産業上の利用分野
本発明は、各種の不定形状を有する微小固体粒
子の形状を球状にするか、少なくとも該微小固体
粒子を丸味をもたせた球状の粒子に改善する方法
に関する。
b 従来の技術
従来、固体粒子の固結防止、分散性の向上、流
動性の改善などを目的として微粉体の球形化処理
操作が行なわれており、この操作は、一般に、材
料を各種のミキサー型やボールミル型の攪拌機に
入れてこれを長時間(一般に数時間〜数十時間)
攪拌し、攪拌に伴つて生ずる摩擦力及び圧縮力を
粒子に与えることによつて行なわれて来た。
c 発明が解決しようとする問題点
しかし、所望の粒形粒子を得るために数時間乃
至十時間を要し、そのため装置が大型となるばか
りでなく、攪拌に伴つて生ずる摩擦力及び圧縮力
が粒度の異なる微小粒子に対して夫々均一に作用
するため、球形処理される粒子の相当部分が粉砕
(摩砕)されたり、また逆に偏平状の粒子が生じ
たりするなど、品質と加工効率に大きな問題があ
つた。
d 問題点を解決するための手段
本発明は、前記事情に鑑みてなされたもので、
従来技術の問題点を解消し、第4図(写真)aに
示す如き粒子径も形状も異なる微小固体粒子を機
械的衝撃的手段により、必要に応じて補助的手段
として熱的手段を用いて、極めて短時間(数秒〜
数分間)のうちに第4図(写真)bに示す如き一
様な丸味をもつた粒形粒子にすることができる方
法を提供するもので、その要旨は、衝撃室内に、
衝撃ピンを周設した回転盤を配置し、該衝撃ピン
の回転によつて発生した気流を該衝撃室に誘導・
循環させ、該気流と共に粒径40〜0.1μmの不定形
微小固体粒子の全量を、繰り返し前記衝撃室を通
過させ、前記衝撃ピンと、該衝撃ピンの最外周軌
道面に沿い、かつそれに対して一定の空間を置い
て周設された衝突リングとの間で、前記不定形微
小固体粒子に対し、前記回転盤を50〜120m/sec
の周速度で回転させながら、機械的打撃を与え、
該不定形固体粒子を破砕せずに、その形状を丸み
をもつた球形粒子に変えることを特徴とする微小
固体粒子の球形化処理方法にある。
本発明の方法で球形化処理できる代表的粉体と
しては、一般にその粒径が0.1μm〜40μm程度の
エポキシパウダー、ナイロンパウダー、ポリエチ
レンパウダー、ポリスチレンパウダー、セルロー
ス、シルクパウダーなどの有機物、また酸化チタ
ン、黒鉛、亜鉛末、ニツケル、銅、鉛、鉄などの
無機物及び金属などである。しかし、これら材料
に限定されることなく、各種化学工業、電気、磁
気材料工業、化粧品、塗料、印刷インキ、及びト
ナー、色材、繊維、医薬、食品、ゴム、プラスチ
ツクス、窯業などの工業界で使用されている各種
材料に適用することができる。ここで、前記粒径
が40μmを越えると、粒子が破砕し易くなり、好
ましくない。
なお、上記の各種材料を核(芯)とし、これら
粒子の表面上に核粒子とは異質の微小粒子を固定
化したり、成膜処理する、いわゆる表面改質の
際、上記の核となる物質が不安形(一般的に粒子
径も不揃いである)である場合は、表面改質処理
と同時に球形化処理を行なうことができる。
e 実施例
まず本発明の方法を実施するために使用する粉
体衝撃装置の実施例について図面を参照しながら
詳細に説明する。
第1図及び第2図は衝撃式打撃手段として粉体
衝撃装置を用いた例を示す。同図において、1は
本発明方法を実施するために使用する粉体衝撃装
置のケーシング、2はその後カバー、3はその前
カバー、4はケーシング1内にあつて高速回転す
る回転盤、5は回転盤4の外周に所定間隔を置い
て放射状に周設された複数の衝撃ピンであり、こ
れは一般にハンマー型またはプレート型のもので
ある。
6は回転盤4をケーシング1内に回転可能に軸
支持する回転軸、8は衝撃ピン5の最外周軌道面
に沿い、かつそれに対して一定の空間を置いて周
設された衝突リングであり、これは、各種形状の
凹凸型または円周平板型のものを用いる。
9は衝突リングの一部を切欠いて設けた球形処
理粉体排出用の開閉弁、10は開閉弁9の弁軸、
11は弁軸10を介して開閉弁9を操作するアク
チユエーター、13は一端が衝突リング8の内壁
の一部に開口し、他端が回転盤4の中心部付近の
前カバー3に開口して閉回路を形成する循環回
路、14は原料ホツパー、15は原料ホツパー1
4と循環回路13とを連結する原料供給用のシユ
ート、16は原料計量フイーダー、17は原料貯
槽である。18は回転盤4の外周と衝突リング8
との間に設けられた衝撃室、19は循環回路13
への循環口を夫々示す。
20は球形処理粉体排出シユート、21はサイ
クロン、22はロータリーバルブ、23はバツグ
フイルター、24はロータリーバルブ、25は排
風機、31は本発明の方法を実施するために使用
する粉体衝撃装置の運転を制御する時限制御装置
を夫々示す。
上記装置を用いて、本発明の微小粉体の球形化
処理の方法を実施する場合、次の要領で操作す
る。
まず、球形化処理粉体排出用の開閉弁9を閉鎖
した状態としておき、必要に応じて不活性ガスを
装置内に導入しながら、駆動手段(図示せず)に
よつて回転軸6を駆動し、球形化処理すべき物質
の性質により粒子が破砕しない50m/sec〜120
m/secの範囲の周速度で回転盤4を回転させる。
この際回転盤4外周の衝撃ピン5の回転に伴つて
急激な空気・不活性ガスの気流が生じ、この気流
の遠心力に基づくフアン効果によつて衝撃室18
に開口する循環回路13の循環回路13を巡つて
回転盤4の中心部に戻る気流の循環流れ、即ち完
全な自己循環の流れが形成される。しかもこの際
発生する単位時間当りの循環風量は、衝撃室と循
環系の全容積に較べて著しく多量であるため、短
時間のうちに莫大な回数の空気流循環サイクルが
形成されることになる。なお、前記回転盤の周速
度が50m/sec未満の場合は、衝撃力と循環回数
が少なく、処理に時間がかかる。また、120m/
secを越えると、粒子が破砕される可能性があり、
好ましくない。
次に、一定量の被処理粉体を、計量フイーダー
16により原料ホツパー14に短時間で投入す
る。被処理粉体は原料ホツパー14からシユート
15を通り衝撃室に入る。衝撃室18へ送入され
た粉体粒子群は、ここで高速回転する回転盤4の
多数の衝撃ピン5によつて瞬間的な打撃作用を受
け、さらに周辺の衝突リング8に衝突して被処理
粉体が選択的に強度の衝撃作用を受ける。そして
同時に前記循環ガラスの流れに同伴して被処理粉
体は循環回路13を循環して再び衝撃室18へ戻
り、再度打撃作用を受ける。
この様な衝撃作業が短時間のうちに連続して何
回も繰り返され、処理前は不定形であつた被処理
粉体は丸味をもつようになる。そしてこの一連の
衝撃作業、即ち球形化作業は微小粉体粒子の全表
面が均一な球形となるまで、或いは少なくとも相
当の丸味をもつまで継続させるが、衝撃室と循環
系の全容積に較べて多量のガス(空気及び不活性
ガス)が系内を循環するため、ガスと同伴して循
環する被処理粉体は極めて短時間のうちに莫大な
衝撃回数を受けることになる。一回分の処理量に
もよるが、この球形処理に要する時間は被処理粉
体の供給時間を含めても一般に数秒乃至数分の極
めて短時間内で終了する。
以上の球形化処理作業が終了した後は、球形化
粉体排出用の開閉弁9を鎖線で示す位置に移動さ
せて開き、球形化処理された粉末を排出する。こ
の球形化処理された粉体は、それ自身に作用して
いる遠心力(処理粉体に遠心力が作用していると
ころであれば排出弁9の位置は別のところでも良
い。)と、排風機25の吸引力によつて短時間
(数秒間)で衝撃室18及び循環回路13から排
出され、シユート20を通つてサイクロン21及
び循環回路13から排出され、シユート20を通
つてサイロン21及びバツグフイルター23など
の粉末補集装置に誘導された後補集され、ロータ
リーバルブ22,24を介して系外に排出され
る。
球形化処理された粉体排出後、開閉弁9は直ち
に閉鎖され、再び計量フイルター16から、次回
以降の一定量の被処理粉体が衝撃室に供給されて
同様な工程を経て球形化処理された粉体が次々と
生産される。なお、これら一連の回分球形化処理
操作は、関連機器の動作時間に関連して、予め時
限設定された時限制御装置31によつて制御され
継続される。
また、球形化処理操作中、熱的処理を補助的に
併用する必要のある場合(例えば被処理粉体をや
わらくする必要のある場合など)は、衝突リング
8や循環回路13をジヤケツト構造とし、各種の
熱媒や冷媒を通して被処理粉体の球形化処理に都
合のよい温度条件を設定することができる。
また、本発明の方法を実施するために使用する
粉体衝撃装置においては、前記回転盤4に補助羽
根を装着し、循環流に更に強制力を与えることも
できる。すなわち、循環風量を増大させれば単位
時間内の循環回数が増加し、従つて粉体粒子の衝
突回数も増加するので、球形化処理時間を短縮す
ることができる。
次に本発明の方法を実施するために使用する粉
体衝撃装置において行なう粉体の球形化作業にお
いては、被処理粉体の球形化処理における酸化劣
化を防止したり、発火や爆発を防止する目的で窒
素ガスなどの各種の不活性ガスを使用する場合を
説明する。
第3図は本発明に係る粉体衝撃装置において、
この不活性ガスを使用する実施例を示す。なおこ
の実施例の説明に際し、前記実施例と同一部材に
ついては同一符号を付し、説明を省略する。第3
図において、26は原料ホツパー14の下部に設
けた原料供給弁、27は原料供給用のシユート1
5に開口する不活性ガスの供給弁、28は不活性
ガス供給源、29は不活性ガスの供給路を示す。
尚、この実施例では循環回路13をケーシング1
内に収納した態様を示す。
運転開始に際して、まず、原料供給弁26を閉
じ、開閉弁9を開いたあと、不活性ガスの供給弁
27を開き衝撃室18及び循環回路13内に不活
性ガスを充満させておく。この球形化処理作業開
始に先立つて行なう衝撃室及び循環回路内への不
活性ガスの置換は、通常数分以内で終了する。
次に開閉弁9と供給弁27とを同時に閉じたあ
と、直ちに原料供給弁26に開いて、予め計算さ
れた被処理粉体をシユート15を通じて衝撃室1
8に供給する。なお供給後、供給弁26は直ち閉
の状態に戻し、その信号を受けて計量フイーダー
16は原料ホツパー14に次回の被処理粉体を計
量し供給しておく。
以後は、不活性ガスと共に前記実施例の場合と
同様に被処理粉体の衝撃を行ない、被処理粉体は
循環回路13を循環しながら不活性ガスとの十分
な接触を保ちつつ球形化処理される。次に開閉弁
9と供給弁27とを開くと球形化処理された粉体
は、衝撃室18及び循環回路13からシユート2
0へ排出され、同時に衝撃室18及び循環回路1
3は新らしい不活性ガスで置換される。排出され
た球形粉体は前記実施例と同様に処理される。
以後は開閉弁9及び供給弁27を閉じて原料供
給弁26を開とすれば、次回分の球形化処理操作
が進行する。なお、不活性ガスの供給、停止を含
むこれら一連の回分球形化操作は、前記実施例と
同様に時限制御装置31によつて制御され継続さ
れる。
次に具体的な処理例を次に示す。
回転盤に周設された8枚のプレート型衝撃ピン
の外径が23mm、循環回路の直径が54.9mmである第
1図の粉体衝撃装置を使用した。球形化処理粉体
として平均粒径dp50=15μmの不定形スチレン系
樹脂粉末粉砕品(第4図a)を夫々下表に示す処
理条件で球形下処理を行なつた結果、何れも第4
図bに示す如き一様な丸味をもつた球形の粉体を
得た。
a. Field of Industrial Application The present invention relates to a method for making micro solid particles having various irregular shapes into spherical shapes, or at least improving the micro solid particles into rounded spherical particles. b. Prior Art Conventionally, fine powder has been spheroidized for the purpose of preventing solid particles from caking, improving dispersibility, and improving fluidity. Place it in a mold or ball mill type stirrer and leave it for a long time (generally several hours to several tens of hours)
This has been done by stirring and applying frictional and compressive forces to the particles that accompany the stirring. c Problems to be Solved by the Invention However, it takes several to ten hours to obtain the desired granular shape, which not only increases the size of the apparatus, but also increases the frictional and compressive forces generated during stirring. Because it acts uniformly on microparticles with different particle sizes, a considerable portion of the particles being processed into spherical shapes may be crushed (grinded), or conversely, flat particles may be produced, resulting in poor quality and processing efficiency. There was a big problem. d Means for solving the problems The present invention was made in view of the above circumstances, and
The problems of the prior art have been solved, and microscopic solid particles with different particle sizes and shapes as shown in Figure 4 (photograph) a can be produced by mechanical impact means and, if necessary, by thermal means as an auxiliary means. , for an extremely short period of time (several seconds ~
The present invention provides a method capable of producing uniformly rounded particles as shown in Fig. 4 (photograph) b within a few minutes.
A rotary disk surrounding an impact pin is arranged, and the airflow generated by the rotation of the impact pin is guided into the impact chamber.
The entire amount of amorphous fine solid particles with a particle size of 40 to 0.1 μm is repeatedly passed through the impact chamber along with the air flow, and the air flow is caused to flow along the impact pin and the outermost orbital surface of the impact pin, and is constant therewith. The rotary plate is rotated at a speed of 50 to 120 m/sec to the amorphous fine solid particles between the collision ring and the collision ring, which is arranged around a space of .
Give a mechanical blow while rotating at a circumferential speed of
The present invention provides a method for spheronizing fine solid particles, which is characterized by changing the shape of the amorphous solid particles into rounded spherical particles without crushing them. Typical powders that can be spheronized by the method of the present invention include organic substances such as epoxy powder, nylon powder, polyethylene powder, polystyrene powder, cellulose, and silk powder, and titanium oxide, which generally have a particle size of about 0.1 μm to 40 μm. , graphite, zinc powder, nickel, copper, lead, iron, and other inorganic substances and metals. However, without being limited to these materials, industries such as various chemical industries, electricity, magnetic materials industries, cosmetics, paints, printing inks, toners, coloring materials, textiles, pharmaceuticals, foods, rubber, plastics, and ceramics industries. It can be applied to various materials used in Here, if the particle size exceeds 40 μm, the particles tend to be easily crushed, which is not preferable. In addition, during so-called surface modification, in which microparticles different from the core particles are immobilized or film-formed on the surface of these particles using the various materials listed above as cores, the materials that serve as the cores are When the particles have an unstable shape (generally, the particle size is irregular), a spheroidization treatment can be performed simultaneously with the surface modification treatment. e Example First, an example of a powder impact device used to carry out the method of the present invention will be described in detail with reference to the drawings. 1 and 2 show an example in which a powder impact device is used as the impact type striking means. In the figure, 1 is a casing of a powder impacting device used to carry out the method of the present invention, 2 is a rear cover, 3 is a front cover, 4 is a rotary disk that rotates at high speed inside the casing 1, and 5 is a A plurality of impact pins are provided radially around the outer periphery of the rotary disk 4 at predetermined intervals, and are generally hammer-shaped or plate-shaped. Reference numeral 6 designates a rotating shaft that rotatably supports the rotary disk 4 within the casing 1, and 8 designates a collision ring disposed around the outermost orbital surface of the impact pin 5 with a certain space therebetween. , this uses various shapes of concave and convex type or circumferential flat plate type. 9 is an on-off valve for discharging spherical processing powder provided by cutting out a part of the collision ring; 10 is a valve shaft of the on-off valve 9;
11 is an actuator that operates the on-off valve 9 via the valve shaft 10; 13 has one end opening in a part of the inner wall of the collision ring 8; and the other end opening in the front cover 3 near the center of the rotary disk 4. 14 is a raw material hopper; 15 is a raw material hopper 1;
A chute for supplying raw materials connects 4 and the circulation circuit 13, 16 is a raw material measuring feeder, and 17 is a raw material storage tank. 18 is the outer periphery of the rotary disk 4 and the collision ring 8
A shock chamber 19 is provided between the circulation circuit 13 and
The circulation ports are shown respectively. 20 is a spherical processing powder discharge chute, 21 is a cyclone, 22 is a rotary valve, 23 is a bag filter, 24 is a rotary valve, 25 is an exhaust fan, and 31 is a powder impacting device used to carry out the method of the present invention. A timed control device for controlling the operation of each is shown. When carrying out the method of spheronizing fine powder according to the present invention using the above-mentioned apparatus, the following procedure is performed. First, the on-off valve 9 for discharging the spheronized powder is closed, and the rotating shaft 6 is driven by a driving means (not shown) while introducing inert gas into the apparatus as necessary. However, depending on the nature of the material to be spheronized, particles will not be crushed at 50 m/sec to 120 m/sec.
The rotary disk 4 is rotated at a circumferential speed in the range of m/sec.
At this time, as the impact pin 5 on the outer periphery of the rotary disk 4 rotates, a rapid airflow of air/inert gas is generated, and a fan effect based on the centrifugal force of this airflow causes the impact chamber 18 to
A circulating flow of air returning to the center of the rotary disk 4 is formed around the circulating circuit 13 of the circulating circuit 13 that opens to the rotary disk 4, that is, a completely self-circulating flow is formed. Moreover, the amount of circulating air per unit time that occurs at this time is significantly larger than the total volume of the shock chamber and circulation system, so an enormous number of airflow circulation cycles are formed in a short period of time. . In addition, when the circumferential speed of the rotary disk is less than 50 m/sec, the impact force and the number of circulations are small, and the processing takes time. Also, 120m/
If it exceeds sec, particles may be crushed,
Undesirable. Next, a certain amount of the powder to be processed is fed into the raw material hopper 14 by the metering feeder 16 in a short time. The powder to be treated passes from the raw material hopper 14 through the chute 15 and enters the shock chamber. The powder particles sent into the impact chamber 18 are momentarily impacted by a large number of impact pins 5 of the rotary disk 4 that rotates at high speed, and further collide with the surrounding impact ring 8 to be damaged. The treated powder is selectively subjected to a strong impact action. At the same time, the powder to be treated is circulated through the circulation circuit 13 along with the flow of the circulating glass, returns to the impact chamber 18, and is again subjected to the impact action. Such an impact operation is repeated many times in a short period of time, and the powder to be treated, which was irregularly shaped before the treatment, becomes rounded. This series of impact operations, that is, spheronization operations, is continued until the entire surface of the micropowder particles has a uniform spherical shape, or at least a considerable roundness, but compared to the total volume of the impact chamber and circulatory system. Since a large amount of gas (air and inert gas) circulates within the system, the powder to be treated that circulates together with the gas is subjected to a huge number of impacts in an extremely short period of time. Although it depends on the amount of treatment per batch, the time required for this spherical treatment is generally completed within an extremely short time of several seconds to several minutes, even including the time for supplying the powder to be treated. After the above-mentioned spheroidizing process is completed, the on-off valve 9 for discharging the spheroidized powder is moved to the position shown by the chain line and opened, and the spheroidized powder is discharged. This spheroidized powder is affected by the centrifugal force acting on itself (as long as the centrifugal force is acting on the processed powder, the discharge valve 9 may be placed in a different position) and the discharge valve 9 may be placed in a different position. It is discharged from the shock chamber 18 and the circulation circuit 13 in a short time (several seconds) by the suction force of the wind machine 25, and is discharged from the cyclone 21 and the circulation circuit 13 through the chute 20. After being guided to a powder collecting device such as a filter 23, the powder is collected and discharged to the outside of the system via rotary valves 22 and 24. After the spheronized powder is discharged, the on-off valve 9 is immediately closed, and a certain amount of the powder to be processed from the next time onwards is supplied to the shock chamber from the metering filter 16 again, and is spheronized through the same process. powder is produced one after another. Note that these series of batch spheroidizing operations are controlled and continued by a time control device 31 whose time limit is set in advance in relation to the operating time of related equipment. In addition, if it is necessary to use thermal treatment as an auxiliary during the spheronizing operation (for example, when it is necessary to soften the powder to be treated), the collision ring 8 and the circulation circuit 13 may have a jacket structure. , it is possible to set temperature conditions convenient for the spheroidization treatment of the powder to be treated through various heating mediums and coolants. In addition, in the powder impact device used to carry out the method of the present invention, auxiliary blades may be attached to the rotary disk 4 to further apply force to the circulating flow. That is, if the circulating air volume is increased, the number of times of circulation within a unit time increases, and therefore the number of collisions of powder particles also increases, so that the spheronization processing time can be shortened. Next, in the powder spheronization work carried out in the powder impacting device used to carry out the method of the present invention, it is necessary to prevent oxidative deterioration during the spheronization process of the powder to be processed, and to prevent ignition and explosion. The following describes the use of various inert gases such as nitrogen gas for this purpose. FIG. 3 shows a powder impact device according to the present invention,
An example using this inert gas will be shown. In the description of this embodiment, the same members as in the previous embodiment are designated by the same reference numerals, and the explanation thereof will be omitted. Third
In the figure, 26 is a raw material supply valve provided at the bottom of the raw material hopper 14, and 27 is a chute 1 for supplying raw materials.
5 is an inert gas supply valve opened, 28 is an inert gas supply source, and 29 is an inert gas supply path.
In this embodiment, the circulation circuit 13 is connected to the casing 1.
Shows how it is stored inside. When starting the operation, first, the raw material supply valve 26 is closed, the on-off valve 9 is opened, and then the inert gas supply valve 27 is opened to fill the shock chamber 18 and circulation circuit 13 with inert gas. The substitution of inert gas into the shock chamber and circulation circuit prior to the start of this spheronization process is usually completed within a few minutes. Next, after closing the on-off valve 9 and the supply valve 27 at the same time, the raw material supply valve 26 is immediately opened and the pre-calculated powder to be processed is passed through the chute 15 into the shock chamber 1.
Supply to 8. After supplying, the supply valve 26 is immediately returned to the closed state, and upon receiving this signal, the weighing feeder 16 measures and supplies the next powder to be processed to the raw material hopper 14. Thereafter, the powder to be treated is bombarded with an inert gas in the same manner as in the above embodiment, and the powder to be treated is spheroidized while being kept in sufficient contact with the inert gas while circulating through the circulation circuit 13. be done. Next, when the on-off valve 9 and the supply valve 27 are opened, the spheroidized powder is transferred from the shock chamber 18 and the circulation circuit 13 to the chute 2.
0 and at the same time shock chamber 18 and circulation circuit 1.
3 is replaced with a new inert gas. The discharged spherical powder is treated in the same manner as in the previous example. Thereafter, if the on-off valve 9 and the supply valve 27 are closed and the raw material supply valve 26 is opened, the next spheronizing operation will proceed. Note that this series of batch spheronization operations including supply and stop of inert gas are controlled and continued by the time control device 31 as in the previous embodiment. Next, a specific processing example will be shown below. The powder impact device shown in Fig. 1 was used, in which the outer diameter of the eight plate-type impact pins surrounding the rotary disk was 23 mm, and the diameter of the circulation circuit was 54.9 mm. Amorphous styrene resin powder pulverized products (Fig. 4 a) with an average particle diameter dp50 = 15 μm were subjected to spherical treatment under the treatment conditions shown in the table below as spherical treated powders.
A spherical powder with uniform roundness as shown in Figure b was obtained.
【表】
積及び循環回路の内容積から算出した
。
なお、前記実施番号(T−3)で得られた球形
化処理前後の粉体の走査型電子顕微鏡写真を第4
図に示す。
f 発明の効果
上述の如く、本願発明に係る固体(粉体)粒子
の粒形化処理の方法の特長は、衝撃式打撃手段と
しての微小粉体粒子に対する強力な衝撃力を利用
することによつて、微小粉体粒子を装置系内の気
相中に完全に分散させた状態で、粒子径及び形状
の夫々異なる粉体粒子の全表面に対して、粒子を
粉砕することなく衝撃力付与のための衝撃力の大
きさそれ自体及び衝撃回数を任意に調節できるこ
とにある。
従つて、凝集しやすいミクロンオーダーの各種
微小粉体相互の付着を完全に防止しつつ、同時に
微小粉体の1個、1個に対して過不足のない打撃
力を付与することができるため、一様な丸味をも
つた粒形粒子を短時間のうちに効率よく生産する
ことができる。[Table] Calculated from the product and the internal volume of the circulation circuit.
Incidentally, the scanning electron micrographs of the powder before and after the spheroidization treatment obtained in the above execution number (T-3) are shown in the fourth column.
As shown in the figure. f. Effects of the Invention As described above, the feature of the method for granulating solid (powder) particles according to the present invention is that the method of granulating solid (powder) particles according to the present invention is characterized by utilizing a strong impact force on fine powder particles as an impact impact means. Therefore, with the fine powder particles completely dispersed in the gas phase within the device system, impact force can be applied to the entire surface of powder particles of different particle sizes and shapes without pulverizing the particles. The reason is that the magnitude of the impact force itself and the number of times of impact can be adjusted as desired. Therefore, it is possible to completely prevent adhesion of various micron-order fine powders that tend to agglomerate to each other, and at the same time, it is possible to apply just the right impact force to each of the fine powders. Particles with uniform roundness can be efficiently produced in a short time.
第1図は、本発明の方法を実施するために使用
する粉体衝撃装置の一実施例を、その前後装置と
ともに系統的に示した概念的な説明図、第2図は
第1図の側断面説明図、第3図は同じく不活性ガ
スを用いる場合の他の実施例の説明図であり、第
4図は球形化処理前後の粉体の走査型電子顕微鏡
写真を示し、同図a,bはともに1000倍のものを
示す。
FIG. 1 is a conceptual explanatory diagram systematically showing one embodiment of a powder impacting device used to carry out the method of the present invention, together with its front and rear devices, and FIG. 2 is a side view of FIG. 1. FIG. 3 is an explanatory diagram of another example in which an inert gas is used, and FIG. 4 is a scanning electron micrograph of the powder before and after the spheroidization treatment. Both b indicate 1000 times magnification.
Claims (1)
置し、該衝撃ピンの回転によつて発生した気流を
該衝撃室に誘導・循環させ、該気流と共に粒径40
〜0.1μmの不定形微小固体粒子の全量を、繰り返
し前記衝撃室を通過させ、前記衝撃ピンと、該衝
撃ピンの最外周軌道面に沿い、かつそれに対して
一定の空間を置いて周設された衝突リングとの間
で、前記不定形微小固体粒子に対し、前記回転盤
50〜120m/secの周速度で回転させながら、機械
的打撃を与え、該不定形固体粒子を破砕せずに、
その形状を丸みをもつた球形粒子に変えることを
特徴とする微小固体粒子の球形化処理方法。 2 補助手段として加熱し、粒子を軟化させるこ
とを特徴とする特許請求の範囲第1項に記載の微
小固体粒子の球形化処理方法。 3 不活性ガス雰囲気下で上記球形化処理を行な
うことを特徴とする特許請求の範囲第1項または
第2項のいずれかに記載の微小固体粒子の球形化
処理方法。[Scope of Claims] 1. A rotary disk surrounding an impact pin is arranged in an impact chamber, and an air flow generated by the rotation of the impact pin is guided and circulated in the impact chamber, and together with the air flow, particles with a diameter of 40
The entire amount of amorphous fine solid particles of ~0.1 μm was repeatedly passed through the impact chamber, and the particles were placed around the impact pin along the outermost orbital surface of the impact pin and with a certain space therebetween. Between the collision ring and the amorphous fine solid particles, the rotary disk
While rotating at a circumferential speed of 50 to 120 m/sec, applying a mechanical blow to the amorphous solid particles without crushing them,
A method for spheronizing fine solid particles, which is characterized by changing the shape of the solid particles into rounded spherical particles. 2. The method for spheroidizing fine solid particles according to claim 1, characterized in that the particles are softened by heating as an auxiliary means. 3. The method for spheronizing fine solid particles according to claim 1 or 2, characterized in that the spheronizing treatment is carried out under an inert gas atmosphere.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61064317A JPS62221434A (en) | 1986-03-22 | 1986-03-22 | Treatment of making micro-solid particle globular and device therefor |
DE8686112228T DE3687219T2 (en) | 1985-10-07 | 1986-09-04 | METHOD FOR IMPROVING THE SURFACE QUALITY OF SOLID PARTICLES AND DEVICE THEREFOR. |
EP86112228A EP0224659B1 (en) | 1985-10-07 | 1986-09-04 | Method of improving quality of surface of solid particles and apparatus thereof |
SU864028279A RU2047362C1 (en) | 1985-10-07 | 1986-10-03 | Method and device for treating solid particle surface |
KR1019860010468A KR900001366B1 (en) | 1985-12-13 | 1986-12-08 | Surface treating method of the solid particles and apparatus there for |
US07/183,297 US4915987A (en) | 1985-10-07 | 1988-04-11 | Method of improving quality of surface of solid particles and apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61064317A JPS62221434A (en) | 1986-03-22 | 1986-03-22 | Treatment of making micro-solid particle globular and device therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62221434A JPS62221434A (en) | 1987-09-29 |
JPH043250B2 true JPH043250B2 (en) | 1992-01-22 |
Family
ID=13254735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61064317A Granted JPS62221434A (en) | 1985-10-07 | 1986-03-22 | Treatment of making micro-solid particle globular and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62221434A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103803717A (en) * | 2012-11-09 | 2014-05-21 | 中国石油化工股份有限公司 | Method for recycling reclaimed water in circulating cooling water system |
CN103803716A (en) * | 2012-11-09 | 2014-05-21 | 中国石油化工股份有限公司 | Method for recycling reclaimed water in circulating cooling water system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62298443A (en) * | 1986-06-17 | 1987-12-25 | Nara Kikai Seisakusho:Kk | Method for reforming surface of solid particle |
JPH0657310B2 (en) * | 1987-03-24 | 1994-08-03 | ホソカワミクロン株式会社 | Method of sizing inorganic crystalline particles |
EP0609868B1 (en) * | 1993-02-03 | 1998-06-24 | Asahi Glass Company Ltd. | Monolithic refractory powder mixture |
JPH08229103A (en) * | 1995-02-27 | 1996-09-10 | Shin Etsu Chem Co Ltd | Fluidizing method of low replaceability hydroxy propylcellulose and manufacture of solid preparation |
FR2732674B1 (en) * | 1995-04-10 | 1997-05-09 | Alcatel Fibres Optiques | PROCESS AND DEVICE FOR SPHEROIDIZATION OF SILICA GRANULES |
JP3890240B2 (en) * | 2002-03-12 | 2007-03-07 | キヤノン株式会社 | Toner production method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59116301A (en) * | 1982-12-22 | 1984-07-05 | Toyo Kinzokufun Kk | Manufacture of zinc particle |
JPS60129144A (en) * | 1983-12-16 | 1985-07-10 | 株式会社奈良機械製作所 | Finely pulverizing machine |
-
1986
- 1986-03-22 JP JP61064317A patent/JPS62221434A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59116301A (en) * | 1982-12-22 | 1984-07-05 | Toyo Kinzokufun Kk | Manufacture of zinc particle |
JPS60129144A (en) * | 1983-12-16 | 1985-07-10 | 株式会社奈良機械製作所 | Finely pulverizing machine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103803717A (en) * | 2012-11-09 | 2014-05-21 | 中国石油化工股份有限公司 | Method for recycling reclaimed water in circulating cooling water system |
CN103803716A (en) * | 2012-11-09 | 2014-05-21 | 中国石油化工股份有限公司 | Method for recycling reclaimed water in circulating cooling water system |
Also Published As
Publication number | Publication date |
---|---|
JPS62221434A (en) | 1987-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH032009B2 (en) | ||
EP0224659B1 (en) | Method of improving quality of surface of solid particles and apparatus thereof | |
JPH0510970B2 (en) | ||
US5656087A (en) | Method for surface treatment of solid particles and apparatus therefor | |
JPH043250B2 (en) | ||
JPH0751288B2 (en) | Particle composite method | |
JPH0376177B2 (en) | ||
JP4596134B2 (en) | Method for improving dispersibility of carbon nanotubes | |
JPH0461687B2 (en) | ||
KR0168131B1 (en) | Crushing apparatus | |
JPH0816795B2 (en) | Toner manufacturing method and apparatus | |
US3799455A (en) | Method for reacting materials | |
US6631861B1 (en) | Grinding device for resin composition | |
KR900001366B1 (en) | Surface treating method of the solid particles and apparatus there for | |
JPH05168895A (en) | Method for modifying surface of solid grain | |
JP2001315127A (en) | Method and apparatus for peeling coating film | |
JP2004290865A (en) | Impact granulator | |
JPH08131818A (en) | Powder treating device | |
JPH0655053A (en) | Powder treating device | |
US4762765A (en) | Method of generating a spherical grain | |
JP3536068B2 (en) | Powder treatment method | |
JPS60129144A (en) | Finely pulverizing machine | |
RU2047362C1 (en) | Method and device for treating solid particle surface | |
JPH0618580Y2 (en) | Rotating disk used for surface modification device of solid particles | |
JPS5921651B2 (en) | Granulation method and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |